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Soil carbon in the world’s tidal marshes
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Tidal marshes are threatened coastal ecosystems known for their capacity to
store large amounts of carbon in their water-logged soils. Accurate quantifi-
cation andmapping of global tidalmarshes soil organic carbon (SOC) stocks is
of considerable value to conservation efforts. Here, we used training data from
3710unique locations, landscape-level environmental drivers and a global tidal
marsh extentmap to produce a global, spatially explicit map of SOC storage in
tidal marshes at 30m resolution. Here we show the total global SOC stock to
1m to be 1.44 PgC, with a third of this value stored in the United States of
America. On average, SOC in tidalmarshes’0–30 and 30–100 cmsoil layers are
estimated at 83.1MgCha−1 (average predicted error 44.8MgCha−1) and
185.3MgCha−1 (average predicted error 105.7MgCha−1), respectively.

Tidal marshes, like other blue carbon1,2 ecosystems (BCEs: mangroves,
seagrasses and tidal freshwater emergent and forestedwetlands), are a
global soil organic carbon (SOC) hotspot owing to high rates of
autochthonous and allochthonous organicmatter deposition and slow
decomposition in temporarily or permanently waterlogged soils. In
addition to securing this carbon (C) over millennia, tidal marshes are
also considered to be one of the most effective ecosystems for C
accumulation3. Tidal marsh soils are capable of accreting vertically
with sea level rise with inputs from allochthonous and autochthonous
sources, thus limitations to C accumulation are far less likely to occur
inmarshes compared to terrestrial ecosystems, providing potential for
continuous climate change mitigation benefits.

Tidal marshes were estimated to cover an area of 52,880km2 in
2020, distributed across 120 countries and territories4, however, this is
only a fraction of the prior extent. It is likely that over 50% of global
tidal marsh habitat has been lost since 18005, with modern annual loss
rates of between 0.2% and 2%6–8 resulting from global warming, sea-
level rise, and anthropogenic activities such as agricultural or urban
expansion, and human engineering of coastal floodplains and river

systems9. Owing to the many ecosystem services tidal marshes pro-
vide, as well as their role in climate change mitigation, there is an
increasing need to conserve and restore tidal marsh habitats
globally10,11.

As part of effectively managing tidal marshes and quantifying
their climate mitigation potential, there is a need to first understand
the quantities of C stored within their soils12. Though we have infor-
mation on SOC in tidal marshes at local to regional scales in areas like
the conterminous United States13, Great Britain14 and Australia15, we
currently lack a global scale analysis supported by extensive field-
based observations and scaled up beyond temperate marshes16.
Without this information, the scientific community and practitioners
have to rely on global averages that are not ecosystem-specific17 and
that are based on data mainly from temperate regions18, or they must
collect resource-intensive in-situ field measurements.

Here, we present a global spatial model of SOC stock in tidal
marshes and sampling bias-associated uncertainties. We did this by
coupling a global tidal marsh extent map4 with a global dataset con-
taining 3710 measurements of tidal marsh soil properties and C
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content19,20, and using a machine-learning approach including envir-
onmental covariates identified by expert elicitation as potential drivers
of soil C density. To align with IPCC and other guidance21, we present
spatially explicit SOC stocks to 1mdepths. This depth profile is used to
represent soil more susceptible to emissions linked to disturbances.
We also provide estimates for both the 0–30 cm and 30–100 cm soil
layers, to align with both the numerous SOC studies that are confined
to the upper layers and to match the conventional 30 cm depth for
terrestrial soil C stock estimates.

Results and discussion
Global distribution of tidal marsh SOC
Our spatially explicit model predicts 1.44 Pg C in the topmetre of tidal
marsh soils globally. This estimate incorporates the spatial variability
in tidal marsh SOC more adequately than previous studies, given that
the model used training data from 3710 unique locations19,20 and
hypothesis-driven landscape-level drivers (Supplementary Table 1),
while previous estimates have relied on averaged values froma smaller
subset of data22,23. The data used to train the model are representative
of most of the environmental conditions found in tidal marshes across
the world (Supplementary Fig. 1), although representation is more
limited from areas with different rates of Holocene relative sea-level
rise (Supplementary Fig. 1h), certain coastal morphologies (Supple-
mentary Fig. 1i), lowerminimum temperatures (Supplementary Fig. 1k)
and lower potential evapotranspiration (PET) rates (Supplementary
Fig. 1n). Whilst our training dataset is extensive, there is also a bias in
the geographic coverage of the training data, with over 85% from the
USA, UK and Australia (Supplementary Fig. 2). Given the lack of data
from theArctic and the tropics, predictions from those regions are less
certain and these are identified as locations for future assessments (see
“Locations for priority sampling”). To account for these limitations in
the training data, our model used an area of applicability (AOA)

approach24 which identifies predictions where the environmental
covariates are highly dissimilar to the environmental envelope cap-
tured by the training data. Due to the high expected error associated
with the predictions outside the AOA, they were removed from our
final SOC maps and statistics.

Previous global tidal marsh C stock estimates have taken a wide
range of values. With lower values such as the 0.43 ±0.03 Pg C esti-
mated in the top0.5m fromadataset basedmostly onNorthAmerican
tidal marshes18, continental SOC averages to 1m multiplied by extent
estimates (1.41–2.44Pg)25, or ranging between 0.86 and 1.35 PgC16

estimated to a depth of 1m from the SoilGrids map, a global machine-
learning map from agricultural soils and terrestrial ecosystems data17.
Conversely, simple calculations based on an average SOC value,
applied to an overestimated tidal marsh extent have indicated that the
global stock could be as high as 6.5 PgC22. Our prediction of total
global SOC in tidal marshes is significantly lower than this upper esti-
mate, with ourmodel predicting a range of 0.87–1.62 Pg C. It should be
noted that our global tidal marshes SOC stock estimate is conservative
because the underlying global map of tidal marshes we used only
extends to 60° N and there are considerable unmapped areas of tidal
marsh in the Arctic4. In addition, the combination of high expected
error of predictions resulted in many areas in the tropics being
removed from the statistics (Figs. S3 and S4). These removals, coupled
with our currently incomplete understanding of the full distribution of
tidal marshes4, suggest that carbon stocks could also be under-
estimated in the tropics.

Themagnitudeof regional andnationalC stocks is strongly driven
by tidalmarsh area. Thus, a high proportion of the total globalmarsh C
was located in the Temperate Northern Atlantic (Fig. 1a), which holds
almost half (45%) of the global tidal marsh extent4. Countries with the
highest predicted total SOC in tidal marshes (the U.S., Canada, and
Russia, followed by Argentina, Australia, and Mexico—Fig. 1b and

Fig. 1 | Total SOC stocks (SOC, Teragrams (Tg)) in the top 1m of tidal marshes.
a Aggregated per 2° cell, and (b) for the ten countries with the highest total SOC
stock. Values refer to predicted SOC stocks after removing pixels outside the AOA,

i.e. where we enabled the model to learn about the relationship between SOC
stocks and the environmental drivers. Whiskers represent the expected
model error.
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Supplementary Table 2) had both high C per unit area and largemarsh
extents4. Our country-level tidal marsh SOC stock estimates are con-
sistent with those found in several regional studies. For example,
stocks of 720TgC to 1m were projected in the conterminous United
States13, which is comparable with our value of 520TgC. Similarly,
5.2 TgC was estimated for the shallow (28 ± 16 cm) tidal marsh soils of
Great Britain26, which aligned with our prediction for the top 30 cm
being 4.7 TgC. Our results highlight the importance of geographical
context when quantifying tidal marsh soil C stocks. For example, many
marshes across Great Britain have relatively shallow soil profiles26, and
as such our estimate of 1m would overestimate the national stock.
Conversely, in settings with a longer history of relative sea-level rise or
very high tidal ranges, marsh soil can reach depths exceeding 1m27,28,
and thuswemayunderestimate total SOC stock. Not all of our findings
are so well aligned with other studies. For example, we predict 19.3 Tg
forChina, while 57 TgCwasestimated in an earlier study (although this
also included the contribution of mangroves and tidal flats)29. Such
differences are likely to be driven by several factors, most strongly of
which is the area of tidalmarsh estimated for each country26. However,
the availability of training data that accurately captures the variability
of environmental conditions and the inclusion of finer-scale model
predictors (e.g. data on tidalmarsh plant communities) of C stocks will
impact estimates.

We predicted that the average SOC per hectare in tidal marshes
globally is approximately 83.1MgCha−1 in the 0–30 cm layer and
185.3MgCha−1 in the 30–100 cm layer (Fig. 2), with an average pre-
dicted error of 44.8MgCha−1 (Supplementary Fig. 3) and
105.7MgCha−1 (Supplementary Fig. 4), respectively. Our value for 1m
of 268MgCha−1 refines previous global estimates, such as

162MgCha−1 derived from local C data of unclear origin22, and
317MgCha−1 averaged from an unspecified number of studies23. Our
approach accounts for the spatial variability in C and is an improve-
ment upon averages based on reported values alone. Further, our
central estimate for tidal marsh soils is within the range of those pre-
dicted formangrove soils (232–470MgCha−1)30, confirming that these
BCEs store significantly more SOC per unit area than many terrestrial
ecosystems31. The average expected error associated with our predic-
tions was reasonably consistent at the regional level (Supplementary
Table 3, 0–30 cm layer: 43.0–52.5; 30–100 cm layer: 102.6–122.1);
however, greater variation was more apparent at finer spatial scales
(Supplementary Figs. 3 and 4).

Our analysis indicates larger SOC per hectare in higher latitudes,
with northern areas of the Temperate Northern Atlantic and Pacific
realms having particularly high values (Fig. 2). At the regional level,
within both depth layers, temperate areas generally have slightly
higher average SOC values than tropical regions (Supplementary
Table 3), although there is high expected model error associated with
each prediction (Supplementary Figs. 3 and 4). This finding goes
against the hypothesis that higher temperatures are generally asso-
ciated with higher SOC32, due to the increase in productivity and
growth of vegetation33. Instead, the lower soil temperature could limit
SOC breakdown enhancing its storage potential33, or temperature
could be a weak driver at the global scale34. The large SOC predicted to
1m in higher latitudes is influenced by limited training data and a low
proportion of our predictions in the AOA (Fig. 3). In addition, the
limited understandingofprocesses suchasglacial isostatic adjustment
and the impacts of relative sea level rise and how they influence C

≤125

>125 - 150

>150 - 175

>175 - 200

>200

b SOC stocks
30 - 100 cm
(Mg C ha-1)

a SOC stocks
0 - 30 cm

(Mg C ha-1)

≤70

>70 - 80

>80 - 90

>90 - 100

>100

Fig. 2 | Global distribution of tidal marsh SOC. a For the 0–30 cm soil layer and
(b) the 30–100 cm soil layer (aggregated per 2° cell). Values refer to predicted SOC
per unit area (megagrams carbon per hectare (MgCha−1)) after removing pixels
outside the AOA, i.e. where we enabled the model to learn about the relationship
between SOC and the environmental drivers. Cells with 0%of pixels within the AOA

are not displayed. Because fewer training data points were available in the deeper
soil layer, more pixels are outside the AOA and thus fewer cells are displayed in the
lower panel. Initial predicted values and the proportion of pixels in each cell within
the AOA are presented in Supplementary Figs. 5 and 6.
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accumulation, decomposition and storage may profoundly alter esti-
mates for the region, and remains an ongoing area of research.

Drivers of SOC in tidal marshes
Overall, our model performed well in describing variation in our SOC
training data, with an R2 of 0.59. We selected hypothesis-driven
environmental drivers (Supplementary Table 1) to limit the number of
covariates included, as well as a spatial cross-validation strategy to
avoid issues of overfitting35. Soil depth was the most important driver
of SOCdensity (Fig. 4). This is consistentwithfindings quantifying SOC
in mangrove ecosystems30,36. Depth has a strong influence on SOC
concentration and bulk density, the interaction of which results in
relatively stable SOC density measurements across the soil profile13,19.
Elevation was also an important variable, with higher SOC values pre-
dicted at lower elevations, which are generally characterised by higher
sedimentation rates allowing more trapping of organic C37, as well as
more frequent inundation providing an opportunity for deposition of
tidally-distributed sediments to settle on tidal marsh surfaces38 and for
plants to allocate resources to their roots39, adding organicmaterial to
the soils. Maximum SOC storage occurs just above mean sea level
where (i) tidal marsh vegetation can thrive and serve as a C source, (ii)
vertical space (or accommodation space) remains available for accu-
mulation of organic matter enriched sediments from autochthonous
and allochthonous sources, and (iii) decomposition of SOC is ham-
pered by the anaerobic conditions created by higher inundation
frequencies34. Temperature has been highlighted as being strongly
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Fig. 3 | Realm-level summary statistics of SOC. In (a) the 0–30 cm soil layer and
(b) the 30–100 cm soil layer. For each soil layer (0–30 cm and 30–100 cm), the x-
axis shows the average final predicted SOC per unit area (megagrams carbon per
hectare (MgCha−1)), after masking out areas outside the AOA and the y-axis shows
the proportion of the realm within the AOA, i.e. where we enabled the model to

learn about the relationship between SOC and the environmental drivers. Whiskers
represent the expected model error for each prediction. Colours are mapped to
realms, which correspond to the biogeographical realms of the Marine Ecoregions
of the World, and the global average.
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settings.
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correlated with C stocks in coastal wetlands32,40; however, within our
model temperature (both maximum and minimum) had similar rela-
tive variable importance as many other covariates (Fig. 4). While our
model training data does not sample the full temperature covariate
space for minimum temperatures (Supplementary Fig. 1k), other
research has suggested that climate may not be a significant predictor
of C stocks34, as increased production anddecompositionmaybalance
out at higher temperatures. While the variable importance of the
model indicates that temperatures partially drive the patterns of SOC,
there is uncertainty in this assessment as underlying interactions
between variables are not captured.

Our model includes the best globally available environmental
covariates used to predict SOC in tidal marshes. However, there are a
number of broad-scale drivers identified as potentially important
predictors of SOCdensitywhichwerepoorly represented inourmodel
or for which there were no globally available data products. For
example, sea-level rise history has been linked to C storage in
marshes34,41. This relationship was not apparent using our modelling
method, but that is likely driven by the relatively coarse-scale classifi-
cation of sea-level rise history zones42 used in the analysis. While we
included the normalised difference vegetation index (NDVI) as a proxy
for tidal marsh vegetation type and productivity (the source of SOC),
data sources representing the distribution of dominant plant species,
diversity, or species assemblages at a global scale would be an
important covariate to develop43, as C stocks can vary with species and
plant community14,44. Additionally, a high-resolutionmapof the coastal
typology of tidalmarsheswould help refinepredictions as geomorphic
settings (for example deltas, estuaries, lagoons, composite deltas and
lagoons, as well as sediment conditions and geology) influence the
SOC stock via the type and rate of sediment supply to the coastline,
nutrient loading/limitation, and organic matter diagenesis40. A global
map of shoreline morphology would also better represent the
accommodation space available for C storage34,45, rather than using
coastal typology. Finally, our analysis provides a static estimate of tidal
marsh SOC stocks driven by environmental covariates. However, it is
well established that natural and anthropogenic drivers can impact
tidal marsh persistence and condition, and as such their SOC stocks8.
Anthropogenic disturbances could both deplete C storage (e.g. from
erosion or direct habitat removal, although such impacts would
remove them from our map and model) or increase C storage (e.g.

from improved productivity due to nutrient additions) beyond what
would be predicted by our model.

Locations for priority sampling
While our global tidal marsh SOC model is underpinned by an
extensive training dataset19,20 of 42,741 observations from 3710
unique locations (Supplementary Fig. 1), the applicability of the
model output is reduced in some regions where data is scarce or
inexistent. Over 85% of the training locations are from the USA
(n = 2005), the UK (n = 944) or Australia (n = 284). By implementing
an AOA method24 we restrict predictions to locations where the
relationship between the training data and environmental covariates
is meaningful. Due to the sparsity of training data from some loca-
tions, areas where our model predictions are robust (the AOA)
represent 58% ofmappedmarshes globally for the 0–30 cm layer and
46.2% for the 30–100 cm layer.

The spatial applicability of ourmodel varies between regions, with
high AOAs (>85%) for many temperate regions, but very low applic-
ability for the Arctic and much of the tropics (Fig. 3 and Table S3). By
understanding this interplay between the predictions and their
uncertainty, our analysis identifies priority areas for sampling to better
parameterise futuremodels (Fig. 5). For example, our analysis predicts
high SOC across the high Arctic; however, this region is characterised
by limited training data and thus high per pixel expected error. In our
final analysis, these areas are outside the AOA, and therefore there are
significant uncertainties when estimating SOC in this region. Many
temperate areas were also predicted to have high SOC, but here pre-
dictions were underpinned by extensive field measurements and thus
subject to greater certainty. Finally, many tropical and subtropical
areas of tidal marsh were predicted to have low SOC. Tidal marshes in
these regions, where mangroves are more likely to occur, are poorly
characterised46, and our predictions in these regions are limited by our
knowledge of their structure and extent. SOC in tropical tidal marshes
has been shown to be highly variable47 and as such our model pre-
dictions will be sensitive to the limited training data available. Our
analysis suggests that the average SOC per unit area is lower (Table S3,
0–30 cm layer: 5–23%; 30–100 cm layer: 9–29%) for three out of the
five tropical regions compared to the global average; a result sup-
ported by the currently available studies48.

Low predictions -
Low error

High predictions -
Low error

Low predictions -
High error

High predictions -
High error

Fig. 5 | Bivariate plot showing predicted SOC stocks per unit area and
expected error. Values are for the initial model predictions and expected model
error (i.e. notmasked by the AOA), aggregated per 2° cell. The plot shows locations

with lowpredictions and low error (grey), highpredictions and low error (blue), low
predictions and high error (yellow), and high predictions with high error (green).
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Our research highlights two key pathways for future work, firstly
greater SOC field measurements from the extensive areas of Arctic
tidal marsh to better quantify potential stocks in those regions, areas
which are significantly threatened by climate change49. Secondly, we
require far greater understanding of tidal marshes within the marsh-
mangrove ecotone in the tropics to characterise their role as a keyBCE.
Tidal marshes in tropical regions are an important component of the
coastal seascape, yet our understanding of both their extent and SOC
stocks is limited by available data. Within our model there was varia-
tion in the predicted SOC per unit area across tropical realms
(Table S3), but the majority of predictions were associated with high
expected error (Fig. 5). The mechanisms behind the variability in SOC
are unknown but may relate to variation in the community composi-
tion and productivity of tropical tidal marshes.

Theuncertainties inourmodel also have adepth component,with
consistently reduced AOAs in the 30–100 cm layer compared to the
0–30 cm layer (Fig. 3). This reduction is driven by the smaller number
of data points in this deeper layer (35% of all data). This disparity in
data coverage over soil depth could be addressed by more consistent
sampling to 1m across studies; however, not all marshes have an
organic matter layer that exceeds 30 cm depth, as is often the case in
the northern Pacific coast50 andGreat Britain26. These shallow, organic-
rich tidal marsh soils formed more recently on top of tidal flats - thus
the deeper, minerogenic layers do not hold equivalent levels of SOC
found in the deeper organic-rich tidal marsh soils of many other
locations. These findings indicate that estimating SOC stocks to 1m
following IPCC and other guidelines may not be appropriate in all
cases, and as such we advocate providing SOC estimates across both
the 0–30 cm and 30–100 cm layers.

Outlooks and policy implications
Tidal marshes hold a substantial stock of SOC, and our globally con-
sistent map improves knowledge of climate regulation services while
practically supporting the inclusion of tidal marsh blue carbon in
national inventories that could be used as a baseline for C accounting.
Such data could catalyse coastal ecosystem conservation and
restoration efforts. Disentangling sources of error from the available
training data allows a greater understanding of prediction uncertainty,
while our spatially explicit analyses of expected model error clearly
highlight locations where future work is urgently needed. These areas
include the Arctic and the tropics, and this work should include tar-
geted field data collection of tidal marsh extent, plant community
composition and C stocks. Our dataset enables quantification of
potential losses in SOC from land use change or conversely benefits
from conservation and restoration. International interest in BCEs is
high, strongly driven by the calls for climate action under the United
Nations Framework Convention onClimate Change (UNFCCC) and the
UN Sustainable Development Goals. The very high C content and high
sequestration rates of tidal marshes mean they can contribute to
growing efforts to mitigate climate change by avoiding future losses,
securing current stocks and also through ecosystem restoration11,25. A
growing number of countries are including such ecosystems in their
national commitments to climate change mitigation as part of their
Nationally Determined Contributions, where our study can fill in sig-
nificant gaps where data is scarce or is not available.

Methods
Tidal marsh soil carbon training data
The global databasewas compiled from twomain sources: the recently
produced global tidalMarsh Soil Organic Carbon (MarSOC) Dataset19,51

(https://zenodo.org/records/8414110) and from the Coastal Carbon
Research Coordination network20,52 (https://ccrcn.shinyapps.io/
CoastalCarbonAtlas/). The data were filtered to those sites located
between 60° N to 60° S due to the environmental covariate data being
limited to this region, and within a coastal zone data mask53. This

dataset contains 42,741 data points from 22 countries and 3710 unique
locations27,29,32,37,48,54–247.

Spatial modelling of SOC
We used a 3D approach to model organic carbon density (OCD) to
maximise the applicability of the collecteddata and reduce the need to
make assumptions about OCD trends along the soil profile248. We thus
modelledOCDas a function of depth (d), and a series of environmental
covariate layers (Xn):

OCD xydð Þ=d +X 1 x, yð Þ+X2 x, yð Þ+ . . .Xn x, yð Þ ð1Þ

where xyd are the 3D coordinates in decimal degrees of latitude and
longitude, and soil depth (measured at the centre of a sampled soil
layer). The resulting spatial prediction model can then be used to
predict OCD at standard depths of 0 cm, 30 cm, and 100 cm, so that
the SOC for the 0–30 cm and 30–100 cm soil layer can be calculated
using their respective layer thicknesses248:

SOC stock0�30cm = OCD0cm +OCD30cm

� �
=2*30cm ð2Þ

SOCstock30�100cm = OCD30cm +OCD100cm

� �
= 2*70cm ð3Þ

Thirteen environmental covariates were used based on hypothe-
sised landscape-level drivers of SOC in tidalmarshes (Table S1). Drivers
were selected by the authors whose expertise includes regional and
field-based knowledge as well as considerable prior knowledge of
global-scale modelling. This was an iterative process with group dis-
cussion and feedback. It was also, however, constrained by data
availability. We included covariates representative of potential ecolo-
gical, environmental, and geomorphological drivers.

We used the NDVI as a proxy for distinguishing vegetation type
and the source of SOC. NDVI has been shown to be able to dis-
criminate between broad classes of tidal marsh vegetation249,250. To
calculate the NDVI metrics (median and standard deviation), we used
Landsat 8 bands from 2014 to 2021 available at 30m resolution,
courtesy of the U.S. Geological Survey, and image processing code
from Murray et al.53,251 in Google Earth Engine252.

Elevation and slope data were included, as they can be a proxy of
soil age and composition, as well as vegetation structure inmarshes253.
Additionally, higher SOC stocks may be associated with shallower
slopes, due to a lower risk of erosion compared to steeper slopes254.We
used the Copernicus Digital Elevation Model GLO-30 dataset, which
was developed from the TanDEM-X mission between 2011 and 2015.
The product is a global dataset of elevation at 30m resolution and has
an absolute vertical accuracy of less than four metres. The slope was
then derived using the ee.Terrain.slope() function in Google Earth
Engine252. The dataset can be found here: https://spacedata.
copernicus.eu/collections/copernicus-digital-elevation-model.

Tidal amplitude can influence the stability and resilience of
marshes255, as well as the accommodation space45. We used the
FES2014TideModelM2,which has a resolution of ~7 km, availablehere
at https://datastore.cls.fr/catalogues/fes2014-tide-model/.

Higher SOC stocks further from estuaries can be explained by the
signature of past sea level rise34. We used the five broad classes ori-
ginally presented in Clark et al.42.

The total suspended matter (TSM) was retrieved from the Glob-
Colour project, which processed the TSM data from MERIS imagery
collected by the Envisat European Space Agency satellite. Monthly
values at 4 kmresolutionwere retrieved from theperiod 2003–2011, as
these were the full years available, which were averaged to generate
one TSM layer. The data can be found here: https://hermes.acri.fr/.

Each coastal setting (deltas, estuaries, lagoons, composite deltas
and lagoons, bedrock, and carbonate) has an environmental signature
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that controls the SOC stock via the type and rate of sediment supply to
the coastline, nutrient loading/limitation, and organic matter
diagenesis40. We used the groups of coastlines from the Ecological
Coastal Units256, which were generated by clustering the 4 million
coastal line segments based on ten variables (two land, five ocean, and
three coastline variables). We rasterized the 1 km shoreline segments,
which were available from: https://www.arcgis.com/home/item.html?
id=54df078334954c5ea6d5e1c34eda2c87.

Higher temperatures generally increase the productivity and
growth of vegetation33, and are associated with higher SOC stocks32.
Higher rainfall is generally associated with higher SOC by increasing
the freshwater runoff and thus potentially higher deposition of
allochthonous organic matter254. Both minimum and maximum
monthly average values of temperature and precipitation were chosen
rather than mean annual values40, as they portray environmental
thresholds that may have a stronger effect on SOC stocks by con-
straining ecosystem functionality257, which regulates both production
and decomposition rates. We used data from WorldClim BIO
variables258 at 927.67m resolution, available from: https://www.
worldclim.org/data/bioclim.html.

PET is the amount of plant evaporation that would occur if there
was a sufficient water source in the surrounding soil. This measure has
been found to explain different ecophysiological processes in
mangroves259, and may show a tradeoff in extreme climates. We used
the average ENVIREM mean monthly PET of the driest quarter260, as
this can represent the more extreme cases, when a prolonged dry
period can have a negative effect on plant productivity. The dataset
can be found here: https://envirem.github.io/#downloads.

Most covariate layers (tidal amplitude, TSM, ECUs, temperature,
precipitation, PET) were land or ocean products that needed to be
extrapolated to each pixel containing tidal marsh. This was done by
calculating the average of neighbouring pixels using a circle-shaped
boolean kernel in Google Earth Engine252, with the functions ee.Ima-
ge.reduceNeighborhood(), either ee.Reducer.mean() or ee.R-
educer.mode() for categorical variables, and ee.Kernel.circle(1,
‘pixels’). To get all covariate map layers to the same 30m resolution as
the DEM and the NDVI layers, we re-sampled and re-projected coarser
resolution data to a unified pixel grid (World Geodetic System 1984,
EPSG:4326) using bilinear interpolation. Collinearity between the
continuous variables was visualised using the corrplot package (ver-
sion 0.92)261, and identified generally low correlations between the
variables (Supplementary Fig. 7), and below the threshold of |r| > 0.7262.

We visualised how well our training data captured the variability
of the environmental covariates across the global tidal marsh extent,
and as such, how potentially biased the environmental covariate data
that was used to train the model was. To do this we sampled the
covariate values for 10,000 points drawn randomly from across the
global tidal marsh extent and compared these to the covariate values
for the training locations (Supplementary Fig. 1).

Model training
We used the random forestmodel implemented in the ranger package
(0.15.1)263 and the caret framework (6.0-94)264 within R265. Due to the
limited data in many regions of the world, we used the entire dataset
for model training. To test model accuracy, R2 and Root Mean Square
Error (RMSE) values were calculated from all pairs of observed and
predicted response values when held back from model training using
the cross-validation method.

We used resampling-based cross-validation to provide an esti-
mate of thepredictive performanceof the random forestmodel266. The
choice of a cross-validation strategy is key because it determines the
estimation of the model performance as well as the variable impor-
tance. Our training data is clustered due to the nature of the available
measurements (i.e. large amounts of data in theUSA, Australia, and the
U.K.), which means that random cross-validation (CV) would only

indicate the ability of themodel to predict within these clusters35,267,268.
A spatial cross-validation strategy, in which spatial units are held back
for validation268,269, assesses the ability of the model to predict beyond
the clusters, which is in line with the purpose of the model to predict
into spaces that lack training data269–271. We used the k-fold nearest
neighbour distance matching (k-NNDM) cross-validation presented by
Linnenbrink et al.272, implemented within the CAST package (0.8.1)273,
which is a variant of the leave-one-out NNDM cross-validation with
reduced computation time compared to the method developed by
Milà et al.270.

This k-NNDM method creates folds such that the geographic
distance between sample points of different folds approximates the
distance between the training samples and the prediction locations. To
create the prediction locations, 5000 points were randomly selected
from the global tidal marsh extent map4. We used k = 5 folds (Sup-
plementary Fig. 8), so that the training data were clustered geo-
graphically. When the model separates the training data into training
and testing at the cross-validation phase, each fold serves as a testing
setwhile the others areused for training. By comparing the geographic
distance between folds of our k-NNDM CV to those between random
folds, we can see that our method better resembles the distance from
prediction locations to training samples (Supplementary Fig. 9).

We implemented a model tuning step, testing 100 possible
models by varying the number of variables to consider at each split (1,
2, 3, 4, or 5), theminimumnode size (1, 2, 3, 5, or 10), and the number of
trees (100, 200, 300, 400, or 500). Between these, the RMSE varied
very little, as expected for random forest models274. We thus set mtry
to 3, the minimum node size to 5, and the number of trees to 300.

Within the final random forest, variable importance was set to
“impurity”within the ranger package, corresponding to the Gini index
for classification. This was used to identify the relative importance of
the environmental covariates to the SOC predictions.

Predictions
To align with the highest resolution covariate variable, the 10m tidal
marsh data was exported at 30m resolution using Google Earth
Engine252. The predictions weremade for every 30mpixel identified as
a tidal marsh in 20204. This recent extent map was derived from earth
observation data and estimates 52,880 km2 of tidal marshes between
60° N and 60° S. As described in the spatial modelling of the “SOC”
section, the model predicted SOC density at 0 cm and 30 cm, which
were then averaged and multiplied by 30 cm (the layer thickness) and
by 100 to get a SOC stock inMg per hectare. This was also undertaken
for the 30–100 cmsoil layer, using the SOCdensity values at 30 cmand
100 cm. Thus, each 30m pixel has a predicted SOC stock (Mgha−1) for
the 0–30 cm and 30–100 cm soil layers.

Pixel-wise accuracy estimation
To estimate how different the prediction areas were from areas on
which the model was trained, we first calculated a dissimilarity index
(DI). In brief, this is calculated by dividing theminimumdistance to the
nearest training data point in a multidimensional predictor space that
has been scaled and weighted by variable importance, by the average
of the distances in the training data24. The DI is calculated based on
data points that do not occur in the same cross-validation fold, thus
keeping in mind the cross-validation nature of the model.

Then, we used the relationship between the DI and the prediction
performance (i.e. the final model RMSE) to produce a spatially con-
tinuous estimation of the expected error associated with each SOC
prediction (DItoErrormetric() in the developer’s CAST commit version
from August 2023)273. This uses shape constrained additive models275

to model the relationship between the DI and the RMSE. This model
can then be applied to the DI of every tidal marsh pixel to produce a
spatially continuousmap of the estimated accuracy of the predictions.
We calculated the expected model error similarly as we did for the
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predictions using the spatial modelling approach, and to get an
expected error in the same units as the predictions.

The analysis workflow (model training, predictions, error, and
AOA) was completed using Snakemake276. We calculated average pre-
diction and expected error values for eleven out of the twelve bio-
geographical realms of the Marine Ecoregions of the World277 (Fig. 3
and Table S3). Therewas no tidalmarsh extent predicted in the twelfth
realm, Southern Ocean. We also calculated averages per country using
the union of the ESRI Country shapefile and the Exclusive Economic
Zones from the Flanders Marine Institute278.

AOA
Although we can apply the Random Forest model to all tidal marshes
globally because of the availability and preparation of covariate data
for all marshes, these predictions can often be extrapolated and ren-
dered meaningless when predictor values are too different compared
to the training data271. To ensure our predictions were bounded with
the environmental envelope of our training data, we implemented the
AOA methodology, introduced by Meyer and Pebesma 24, to mask out
areas where the model was not able to learn about the relationship
between the predictors and the response (here, SOC density). We
specifically excluded areas with a different covariate space where
predictions of carbon stocks would be uncertain because of a lack of
training and validation data. The threshold for determining the AOA
wasbasedon the outlier-removedmaximumDI of the training data, i.e.
data larger than the 75th percentile plus 1.5 times the interquartile
range of the DI values of the cross-validated training data. The calcu-
lation of the pixel-level DI and the AOAwere generated using the aoa()
function, both available in the CAST package (0.8.1)273. Then, the pre-
dictor space which is greater than the AOA threshold is considered
outside the AOA, and thus is masked from our predictions. For each
predicted soil layer (i.e. 0–30 cm and 30–100 cm), the AOA was cal-
culated at the upper and lower depths and then averaged. Locations
considered inside the AOA (Supplementary Figs. 5b and 6b) are those
where the averaged AOA is equal to 1 (i.e. AOA values of 0 or 0.5 are
considered outside the AOA).

Data availability
The training data, tidalmarsh extent and environmental covariate data
used in this study are publicly available (linked in the Methods). The
soil organic carbon predictions, estimated model errors, and area of
applicability layer for both the 0–30 cm and 30–100 cm layers are
available on Zenodo (https://doi.org/10.5281/zenodo.10940066).

Code availability
All codeused in this study is available onGithub279: https://github.com/
Tania-Maxwell/global-marshC-map/.
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