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Fig. S1 Daily maximum temperature anomalies during recent record-breaking heatwaves 
and their temporal context. a 2-meter daily maximum temperature anomaly fields (Tx) of the 4 
Northern Hemisphere averaged over the 2023 Siberian heatwave. Regions where values were 
record-breaking during the indicated time-period are hatched. b Time series for the years 1950 - 6 
2023 of the hottest annual Tx anomaly relative to 1981 - 2010 June - August averaged over the 
region indicated by the box in a. The record-breaking values of regional-mean Tx and their dates 8 
are highlighted (red dot) in each time series. c,d same as a, b but for the Southeast Asian 
Heatwave of 2024. 10 
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Figure S2 Global map displaying the robustness of regional tail widening and model biases 14 
ranked by seven conditions. The conditions are as follows: Conditions 1-5 positive trends 
across reanalysis datasets and time periods (i. ERA5 (1958-2022), ii. JRA-55 (1958-2022), iii. 16 
ERA5 (1980-2022), iv. JRA-55 (1980- 2022), v. MERRA2 (1980 - 2022 ),  vi. significant long-term 
trend in ERA5 (1958- 2022, p < 0.05), which is also vii. stronger in magnitude than the 90th 18 
percentile of the model spread (n=49). Regions around areas of interest are outlined above 
(numbered 1-20). These regions were tested for trends in their regional averages. Regions 20 
outlined in black (1, 2, 3, 4, 5, 6, 8), meet the region-average conditions listed on the bottom right, 
and were therefore selected to be discussed in detail in the main manuscript (Figs. 2, 3, S5). 22 
Regions 9-20 fail one of the conditions and are therefore omitted. For completeness, trends and 
boxplots for all regions are provided in Fig. S3. and Fig. S4. 24 



 

 

	
Figure S3 Regional timeseries in tail widening and a comparison of distributions of modelled 26 
changes over three different time-periods and corresponding reanalysis and gridded station 
observation (E-OBS, nClimGrid) datasets. Definitions of regions 1-10 are shown in Fig. S1. An 28 
analysis of regions 11-20 is provided in Fig. S3. Regions that do not meet all the selection criteria 
are outlined in red. 30 



 

 

	
Figure S4 As in S3 but for regions 11-20. Regional timeseries in tail widening and a comparison 32 
of distributions of modelled changes over three different time-periods and corresponding 
reanalysis and gridded station observation (E-OBS, nClimGrid) datasets. Definitions of regions 34 
11-20 are shown in Fig. S1. Regions that do not meet all the selection criteria are outlined in red. 

 36 

	
 



 

 

Figure S5 As in Figure 3b–k but including three SST-forced large ensembles (60 members in 38 
total) outside of the 49 HighResMIP project model runs provided in Fig. 3 (note that panel letters 

are kept in line with Fig. 3 to facilitate comparison). In each panel, the first two boxplots and the 40 
ERA5 (red), JRA-55 (orange), and E-OBS (yellow) datapoints and uncertainty range are exactly 

as in Figure 3b–k. The third boxplot displays regional trends from a 10-member ensemble of 42 
CAM6 forced by ERSSTv5 historical SSTs, covering 1958–2021. The fourth boxplot shows the 

same from a 25-member ensemble of ECHAM5 forced by ERSSTv5 covering 1958–2020, and 44 
the fifth from a 25-member ensemble of ECHAM5 forced by Hurrell SSTs covering 1958–2020. 

Note that each of the three extra ensembles shown here do not cover the entire time-period 1958–46 
2022 considered in the main analysis. The sixth boxplot aggregates all 109 model realizations. 

The ECHAM5 runs (Roeckner et al., 2003) were accessed through the NOAA Facility for Weather 48 
and Climate Assessments (FACTS) repository (Murray et al., 2020). The CAM6 runs were 

accessed through the NCAR Climate Data Gateway thanks to the NCAR Climate Variability & 50 
Change Working Group (CVCWG). 
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https://pure.mpg.de/rest/items/item_995269_4/component/file_995268/content
https://psl.noaa.gov/repository/facts/
https://psl.noaa.gov/repository/facts/
http://10.1175/BAMS-D-19-0224.1
https://www.cesm.ucar.edu/working-groups/climate/simulations/cam6-prescribed-sst
https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.cam6.prescribed_sst_amip.html


 

 

 
Figure S6 Demonstration of procedure to calculate smoothed global mean near surface 58 
temperature (GMST) time series for each model realization and observations, which are used as 

a trend covariate instead of time in Figs. S3–S4. In a, the thin red line shows the global mean 60 
(land and ocean points included) of each grid point’s annual median Tx. The thick red line shows 

this time series smoothed by a low-pass filter to retain only variability of frequencies over 10 years 62 
(i.e. a 10-yearly cutoff, third-order Butterworth filter, applied forward and backward). In b, this 

smoothed time series is compared against the widely-used NASA GISTEMP v4 GMST time 64 
series, subject to the same smoothing (and with the time-means of each over the whole 1950–

2022 period removed). Their high similarity justifies the use of Tx data and annual medians to 66 
generate the GMST time series. Light and dark gray lines in a and b show smoothed GMST time 

series for model data. 68 
 

 70 
Figure S7 As in Fig. 2a but a multi-model mean trend in the changes in the differences of the 

hottest 2% of annual maximum of daily maximum temperature (Tx) per year with the average of 72 
the 25% of days (annual 87.5th percentile of Tx) percentile of the annual maximum temperature 

at each grid point for years 1950-2022 (as Fig. 2a but for models) b the same variables but scaling 74 
local temperatures with global mean temperatures. 
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Figure S8 Observed trends in comparison with the models used and distinguished by their 
resolution and to atmosphere-ocean coupling frameworks a, b, d, e Comparison of observed 78 
trends (ERA5) in the widening of the upper quartile (see Fig. 3a) in a range of different model 

subsets and architectures provided c, f Collapsing the maps in a, b, d, e into histograms. In c, 80 
histograms provide estimates of the global distribution of the percentages provided in a and b. 

Color values match the color map provided in the bottom of the figure comparing models with 82 
high (n=25) and low resolution (n=24). A high percentage value for the 25th – 75th percentile 

signifies a better agreement with trends based on reanalysis, while high values in the lower 84 
(upper) percentiles relate to an under (over) estimation of trends in models, on a gridcell-by-

gridcell basis. The histograms in f show the same for trends over land area based on coupled (n-86 
16) vs. SST-forced experiments (n=33). d and e, respectively.  
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Figure S9 As in Fig. S8 but for GMST level covariate instead of years. a, b, d, e Comparison 

of observed trends (ERA5) in the widening of the upper quartile (see Fig. 3a) in a range of different 90 
model subsets and architectures provided c, f Collapsing the maps in a, b, d, e into histograms. 

In c, histograms provide estimates of the global distribution of the percentages provided in a and 92 
b. Color values match the color map provided in the bottom of the figure comparing models with 

high (n=25) and low resolution (n=24). A high percentage value for the 25th – 75th percentile 94 
signifies a better agreement with trends based on reanalysis, while high values in the lower 

(upper) percentiles relate to an under (over) estimation of trends in models, on a gridcell-by-96 
gridcell basis. The histograms in f show the same for trends over land area based on coupled (n-

16) vs. SST-forced (n-33) experiments. d and e, respectively.  98 
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Figure S10 Comparison of global fraction of land area with a positive trends, b positive trends 

which are statistically significant (p < 0.05) and c the fraction of positive trends which are also 102 
statistically significant (p < 0.05) (right y-axis). d Fraction of global land area over which positive 

trends are significant with a p-value of p < 0.01 and c the respective fraction compared to all grid 104 
points with positive trends (right y-axis).  
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Fig. S11 Alternative depiction of data shown in Fig. 4 providing a histogram of all models 108 
combined in a and cumulative density distributions in b across positive and negative trends 

instead of providing values for each side of the distribution separately. Trends that exceed 0.5 110 
0.5 °C/decade irrespective of sign are underestimated by a factor of 3.5. 
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Figure S12 Modelled trends in the hottest 2% compared to the upper 25% for an ensemble 

member based on HadGEM3. Strong trends are visible in single grid-points in Arctic regions and 116 
might be related to modelled singularities linked to assumptions around land and/or sea ice 

coverage. 118 
 
	120 
Table S1: Model runs and characteristics used in this analysis. Note that some models feature 

more than one ensemble member.  122 
Institution Model Nominal resolution Configuration Number of 

members 
AS-RCEC HiRAM-SIT-HR 25 km SST-forced 1 

AS-RCEC HiRAM-SIT-LR 50 km SST-forced 1 

CAS FGOALS-f3-L 100 km SST-forced 1 

CNRM-CERFACS CNRM-CM6-1 250 km SST-forced 8 

CNRM-CERFACS CNRM-CM6-1 250 km Coupled 2 

CNRM-CERFACS CNRM-CM6-1-HR 50 km SST-forced 9 

CNRM-CERFACS CNRM-CM6-1-HR 50 km Coupled 2 

EC-Earth-

Consortium 
EC-Earth3P 100 km SST-forced 1 

EC-Earth-

Consortium 
EC-Earth3P 100 km Coupled 2 



 

 

EC-Earth-

Consortium 
EC-Earth3P-HR 50 km SST-forced 3 

EC-Earth-

Consortium 
EC-Earth3P-HR 50 km Coupled 3 

MIROC NICAM16-7S 100 km SST-forced 1 

MIROC NICAM16-8S 50 km SST-forced 1 

MOHC HadGEM3-GC31-

MM 
100 km SST-forced 1 

MOHC HadGEM3-GC31-
MM 

100 km Coupled 2 

MOHC HadGEM3-GC31-LL 250 km Coupled 3 

MOHC HadGEM3-GC31-

LM 
250 km SST-forced 1 

MOHC HadGEM3-GC31-
HM 

50 km SST-forced 1 

MPI-M MPI-ESM1-2-HR 100 km SST-forced 1 

MPI-M MPI-ESM1-2-HR 100 km Coupled 1 

MPI-M MPI-ESM1-2-XR 50 km Coupled 1 

MRI MRI-AGCM3-2-H 25 km SST-forced 1 

MRI MRI-AGCM3-2-S 25 km SST-forced 1 

NOAA-GFDL GFDL-CM4C192 100 km SST-forced 1 

 


