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Abstract

We estimate how energy shocks affect the functional distribution of income. Using

structural vector autoregressions identified with an external instrument, we find

that an increase in oil prices leads to a substantial and long-lasting decline in

the wage share. Real aggregate wage income is significantly impacted, with a

considerable part of this decline stemming from distributive dynamics. We also

investigate possible asymmetries in the response to oil supply shocks, finding that

the wage share is more sensitive to negative shocks than to positive ones. This

suggests that wage earners lose from oil price hikes more than they benefit from

declines.
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1 Introduction

The macroeconomic literature on energy shocks has predominantly dealt with inflation

and output, paying less attention to distributional impacts. Energy crises, however, often

produce uneven effects due to a variety of factors. For instance, energy costs dispropor-

tionately burden low-income households, who are also the most vulnerable to recessions

that follow economic shocks. Moreover, different income sources may adjust differently to

energy shocks, with direct repercussions on inequality. Thus, while distributional effects

are likely, their magnitude is not yet fully understood. This paper helps address this gap

by estimating the impact of oil supply news shocks on functional income distribution, a

key channel through which energy shocks shape distributional outcomes.

The main intuition is straightforward: input prices are inherently distributional vari-

ables in a functional sense, particularly for inputs that are difficult to substitute, such

as energy. This implies that when energy prices rise, a larger share of national income is

redirected to the energy sector, reducing the share of aggregate income available to work-

ers and final goods producers. How this loss is distributed between workers and firms

determines shifts in the functional income distribution (Wildauer et al., 2023). Our main

contribution is to provide the first quantitative estimation of this distributive channel,

showing that this effect has sizeable welfare implications. To do so, we need a source of

exogenous variation in at least one energy price, which we obtain by using the oil supply

news shock instrument proposed by Känzig (2021). This instrument supplies a reliable

source of exogenous variation in the real oil price and accounts for much of its historical

fluctuations, which makes it especially suitable for the research question at hand.

We conduct our analysis using quarterly U.S. data, finding that a 10% innovation in

the oil price leads to a statistically significant and long-lasting decline in the wage share,

with a fall of approximately 0.001 on impact. This occurs alongside a decrease in nominal

Gross Domestic Income (GDI). We then use these estimates to calculate the aggregate

wage loss resulting from a hypothetical 10% oil price increase occurring in 2019Q1. On

impact, we find that the real aggregate wage loss amounts to $36.5bn, measured in 2019Q1

dollars. A quantitatively relevant figure, leading to a cumulative $669.6bn aggregate wage

loss over twelve quarters. The most interesting result, however, is that the wage share

decline explains a relevant part of this wage loss, 60% on impact and 50% cumulative.

This result underscores that focusing only on the aggregate output response overlooks

important welfare effects that are unevenly distributed across individuals. In particular,

the shock negatively impacts individuals who depend primarily on labour income, beyond

the aggregate output loss.

To complement this analysis, we study a variety of other distributional variables. Our

companion results can be summarised as follows: we estimate a positive profit share

response to the shock which offset the decline in the wage share. On top of that, the
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percentage of aggregate profits distributed as dividends reduces in the aftermath of the

shock. As a result, the share of dividend income in GDI decreases on impact, although

the drop turns out to be extremely short-lived. In contrast, interest income tends to rise,

likely reflecting the monetary policy reaction to the shock, which favours financial income

through high interest rates.

Another set of results shed light on possible asymmetries in the response to oil shocks.

In particular, we study differences in the distributional impact of rising (negative) versus

decreasing (positive) oil price shocks. We find that the wage share is more responsive to

an oil price increase compared to a decrease, meaning that wages bear the brunt of neg-

ative shocks while benefitting comparatively little from positive ones. This result echoes

asymmetries in the pass-through rate of energy shocks, which our estimates confirm.

Specifically, the Consumer Price Index (CPI) reacts more strongly to oil price increases

than to decreases, which likely explains the asymmetry found in the wage share response.

One can indeed rationalise the two observations as follows: when the oil price rises, firms

readily revise prices upwards, securing a larger share of aggregate income before wages

can respond. Conversely, oil price falls do not prompt firms to lower prices as aggressively,

resulting in higher profit margins rather than a strong increase in the wage share.

Our estimations are obtained using a set of structural vector autoregressive (SVAR)

models. In particular, we rely on the proxy-SVAR methodology (Mertens and Ravn,

2013; Stock and Watson, 2012). Proxy-SVAR is a partial identification approach that ex-

ploits external instruments to identify the impact matrix, needed to estimate the impulse

response functions (IRFs) of the model. It requires a relevant and exogenous variable,

which is correlated with the structural shock to be identified and uncorrelated with the

shocks that are not of interest. The approach is similar to an instrumental variable (IV)

regression, but the instrumented variable is the (unobserved) shock of interest. As al-

ready mentioned, we use the oil supply news instrument developed by Känzig (2021),

which exploits surprises around the Organization of the Petroleum Exporting Countries

(OPEC) announcements (henceforth the surprise series) in a high-frequency fashion.

Our choice of identification strategy is based on two reasons. First of all, as pointed

out by Herwartz et al. (2022), proxy-SVARs combine the strength of both theoretical- and

data-driven approaches to identification since they allow identifying structural shocks by

exploiting meaningful external information. This is particularly true in our case, where

the dynamic of the energy market is mainly dictated by the behaviour of OPEC (Känzig,

2021). Second, as we are interested only in the identification of a subset of structural

shocks (i.e. the oil price shock) regardless of the others, proxy-SVAR is one of the most

natural ways to achieve partial identification. Having said that, our main results are

robust to several specifications, including identification through heteroscedasticity, and

local projections.

To study sign asymmetries, we use the nonlinear proxy-SVAR framework developed
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by Debortoli et al. (2020) and Forni et al. (2023, 2024). The procedure follows three

steps: (i) we detect the oil price shock through the proxy-SVAR; (ii) we estimate an

exogenous vector autoregression (VARX) embodying a set of endogenous variables of

interest together with the identified shock and a nonlinear transformation of it as exoge-

nous variables; (iii) we obtain the asymmetric IRFs by summing the coefficients of the

exogenous variables.

The rest of the paper is organised as follows. In Section 2 we place our contribution

into the relevant literature. In Section 3, we propose a simple theoretical framework to

rationalise the relationship between energy price shocks, functional income distribution

and inflation. In Section 4, we introduce the econometric framework and describe our

approach to identification and estimation. In Section 5, we present our main results:

the distributive impacts of the energy shock and the relative asymmetries. Section 6

concludes.

2 Contribution to the literature

We contribute primarily to the empirical literature on energy and the economy (Kilian,

2008a), with a specific focus on the macroeconomic impacts of energy shocks. Empirical

research has consistently shown that negative oil shocks are typically followed by periods

of stagflation (Hamilton, 1983; Kilian, 2008b; Känzig, 2021), while recent research has

found similar outcomes for gas (Alessandri and Gazzani, 2023) and carbon price (Känzig,

2023) shocks. Moreover, this general claim has been complemented by several further

observations, such as that the macroeconomic impacts of oil shocks have lessened over

time (Blanchard and Gali, 2007; Baumeister and Peersman, 2013) and that oil demand

and supply shocks have distinct impacts, with only the latter causing recessions (Kilian,

2009; Baumeister and Hamilton, 2019).

Empirical evidence on the distributional effects of energy shocks is relatively scarce

instead. However, studies using SVARs identified with external (high-frequency) instru-

ments suggest that carbon price shocks (Känzig, 2023) and oil supply shocks (Drossidis

et al., 2024) unevenly reverberate across the personal income distribution, with low-

income households experiencing larger income losses. In a similar vein, Kröger et al.

(2023) document that gas shocks disproportionally hit low-income households due to

the larger share of energy expenditures in their consumption baskets. A growing body

of theoretical research has explored the reasons behind this regressive effect (Del Canto

et al., 2023), identifying three main channels: (i) low-income households inability to save,

which hampers their ability to smooth consumption during the shock and diversify in-

come sources (Bobasu et al., 2024); (ii) the compression of the labour income share, which

disproportionately affects those at the lower end of the income distribution (Ciola et al.,

2023; Wildauer et al., 2023; Ciambezi et al., 2024; Fierro et al., 2024; Kremer et al.,
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2024); and (iii) stabilisation policies implemented in response to energy shocks, which

often carry significant distributional consequences (Turco et al., 2023).

We contribute to the energy-macro literature by showing that the distributional im-

pact of energy shocks is both statistically significant and quantitatively substantial.

Specifically, we provide quantitative estimates of the wage share response to energy

shocks, a key aspect highlighted in theoretical research but previously lacking empir-

ical estimation. Furthermore, we decompose aggregate wage losses into recessive and

distributional components, showing that the wage share adjustment accounts for a rele-

vant part of the decline in the real value of aggregate wages. Our analysis also reveals

asymmetries in pass-through rates, which have direct distributional consequences: oil

price increases lead to larger CPI responses than oil price decreases, resulting in greater

wage share sensitivity to negative energy shocks vis-à-vis positive ones.

We also contribute to the empirical literature on inequality and macroeconomics.

Since the recognition that inequality has been rising in most economies for decades (Al-

varedo et al., 2013), virtually all subfields of macroeconomics have been reinterpreted

through the lenses of income and wealth distribution, to cite a few: saving and con-

sumption behaviour (Mian et al., 2020; Dynan et al., 2004), monetary policy (Coibion

et al., 2017; Mumtaz and Theophilopoulou, 2017), and fiscal policy (Heathcote et al.,

2010). Our work adds to this body of research by highlighting the importance of cost-

push shocks, particularly energy price shocks, as a relevant area of inquiry. We also show

that the functional income distribution is a key, though often overlooked, aspect of this

issue (see Bhaduri and Marglin, 1990; Stockhammer et al., 2009; Onaran and Galanis,

2014, for notable exceptions).

Finally, we touch upon the literature on market power in both goods (Autor et al.,

2020) and labour markets (Manning, 2013), as well as the literature on conflict infla-

tion (Rowthorn, 1977). While we do not empirically examine these factors, we discuss

from a theoretical standpoint how they intersect to shape the distributional impact of

energy price hikes. We indeed propose a simple model where energy price shocks trigger

a distributional conflict between wages and profits, which ultimately influences the price

dynamics. Additionally, we discuss how the distribution of power in the goods and labour

markets shapes the adjustment in income distribution and the resulting inflationary pres-

sures that follow an energy price hike.

3 Insights from a simple theoretical framework

In this section, we examine the relationship between energy price shocks, functional

income distribution, and inflation from a theoretical perspective. We use a simple, static

framework in which the only assumption is on the production function, while all results

follow directly from accounting identities. More specifically, we consider an economy
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where labour and energy are the only factors of production and final good prices are set

as markups over unit cost. Our focus lies in the short run, defined as the unit of time

where the factors of production are perfectly complementary and the input-output ratios

remain constant. Thus, we can assume a Leontief production function, taking the form:

Y = min
(
γlL, γeE

)
, (1)

where Y is output, L is labour and E is energy; γL and γE are the productivities of

labour and energy respectively, which, in a Leontief production function, also determine

the efficient output-input ratios. Given the production function (1), we can express the

price equation as:

P =

(
1 + µ

)(
w

γl
+
pe
γe

)
, (2)

where P is the price, µ is the markup, w is the nominal wage rate, and pe is the energy

price; w
γl is the unit labour cost

(
ucl
)
, pe

γe is the unit energy cost
(
uce
)
, and the sum

ucl + uce determines the unit cost of production
(
uc
)
.

Using the production function (1) and the price equation (2), we can compute the

wage share
(
θ
)
and the final good sector profit share

(
π
)
of nominal GDI (i.e. P · Y ):1

π =
µ

1 + µ
; θ =

Γl

1 + µ
, (3)

where Γl is the share of labour costs in total production costs, defined as ucl/uc.

The income shares in Equation (3) are intuitive: higher markups are associated with

larger profit shares, while the wage share decreases as markups rise and increases with

a higher proportion of labour costs in overall production costs. Simply put, when firms

raise markups, they capture a larger portion of aggregate income, reducing the share

accruing to labour (and the energy sector). Γl represents the share of total production

costs attributable to labour, which depends on the labour intensity relative to other

inputs (i.e. the ratio γe/γl) and on the level of wages relative to other input prices (i.e.

the ratio w/pe). The higher Γl, the larger the share of wages in aggregate income, as a

greater portion of production costs is tied directly to labour.

As we are interested in the response of prices, wage share, and profit share to energy

price hikes, we can use Equations (2) and (3) to compute the elasticities of the final

good price (ϵp), labour share (ϵθ), and profit share (ϵπ) with respect to the energy price.

This, however, requires making assumptions about the response of markups and wages

to energy price shocks. In other words, we need the signs of the partial derivatives

∂µ/∂pe and ∂w/∂pe. The response of markups and wages to a cost-push shock reflects an

1The derivations for Equations (3)–(6) discussed in this section are provided in Appendix A.
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underlying conflict over the distribution of aggregate income. Indeed, when energy prices

rise, the total income available to be shared between workers and final goods producers

decreases. The question of who bears the loss depends on their respective abilities to

adjust wages and markups. Essentially, this is a matter of power in the labour and

goods markets: if firms have limited power in the goods market, the shock is absorbed by

markups, while if workers have limited power in the labour market, the shock is absorbed

by real wages. Let us refer to the case in which firms have complete power in the goods

market as monopoly, and to the case in which firms have complete power in the labour

market as monopsony. In the case of monopoly, markups are shock-insensitive, i.e. the

pass-through is perfect, while in the absence of monopoly, the markups decrease when the

energy price increases so that only part of the shock is passed through prices. In the case

of monopsony, (nominal) wages are shock-insensitive, while in the absence of monopsony,

workers obtain higher (nominal) wages when the energy price increases. Based on this

distinction, we can think of three scenarios:2

• A monopoly-monopsony scenario, where ∂µ/∂pe = 0 and ∂w/∂pe = 0, that is, the

shock is fully passed through to the final good price, and workers do not adjust

wages.

• A monopoly scenario, where ∂µ/∂pe = 0 and ∂w/∂pe > 0, that is, again we have

perfect pass-through, but workers respond by obtaining higher wages.

• A monopsony scenario, where ∂µ/∂pe < 0 and ∂w/∂pe = 0, that is, the pass-

through is not perfect, but workers are unable to obtain higher wages.

To keep our framework as simple as possible, we must make a few further assumptions:

(i) we focus solely on the immediate impact of the shock, disregarding any second-round

effects that could potentially lead to wage-price spirals; (ii) we treat the energy sector

as a passive agent, assuming a one-time increase in energy prices without modelling any

behavioural responses to firms’ or workers’ reactions; (iii) we focus exclusively on energy

price increases because in any given scenario the sign of ∂µ/∂pe and ∂w/∂pe behaves

asymmetrically depending on whether energy prices rise or fall (see Section 5.5 for an

empirical exploration of asymmetric wage share responses to energy shocks).

2Note that this approach draws from the post-Keynesian literature on conflict inflation (e.g.,
Rowthorn, 1977, 2024; Setterfield, 2007; Lavoie, 2024), though it does not strictly adhere to it. For
full consistency with this literature, one would assume that firms and workers have aspirational targets
for profit and wage shares, respectively, with wages and markups adjusting to meet these targets. Here,
we take a simplified approach where wages and markups respond endogenously to the energy price shock
–yet this response can still be viewed as an attempt by each group to preserve its income share. Further-
more, the capacity to adjust markups and wages is influenced by market power, an insight also drawn
from the conflict inflation literature. While our model cannot capture price-wage spirals, it still provides
a reasonable representation of inflationary dynamics based on conflict over the distribution of aggregate
income and market power.
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In the monopoly-monopsony scenario the responses of the final good price, wage share,

and profit share are given by:

ϵπ = 0; ϵθ = −Γe; ϵp = Γe. (4)

Perfect pass-through implies that the energy price shock does not impact the profits

share. In addition, if wages remain unchanged, prices increase by a factor equal to Γe,

which represents the energy contribution to production costs
(
uce/uc

)
. The factor Γe is

also equal to the percentage drop in the wage share. Intuitively, an energy price increase

of 1% results in a percentage reduction of the non-energy income share equal to Γe,

which in the monopoly-monopsony scenario, is entirely passed on prices with wages being

unresponsive. It follows that the wage share must absorb this entire loss.

In the monopoly scenario, the profits share is again fixed, but as wages respond

to increases in the energy price, we obtain stronger inflationary pressures and a less

pronounced fall in the wage share:

ϵπ = 0; ϵθ = −(1− ϵw)Γ
e; ϵp = Γe + ϵwΓ

l, (5)

where ϵw ≡ ∂w
∂pe

pe
w
> 0 represents the wages elasticity to the energy price. As in the

monopoly-monopsony scenario, the decline in the wage share is tied to Γe. However, in

this case, the nominal wage response to the shock mitigates the loss in the wage share.

If the wage increase perfectly matches the energy price increase (i.e. ϵw = 1), the wage

share becomes shock insensitive. Moreover, the extent of the wage adjustment directly

influences the price response, as any wage increase is fully passed onto prices. Therefore,

in the monopoly scenario, the decline in the labour share is partially offset by the level

of workers’ bargaining power in the labour market, i.e. the level of ϵw. However, this

generates a trade-off, as a strong wage adjustment necessarily results in high inflation.

In the monopsony scenario, nominal wages do not adjust, but, unlike in the monopoly-

monopsony scenario, firms are not able to fully pass through the energy price increase

onto prices:

ϵπ =
ϵµ

1 + µ
; ϵθ = −

(
ϵµπ + Γe

)
; ϵp = ϵµπ + Γe, (6)

where ϵµ ≡ ∂µ
∂pe

pe
µ
< 0 represent the markup elasticity to the energy price. In this

scenario, the income loss from the energy price shock is distributed between profits and

wages, resulting in lower inflation compared to the monopoly-monopsony scenario. The

decline in the profit share is proportional to both the markup response and the pre-shock

markup level. This dependency arises from the way the price equation (2) is structured,

specifically because
(
1+µ

)
multiplies the unit cost. The wage share decrease is again tied

to Γe, but it is contained due to the partial markup absorption of the shock. Moreover,

the partial pass-through results in weaker inflationary pressures relative to the monopoly-
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monopsony scenario.

Intuitively, when the shock is at least partially absorbed by markups, its propagation

through the economy is softened, resulting in weaker inflationary pressures. Note that

the monopsony scenario can also be interpreted as one where prices remain relatively

stable after the shock, reducing pressure to raise wages. The result is a more balanced

distribution of losses between wages and profits and a more stable price dynamics.

This section aims to further justify our focus on empirically estimating the response

of the wage share and other (functional) distributive variables to energy shocks. Al-

though our empirical framework does not allow us to directly determine which of the

outlined scenarios best captures the economic context underlying the selected oil shocks,

these theoretical insights help to interpret our main empirical findings and rationalise the

asymmetries observed in the wage share response to oil shocks.

4 Methodology

In this section, we provide the econometric framework and we describe our approach to

identification and estimation.

Since we want to test the distributive nature of energy prices, we make use of the

institutional characteristics of OPEC, and the insights derived from high-frequency data,

to detect a shock in expectations regarding oil supply. To do that, we exploit the series

of high-frequency surprises around OPEC announcements of Känzig (2021).

Similarly to the literature concerning high-frequency identification of monetary policy

shocks (see, e.g., Gürkaynak et al., 2005; Nakamura and Steinsson, 2018), we do not

directly include the surprise series in our SVAR model, rather we adopt a proxy-SVAR

by using the surprise series as an external instrument for the oil price shock.3 In this

manner, we can identify a structural oil supply news shock.

4.1 The econometric framework

We consider a set of K endogenous variables ykt = (y1t, . . . , yKt)
′, with t = 1, . . . , T ,

which can be represented using a structural vector autoregressive (SVAR) model of the

form:

Γ0yt = µ0 + Γ1yt−1 + · · ·+ ΓPyt−P + εt, (7)

where p = 1, . . . , P is the lag order, Γ0 and Γp are (K ×K) matrices denoting the contem-

poraneous and lagged coefficients, respectively, and εt is a (K × 1) vector of structural

shocks with diagonal covariance matrix Σε, hence we assume that εt are uncorrelated.

3We recall that an external instrument is a variable that exhibits correlation with the specific shock
of interest while featuring no correlation with other unrelated shocks. We refer to Section 4.2 for more
details.
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We rewrite the model in Equation (7) in reduced-form that is more convenient for

estimation:

yt = µ+A1yt−1 + · · ·+APyt−P + ut, (8)

where µ = Bµ0, B = Γ−1
0 is the (K ×K) matrix of contemporaneous impacts, Ap = BΓp

and

ut = Bεt (9)

is the (K × 1) vector of reduced-form innovations. The covariance matrix of ut is

Σu = BΣεB
′. (10)

We indicate with ε1t the structural shock we want to recover, i.e. the energy price

shock. This implies that we will identify the first column of B, which we will call γ1.

Since we want to compute the structural impulse response functions, we must repre-

sent yt as a moving-average (MA) process. If B is invertible and if the process yt is stable,

i.e. det (IK −A1z − · · · −Apz
p)∀z ∈ C, |z| ≤ 1, then yt admits a Wold moving-average

representation:

yt = φ+
∞∑
ℓ=0

Φℓut−ℓ, (11)

where φ = A (1)−1µ, A (1) =
(
IK −

∑P
p=1Ap

)
, Φ0 = IK and Φℓ =

∑ℓ
d=1Φℓ−dAd for

ℓ = 1, 2, . . . with Ad = 0 if d > P . We can also write Equation (11) as follows:

yt = φ+
∞∑
ℓ=0

Ψℓεt−ℓ, (12)

where Ψ0 = B, and Ψℓ = ΦℓB. The entries of the matrices Ψℓ, for ℓ = 1 . . . H, are the

impulse response functions, i.e. ψjk,ℓ =
∂yjt+ℓ

∂εk,t
where ψjk,ℓ is the (j, k) entry of Ψℓ.

Invertibility assumption not only allows to obtain the MA representation of the process

but also ensures that the VAR collects all the information to identify the structural shocks

(see, e.g., Nakamura and Steinsson, 2018, for a discussion). More general conditions on

invertibility are discussed in Miranda-Agrippino and Ricco (2023), among others. The

authors demonstrate that identification can be achieved if the shock of interest is invertible

— a condition known as partial invertibility — and if the instrument satisfies a “limited

lead-lag exogeneity condition”, which ensures that the VAR innovations and the proxy

correlate only via the contemporaneous structural shock of interest. In Section 5.2 we

exploit the invertibility test of Forni et al. (2022) to control for informational sufficiency.
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4.2 Identification strategy

As mentioned above, the identification strategy is based on external instruments. We

define with zt, for t = 1, . . . , T , the selected instrument, i.e. the oil supply surprise series.

To be valid, zt must satisfies the following assumptions:

E [ztε1t] = α, (13)

E [ztε2:K,t] = 0, (14)

where ε1t is the oil supply news shock, ε2:K,t is a ((K − 1)× 1) vector containing the

other shocks, Equation (13) represents the relevance requirement and Equation (14) is

the exogeneity condition. If the assumptions in Equations (13)–(14) are fulfilled, then we

can identify γ1 up to sign and scale:

γ̃2:K,1 ≡
γ2:K

γ1,1
=

E [ztu2:K,t]

E [ztu1t]
, (15)

where γ2:K are the 2, . . . , K columns of B and E [ztu1t] ̸= 0. Equation (15) is obtained

by writing

E [ztut] = BE [ztεt] =
(
γ1 B2:K

)( E [ztε1t]

E [ztε2:K,t]

)
= γ1α, (16)

where γ1 is of dimension (K × 1) and B2:K is of dimension (K × (K − 1)), partitioning

Equation (16)

E [ztut] =

(
E [ztu1t]

E [ztu2:K,t]

)
=

(
γ1,1α

γ2:K,1α

)
(17)

and combining Equations (16) and (17). Finally, we have the following structural impact

vector:

γ1 =

(
γ1,1

γ̃2:K,1γ1,1

)
. (18)

The scale of γ1,1 is adjusted by applying a normalisation. According to Stock and Wat-

son (2016), two normalisations are possible: (i) the unit standard deviation normalisation,

which is obtained by fixing Σε = IK or, in other words, by imposing unit variance to each

shock; (ii) the unit effect normalisation, which sets the scale of the k-th shock such that

an incremental change of one unit in εkt reflects a simultaneous variation of magnitude x

in a particular observed variable ykt. This means that, by fixing Σε = diag
(
σ2
ε1
, . . . , σ2

εK

)
and γ1,1 = x, we can write the structural impact vector as follows:

γ1 =

(
x

γ̃2:K,1x

)
. (19)
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To aid in the interpretation of the results, we follow Känzig (2021) and we normalise

ε1t such that the shock corresponds to a 10% increase in the oil price.

4.3 Empirical specification

We specify 12 different proxy-SVAR models to test the impacts on income distribution

over different dimensions. Each SVAR model includes the main macroeconomic variables,

i.e. gross domestic income/industrial production, consumer price index and oil price

plus a variable peculiar to the dimension we want to analyse. For instance, to study

the impacts on oil production, we consider oil price, world oil production, world oil

inventories, world industrial production, industrial production index and consumer price

index; to study the impacts on the functional distribution of income we consider oil price,

gross domestic income, consumer price index and labour share. The detailed description

of the variables included in the analysis is shown in Table 1, while in the first column of

Table 3 we report all the SVAR specifications.

The surprise series used to instrument the energy price shock is defined as follows:

zht,d = F h
t,d − F h

t,d−1, (20)

where d and t is the day and month of the announcement, respectively, and F h
t,d is the

(log) settlement price of the h-months ahead oil futures contract. The proxy zt is then

obtained by aggregating zht,d to a monthly/quarterly series.

The instrument must respect the assumptions devised in Equations (13) and (14).

These conditions have been empirically tested by Känzig (2021), who finds no evidence of

correlation between the surprise series and other shock measures present in the literature

(e.g., oil price, oil supply, global demand, productivity, fiscal policy, etc.). It must be

noticed that, in principle, instrument exogeneity is inherently untestable, since the proxy

should be plausible exogenous with respect to all potentially relevant “unobservable”

confounders. A way to control for this condition has been proposed by Schlaak et al.

(2023), who provide a hypothesis test by combining the information coming from the

instrument with identification through heteroscedasticity in an augmented SVAR (AC-

SVAR) model. In Appendix C.2 we use their procedure to check whether the instrument

respects the relevance and exogeneity conditions. The results of the test confirm that

these conditions are met.

To carry out the estimation exercise, we must verify that the data are stationary,

at least in differences. To check for stationarity, we perform an Augmented Dickey-

Fueller (ADF) test in differences. The results of the ADF test are presented in Table

2. For all the features included in the analysis we reject the null hypothesis of non-

stationarity. Although the variables are difference-stationary, we estimate VARs in log-

levels to avoid loss of information. This is a common practice in time series econometrics
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Table 1: Data summary.

Variable Description Source Sample Computation Transf.

Aggregate variables

Instr

WTI crude oil futures hh-month Känzig’s webpage 1983Q1-2019Q4
∑4

m=1 Instrm
contract (settlement price)

WTI crude oil futures hh-month Känzig’s webpage 1983M1-2019M12
contract (settlement price)

P oil
t

WTI spot crude oil price deflated FRED (WTISPLC) 1983Q1-2019Q4 100× log
by U.S. CPI

WTI spot crude oil price deflated FRED (WTISPLC) 1983M1-2019M12 100× log
by U.S. CPI

Yt
U.S. gross domestic income FRED (GDPC1) 1983Q1-2019Q4 100× log

U.S. industrial production index FRED (INDPRO) 1983M1-2019M12 100× log

Pt
U.S. CPI for all urban consumers FRED (CPIAUCSL) 1983Q1-2019Q4 100× log

U.S. CPI for all urban consumers FRED (CPIAUCSL) 1983M1-2019M12 100× log

W oil
t World oil production Känzig’s webpage 1983M4-2017M12 100× log

Y world
t World industrial production Känzig’s webpage 1983M4-2017M12 100× log

W inv
t World oil inventories Känzig’s webpage 1983M4-2017M12 100× log

Distributional variables: shares of GDI

ℓt Labour share BEA (NIPA 1.10) 1983Q1-2019Q4
Compensation of employees

GDI

prbtt Profits share before taxes BEA (NIPA 1.10) 1983Q1-2019Q4
Profits before tax

GDI

pratt Profits share after taxes BEA (NIPA 1.10) 1983Q1-2019Q4
Profits after tax

GDI

dt Dividends share BEA (NIPA 1.10) 1983Q1-2019Q4 Net dividends
GDI

prrett Retained profits share BEA (NIPA 1.10) 1983Q1-2019Q4
Undistributed corporate profits

GDI

Distributional variables: shares of aggregate personal income

ℓprivt Private labour share BEA (NIPA 2.6) 1983M1-2019M12
Compensation of employees(PS)

Personal income

nℓt Non-labour share BEA (NIPA 2.6) 1983M1-2019M12
Personal income receipts on assets

Personal income

ℓgovt Government labour share BEA (NIPA 2.6) 1983M1-2019M12
Compensation of employees(GOV)

Personal income

isht Interests share BEA (NIPA 2.6) 1983M1-2019M12 Personal interest income
Personal income

bt Social benefits share BEA (NIPA 2.6) 1983M1-2019M12
Government social benefits to persons

Personal income

dpit Dividends share BEA (NIPA 2.6) 1983M1-2019M12 Personal dividend income
Personal income
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Table 2: Results of the ADF test in differences.

Variable Sample Test statistic p-value

Aggregate variables

P oil
t

1983M1-2019M12 -8.0215 0.01
1983Q1-2019Q4 -5.9057 0.01

Yt
1983M1-2019M12 -5.2669 0.01
1983Q1-2019Q4 -4.1382 0.01

Pt
1983M1-2019M12 -7.3199 0.01
1983Q1-2019Q4 -4.1584 0.01

W oil
t 1983M1-2017M12 -9.1684 0.01

Y world
t 1983M1-2017M12 -5.6820 0.01

W inv
t 1983M1-2017M12 -6.2890 0.01

Distributional variables: shares of GDI

ℓt 1983Q1-2019Q4 -4.4626 0.01
prbtt 1983Q1-2019Q4 -4.3331 0.01
pratt 1983Q1-2019Q4 -4.6307 0.01
dt 1983Q1-2019Q4 -6.2096 0.01
prrett 1983Q1-2019Q4 -5.4486 0.01

Distributional variables: shares of aggregate personal income

ℓprivt 1983M1-2019M12 -8.4405 0.01
nℓt 1983M1-2019M12 -5.7126 0.01
ℓgovt 1983M1-2019M12 -5.0063 0.01
isht 1983M1-2019M12 -6.0725 0.01
bt 1983M1-2019M12 -7.8931 0.01

dpit 1983M1-2019M12 -6.5021 0.01
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as VAR coefficients are still consistently estimated even in the presence of unit roots and

cointegration (see Sims et al., 1990; Kilian and Lütkepohl, 2017, Sec. 3.2.3).

For quarterly data, we use P = 4 lags, while for monthly data we use P = 12

lags. Since the oil surprise series is available starting from 1983, we estimate our models

considering the time window 1983-2019. In particular, for quarterly SVARs, we use

148 observations from 1983Q1 to 2019Q4, while for monthly SVARs we employ 444

observations from 1983M1 to 2019M12 (see Table 1 and Table 3 for details). We decide

to exclude the last three years from our sample (i.e. 2020, 2021 and 2022) to avoid the

effects of the COVID-19 shock. This allows us to exclude extreme observations for which

a full recovery may not have occurred yet (see Lenza and Primiceri, 2022).

5 Results

5.1 Testing the instrument

The fact that the proxy is correlated with the shock to be identified but uncorrelated

with the others, could not be a sufficient condition. Indeed, the instrument may be only

weakly correlated with the structural shock.

Therefore, as a preliminary step, we must test the strength of the external instrument.

Following Montiel Olea et al. (2021), this can be done using a F -test in the first-stage

regression of the oil price VAR residuals on the surprise series. If the F -statistics is

greater than 10, then the instrument is strong. In Table 3 we report the results of the

first-stage regression, i.e. the coefficient, the F -statistic, the R2, the adjusted R2, the

number of observations in the sample and the frequency of the observations for the 12

SVAR specifications.

Table 3: Results of the first-stage regression.

SVAR Coeff. F -statistic R2 Adj.-R2 N. obs. Frequency

{P oil
t ,W oil

t ,W inv
t , Y world

t , Yt, Pt} 1.0488 19.07 4.507 4.27 417 Monthly
{P oil

t , Yt, Pt, pr
bt
t } 1.7345 10.9 7.081 6.432 148 Quarterly

{P oil
t , Yt, Pt, pr

at
t } 1.7637 11.21 7.272 6.623 148 Quarterly

{P oil
t , Yt, Pt, ℓt} 1.650 9.725 6.367 5.713 148 Quarterly

{P oil
t , Yt, Pt, dt} 1.7729 11.47 7.427 6.78 148 Quarterly

{P oil
t , Yt, Pt, pr

ret
t } 1.8465 12.63 8.113 7.47 148 Quarterly

{P oil
t , Yt, Pt, ℓ

priv
t } 10.4649 620.5 59.01 58.92 444 Monthly

{P oil
t , Yt, Pt, nℓt} 10.7122 679.7 61.2 61.11 444 Monthly

{P oil
t , Yt, Pt, d

pi
t } 10.7358 685.9 61.41 61.32 444 Monthly

{P oil
t , Yt, Pt, ℓ

gov
t } 10.5282 649.6 60.48 60.39 444 Monthly

{P oil
t , Yt, Pt, i

sh
t } 10.6209 670.3 60.68 60.77 444 Monthly

{P oil
t , Yt, Pt, bt} 10.1729 583.1 57.5 57.4 444 Monthly

In all cases, the F -statistic is at least close to or greater than 10. Hence, we can

conclude that the instrument is strong.
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5.2 Testing for informational sufficiency

We now apply the invertibility test of Forni et al. (2022) to verify if the informational

sufficiency hypothesis holds. To do that, we first regress the instrument on the current

value and the first H leads of the estimated Wold residuals ût:

zt =
H∑
ℓ=0

λ′ût+ℓ + ηt. (21)

Then, we use a F -test to check whether the regressors in Equation (21) are statistically

significant. In particular, the null hypothesis is H0 : λ0 = λ1 = · · · = λH = 0, while the

alternative is that at least one coefficient is different from 0.

For our purposes, we estimate the regression (21) using (4 ≤ H ≤ 12) leads and the

residuals of the VAR {P oil
t , Yt, Pt, ℓt}. The p-values for each regression including the

current value and up to H leads of the Wold residuals are reported in Table 4.

Table 4: Results of the invertibility test.

Number of leads
H = 4 H = 5 H = 6 H = 7 H = 8 H = 9 H = 10 H = 11 H = 12

p-value 0.9003 0.9469 0.7142 0.8827 0.9451 0.6469 0.7409 0.4434 0.4112

For all the leads H, the p-values are above the confidence levels (1%, 5% and 10%).

Therefore, we cannot reject the hypothesis of invertibility.

5.3 The effects on macroeconomic variables

We now introduce our first results. In line with Känzig (2021), we start by discussing

the effects of the identified oil supply shock on real oil price, world oil production, world

oil inventories, world industrial production, domestic industrial production index and

consumer price index. For the sake of comparison, we choose the same frequency and

sample size adopted by Känzig (2021). The IRFs of the shock, normalised in such a

way that ε1t corresponds to a 10% increase in the oil price, are depicted in Figure 1.

The solid black lines are the average responses, the dark grey shaded area corresponds

to the 68% confidence interval, while the light grey shaded area corresponds to the 90%

confidence interval. The confidence bands are obtained using 2000 bootstrap replications.

As suggested by Jentsch and Lunsford (2022) and Angelini et al. (2024), among others, we

rely on residual-based moving block bootstrap (MBB). In fact, when only one instrument

is used to identify a single shock, as in our case, the MBB allows us to obtain confidence

intervals for normalised impulse responses that are valid regardless of proxy strength (see

Jentsch and Lunsford, 2022).
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Figure 1: Solid line: IRFs for oil price innovation normalised to 10%. Dark grey and light
grey shaded areas: 68% and 90% confidence interval respectively (confidence bands are obtained
using 2000 bootstrap replications). Real oil price ≡ P oil

t , World oil production ≡ W oil
t ; World

oil inventories ≡ W inv
t ; World industrial production ≡ Y world

t ; U.S. industrial production ≡ Yt;
Consumer price index ≡ Pt. For the variables description we refer to Table 1.

The results are in line with the findings of Känzig (2021). A negative oil supply

news shock leads to an increase in oil prices and has the expected macroeconomic effects:

quantitatively moderate stagflation measured by a durable, although modest, drop in

domestic industrial production and an increase in the consumer price index. Domestic

industrial production declines by approximately 0.15% on impact, with the decrease

continuing to reach 0.5% after 15 months, where it then stabilises. The consumer price

index increases on impact by approximately 0.2% and after six months starts falling

towards its pre-shock level. The subsequent decline in CPI results from the dissipation

of the shock, as the oil price returns to pre-shock levels. This effect is likely reinforced

by monetary policy responses and the recessionary impact, which feedback into the CPI

through a Phillips curve-type of relationship.

Global variables also align with the findings of Känzig (2021): (i) world oil inventories

increase, indicating a precautionary accumulation of oil in response to the negative supply

news shock; (ii) world industrial production remains relatively unaffected, likely because

oil price increases positively impact oil-producing countries while negatively affecting oil-

consuming countries, resulting in a net effect close to zero; (iii) world oil production

decreases due to the direct impact of the negative supply shock.4

4For a thorough comparison see Figure A.27 in the Online Appendix of Känzig (2021).
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5.4 The redistributive effects of the energy shock

We now evaluate the effects of an oil supply shock leading to rising oil prices, on the

functional distribution of income — that is, the shares of different income sources of

GDI — as well as the distribution of aggregate personal income across different income

sources.
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Figure 2: Solid line: IRFs for oil price innovation normalised to 10%. Dark grey and light grey
shaded areas: 68% and 90% confidence interval respectively (confidence bands are obtained using
2000 bootstrap replications). First column: {P oil

t , Yt, Pt, ℓt}; Second column: {P oil
t , Yt, Pt, pr

bt
t };

Third column: {P oil
t , Yt, Pt, dt}; Fourth column: {P oil

t , Yt, Pt, pr
ret
t }. For the variables description

we refer to Table 1.

5.4.1 Energy shock effects on functional income distribution

Figure 2 shows a long-lasting and statistically significant fall in the labour share following

a 10% innovation in the price of oil. The labour share decreases by 0.001 on impact,

remaining at such a level for up to 15 quarters after the shock and recovering to the pre-

shock level only after 30 periods. At first glance, a 0.001 decrease may seem negligible,

but a closer look highlights its quantitative importance. For instance, one could consider

that the labour share of GDI was around 0.578 in 1980 and declined to 0.533 by the

end of 2019 — a long-term drop of 0.045 over nearly three decades. Therefore, our on-

impact estimate represents about 2.28% of that long-term decline, making it a notable
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contribution when assessed from a historical perspective (see Table 5).
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Figure 3: The vertical bars represent the real aggregate wage loss resulting from a 10% increase
in oil prices, as implied by the estimated IRFs shown in the first column of Figure 2. The x-axis
shows the periods following the shock, with “0” indicating the wage loss on impact. We assume
the shock occurs in 2019, so the monetary loss is expressed in 2019 billion dollars. Detailed
calculations for the wage loss and its breakdown between redistribution and recession effects
are reported in Table 5 and Appendix B.

Another way to gauge the significance of a 0.001 drop in the wage share is by estimat-

ing its monetary impact on aggregate wages. Following an energy price shock, aggregate

wages decline due to a distribution and a recession effect. If we consider 2019Q1 as our

base quarter and account for both recession and distribution effects, on impact we esti-

mate a reduction in the real value of aggregate wages of approximately $36.5bn. While

over 12 quarters after the shock, the estimated wage loss amounts to $668.6bn, as mea-

sured in 2019Q1 dollars. When we abstract from the recession effect, i.e. we assume the

real GDI to be constant at its 2019 value, we estimate an aggregate wage loss on impact

equal to $22.4bn and a cumulative wage loss over 12 quarters after the shock of $337.7bn.
This indicates that the wage loss due to the distribution effect is significant in absolute

terms and — more importantly — accounts for a relevant part of the real aggregate wage

loss. Specifically, it explains 50% of the loss on impact and 60% of the cumulative loss

over 12 quarters (see Figure 3 and Table 5).5

The decline in the labour share is nearly entirely offset by an increase in the profit

share. However, this does not necessarily imply that firms have passed much of the

shock onto workers, as the profit share variable used here does not distinguish between

energy and non-energy profits. The significant drop in the wage share, coupled with the

strong CPI increase, might however raise this question, which we address more thoroughly

in Section 5.5, where we examine asymmetries in the wage share and CPI responses.

Notably, despite the increase in the profit share, the share of dividends in national income

5Detailed calculations are presented in Appendix B.
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Table 5: Quantifying the labour share response to a 10% increase in the energy price.

Measure Value

Impact shock relative to secular trend 2.28%

Distributive effect

Aggregate labour income loss on impact $22.4bn

Cumulative aggregate labour income loss $337.736bn

Distributive + recessionary effect

Aggregate labour income loss on impact $36.468bn

Cumulative aggregate labour income loss $668.601bn

Notes: (i) “Impact shock relative to secular trend” refers to the ratio between the estimated wages share
drop on impact and the observed wage share decline during the sample under consideration. (ii) Losses
are expressed in 2019Q1 dollars. (iii) For detailed calculations underlying the values reported in the table,
please refer to Appendix B.

initially falls. This is explained by firms distributing fewer dividends in response to the

shock, as indicated by the rise in retained profits as a share of GDI. Nevertheless, the

dividend share recovers, much faster than the labour share, returning to its pre-shock

level within five quarters.

5.4.2 Energy shock effects on the distribution of personal income across

different income sources

In this section, we present the redistributive effects across various sources of personal

income. Unlike the previous section, where variables were expressed as shares of GDI, here

all variables are defined as shares of aggregate personal income. Due to data availability,

all results are based on monthly frequency data instead of quarterly data (see Table 1).

Figure 4 illustrates that following a 10% rise in oil prices, the share of aggregate

personal income allocated to private sector workers declines significantly. In contrast,

the income share for public sector workers does not experience a statistically significant

drop on impact, and if anything, it even tends to increase in the following periods. This

difference may be attributed to fewer layoffs in the public sector and/or the absence

of wage cuts for public employees during the shock. This underscores an additional

distributional effect, as the majority of wage losses documented earlier primarily affect

private sector workers, who are more vulnerable to the shock. Additionally, the share of

personal income derived from social benefits rises. This increase is likely attributable to

automatic stabilisers and temporary policy measures aimed at alleviating the impact of

the shock on households. Together with the growing income share of public workers, this

response is consistent with the notion that public expenditures should be counter-cyclical

and thus expansive in the face of negative shocks.

In the aftermath of the shock, the share of income derived from sources other than
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labour income rises. As noted in the previous section, dividends are unlikely to contribute

to this trend, and indeed we estimate a temporary decrease in the dividends share of

aggregate personal income. In contrast, we observe a statistically significant and durable

increase in the share of interest income. This shift is likely driven by the monetary

tightening that typically follows an inflationary shock, resulting in higher interest rates

and, consequently, increased financial revenues.
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Figure 4: Solid line: IRFs for oil price innovation normalised to 10%. Dark grey and light grey
shaded areas: 68% and 90% confidence interval respectively (confidence bands are obtained
using 2000 bootstrap replications). Labour sh (private sec) ≡ ℓprivt ; Labour sh (public sec)
≡ ℓgovt ; Social benefits sh ≡ bt; Non-labour sh ≡ nℓt; Dividends sh ≡ dt; Interests sh ≡ isht . For
the variables description we refer to Table 1.

5.5 Disentangling the effect of positive and negative oil supply

shocks

We now investigate whether negative and positive oil shocks have asymmetric impacts

on the distributional variables. Our main focus concerns the labour income share.6

To estimate the effects of a positive (negative) shock, we decide to exploit a nonlinear

proxy-SVAR in the same vein as Debortoli et al. (2020); Forni et al. (2023, 2024).7 The

procedure involves two main steps: (i) the identification of the shock of interest using

the surprise series of Känzig (2021), (ii) the utilisation of the identified shock, together

6In Appendix C.4, we discuss the asymmetric effects on other distributional variables such as the
share of income (before and after taxes) due to profits, the share of income due to dividends and the
share of income due to retained profits.

7Although other approaches are possible, i.e. the method proposed by Gonçalves et al. (2021) that
includes nonlinear regressors in a linear structural dynamic model to obtain nonlinear impulse responses,
we rely on Debortoli et al. (2020) as we deal with proxy-SVARs.
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with a nonlinear transformation of it, as exogenous variables in a SVARX embodying the

endogenous variables of interest to obtain the asymmetric IRFs. Below, we outline the

key passages for estimation:

1. Starting from the reduced-form model in Equation (8), we estimate the reduced-

form residuals ût through OLS;

2. We exploit the linear projection zt = λ′ût + ηt, where zt is the proxy used for iden-

tification, to estimate λ̂
′
and identify the (normalised) structural shock as follows:

ε̂1t =
λ̂

′
ût√

λ̂
′
Σ̂uλ̂

, (22)

where Σ̂u = 1
T−KP−1

∑T
t=1 ûtû

′
t is the estimated covariance matrix of ut;

3. We estimate a VARX model including a set of endogenous variables of interest

and simultaneously ε̂1t and g (ε̂1t) as exogenous variables, where g (·) is a nonlinear

function of the structural shock (see below);

4. We compute the asymmetric IRFs by summing the coefficients of ε̂1t and g (ε̂1t).

In particular, to account for positive shocks, i.e. an expected decrease of the oil price, we

use the following nonlinear function:

g+ (ε̂1t) =

{
ε̂1t, if ε̂1t > 0

0, if ε̂1t ≤ 0,
(23)

while to account for negative shocks, i.e. an expected increase of the oil price, we use the

following transformation:

g− (ε̂1t) =

{
ε̂1t, if ε̂1t < 0

0, if ε̂1t ≥ 0.
(24)

Figure 5 shows the nonlinear transformations of the shocks used to estimate the asym-

metric effects of an oil supply news shock. The red line refers to the expected increases

in oil prices due to OPEC announcements, while the blue line concerns the expected

decreases in oil prices.
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These specifications are in line with the reasoning of Mork (1989), who concludes that

increases in oil prices account for more than decreases, which is also our conclusion (see

below). As noted in Gonçalves et al. (2021), this idea has been applied by many authors

to study the effects of asymmetric pass-through of oil shocks to gasoline prices (Venditti,

2013), the asymmetric effects of exogenous tax changes (Hussain and Malik, 2016) and

the asymmetric effects of financial market disruptions (Barnichon et al., 2022).

This choice has been the subject of discussion in the literature (see, e.g., Hamilton,

2003, 2011 and Kilian and Vigfusson, 2011, 2017). The main point of Kilian and Vigfusson

(2011) is that the intrinsic misspecification of censored oil price VAR models leads to

biased estimates. To overcome this issue, they propose to estimate an encompassing

model in which the first equation is the same as a standard linear oil VAR, but the others

include both the linear and nonlinear transformation of the oil price. The structural

IRFs are then obtained through Monte Carlo integration since the model has nonlinear

variables and the responses depend on the state of the system at the time of the shock

(Kilian and Lütkepohl, 2017). The method of Debortoli et al. (2020); Forni et al. (2023,

2024) is in line with the approach of Kilian and Vigfusson (2011) as they consider both

the linear and nonlinear part of the shock. For this reason, we adopt the former since

they directly treat the case of proxy-SVARs and allow for a simpler representation of the

IRFs without recurring to Monte Carlo integration.

Finally, it is worth noting that, in the realm of proxy-SVAR studies, it is not uncom-

mon to encounter variables truncated to zero. This censoring often arises when researchers

put forward proxies stemming from infrequent or irregularly timed events (see, e.g., the

instrument proposed by Mertens and Ravn, 2013).8

8We are aware that censoring at zero may provide biased estimates. Luckily, recent contributions
tackle this drawback (see Jentsch and Lunsford, 2022; Angelini et al., 2024). In particular, the bootstrap
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The asymmetric IRFs for oil price innovation normalised 10% are shown in Figure

6. To improve comparability between the negative and positive shocks, we normalise the

IRFs by taking the absolute value of the oil price response. In other words, all the IRFs

for the positive oil supply shock shown in Figure 6 are mirrored versions of the original

IRFs.
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Figure 6: Solid red line: Asymmetric IRFs for oil price innovation normalised to 10% (negative
shocks). Red shaded areas: 68% confidence interval. Solid blue line: Asymmetric IRFs for
oil price innovation normalised to 10% (positive shocks). Blue shaded areas: 68% confidence
interval. All confidence bands are obtained using 2000 bootstrap replications. Oil price ≡ P oil

t

(instrumented); Gross domestic income ≡ Yt; CPI ≡ Pt; Labour share ≡ ℓt.

Although the normalisation factors used to obtain a 10% change in the oil price are

different for the case of positive and negative shocks, we do not observe any asymmetry

in the dynamic response of the oil price. While this is an interesting result in itself, it also

implies that the responses of other variables of interest, both on impact and dynamically,

are not affected by differing oil price reactions to positive versus negative supply shocks.

On impact, the estimated CPI response is stronger for negative shocks than for positive

ones. However, the dynamic response is similar, with the IRFs returning to their pre-

shock values in a parallel fashion. We can interpret the response on impact as the pass-

through rate and therefore we can conclude that the pass-through rate is asymmetric, with

negative shocks being transmitted onto prices to a larger extent than positive ones. The

symmetric post-shock decline in CPI suggests that wage-price spirals are not a significant

inflationary force correlated to oil price movements. Indeed, in the case of a negative oil

price shock (i.e. an oil price increase), a wage-price spiral would cause wages to rise,

further fuelling inflation beyond the initial shock. This would result in a greater CPI

sensitivity beyond impact for negative oil shocks compared to positive ones. However,

procedure proposed by Jentsch and Lunsford (2022), which we use, remain asymptotically valid under
the assumption that the truncation process is stationary and α-mixing.
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the IRFs show the opposite: the asymmetry in CPI response occurs only on impact,

while the longer-term dynamics are nearly identical. This indicates that the after-shock

CPI’s behaviour is mainly driven by the gradual reversal of the oil price shock, rather

than wage-related inflationary pressures.

In Section 3 we argued that the general price response to oil shocks is tied to the

adjustment of the functional income distribution. Our empirical findings support this

interpretation. Indeed on impact, we detect an asymmetry in the labour share response

to oil shocks, which closely resembles the asymmetric response of CPI. This suggests that

since negative shocks are passed onto prices to a larger extent, the loss for workers —

reflected in the wage share decline — is larger than the gain experienced during positive

shocks. However, it is worth noting that, unlike the CPI, the wage-share response remains

asymmetric even after the initial shock. In the case of a negative shock, the wage share

recovers more quickly, with negative and positive shocks converging to similar values

around 20-25 periods after the initial shock. We conclude that the asymmetric pass-

through accounts for the asymmetry in the wage response on impact. However, the

subsequent adjustments in the wage share are likely driven by additional factors that our

current framework is unable to capture.

These findings are compliant with the theoretical discussion of Section 3. First of all,

the asymmetric pass-through rate strongly suggests that non-energy firms hold consid-

erable power in the good market. Additionally, the lack of wage-price spirals, as seen

in the symmetric post-shock CPI dynamics, indicates that nominal wages fail to keep

pace with the shock and the initial CPI increase. This, in turn, implies that workers lack

sufficient bargaining power in the labour market to drive a wage adjustment in response

to the shock. In the theoretical framework of Section 3, this setting corresponds to the

monopoly-monopsony scenario, which, consistently with our empirical findings, predicts

sustained inflation and wage share decline in the aftermath of a negative energy shock.

Although a positive energy shock appears to foster an expansionary effect on the

U.S. economy in the short term, it is followed by a long-lasting decline. This effect is

probably amplified by the nonlinear term g (·), which plays a crucial role in detecting sign

asymmetries (see, e.g., Forni et al., 2023 for similar results). However, we do not find a

statistically significant overall response of GDI to an oil price shock, nor do we observe a

statistical difference between negative and positive responses.

6 Conclusions

We provide novel estimates of the distributive effects of energy shocks, presenting the

first quantitative evidence of the adjustments in the wage share and other functional

distributive variables. We use U.S. data and obtain estimates from a series of proxy-

SVAR models identified with the oil supply news shock proposed by Känzig (2021).
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Results confirm the well-known empirical finding that an oil supply shock is generally

associated with a period of slow economic activity and sustained inflation. Our novel

contribution is the estimation of a quantitively significant and durable decline in the

labour share. We also document a substantial decline in real aggregate labour income,

largely driven by redistributive dynamics.

Different sources of personal income are found to respond differently to the shock. In

summary: (i) the share of labour income for private-sector workers declines significantly,

while public-sector workers appear to be better protected from the shock; (ii) although the

profit share of GDI increases, firms tend to distribute less profits, leading to a temporary

decline in the share of aggregate personal income accruing to dividends; (iii) the share of

interest income in personal income shows a marked increase, likely driven by the monetary

policy response to energy shocks, which raises interest rates and, consequently, financial

incomes.

We also identify asymmetries in the response to oil supply shocks, with stronger

pass-through rates for negative shocks than for positive ones. This asymmetry has di-

rect distributional consequences: a strong pass-through rate makes the wage share more

sensitive to oil price changes, leading to a sharper decline in the wage share for negative

shocks than the corresponding increase for positive shocks. Additionally, examining these

asymmetries offers insights into the relevance of price-wage spirals following oil supply

shocks. Despite the stronger pass-through for negative shocks, we find no evidence of

price-wage spirals, suggesting that wages do not keep pace with CPI in the wake of the

shock. We argue that this outcome is consistent with a scenario where workers have weak

bargaining power in the labour market, while firms exert some monopoly-like power in

the goods market.
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Stockhammer, E., Ö. Onaran, and S. Ederer (2009). Functional income distribution and

aggregate demand in the euro area. Cambridge journal of Economics 33 (1), 139–159.

Turco, E., D. Bazzana, M. Rizzati, E. Ciola, and S. Vergalli (2023). Energy price shocks

and stabilization policies in the matrix model. Energy Policy 177, 113567.

Venditti, F. (2013). From oil to consumer energy prices: How much asymmetry along

the way? Energy Economics 40, 468–473.

31



Wildauer, R., K. Kohler, A. Aboobaker, and A. Guschanski (2023). Energy price

shocks, conflict inflation, and income distribution in a three-sector model. Energy

Economics 127, 106982.

32



Appendix

A Some derivations for the theoretical framework

In this section, we detail the derivation of the theoretical accounting framework discussed

in Section 3.

A.1 Income shares

A.1.1 Wage share

θ =

(
Y/γl

)
w

PY
=

w/γl(
1 + µ

)(
w
γl +

pe
γe

) =
1(

1 + µ
)(
1 + uce/ucl

) =
Γl

1 + µ

A.1.2 Profit share (excluding energy)

π =
PY −

(
Y/γl

)
w −

(
Y/γe

)
pe

PY
= 1−w/γ

l + pe/γ
e

P
= 1− w/γl + pe/γ

e(
1 + µ

)(
w/γl + pe/γe

) =
µ

1 + µ

A.1.3 Energy profit share

η =

(
Y/γe

)
pe

PY
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pe/γ
e(

1 + µ
)(

w
γl +

pe
γe

) =
1(

1 + µ
)(
1 + ucl/uce

) =
Γe

1 + µ

A.2 Elasticities with respect to the energy price

A.2.1 Monopoly-monopsony scenario

In the monopoly-monopsony scenario we have ∂µ
∂pe

= ∂w
∂pe

= 0.

Wage share We first calculate the derivative of θ with respect to pe:

∂θ

∂pe
= −

w
γlγe(

1 + µ
)(

w
γl +

pe
γe

)2 .
The elasticity ϵθ can be compute as:

ϵθ ≡
∂θ

∂pe

pe
θ

= −
w

γlγe(
1 + µ

)(
w
γl +

pe
γe

)2 · pe ·

(
1 + µ

)(
w
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pe
γe

)
w/γl

= − pe/γ
e

w/γl + pe/γe
= −uce

uc
= −Γe.

Price We first calculate the derivative of P with respect to pe:
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∂P

∂pe
=

1 + µ

γe
.

The elasticity ϵp can be compute as:

ϵp ≡
∂P

∂pe

pe
P

=
1 + µ

γe
pe(

1 + µ
)
uc

=
uce
uc

= Γe.

A.2.2 Monopoly scenario

In the monopoly scenario we have ∂µ
∂pe

= 0 and ∂w
∂pe

> 0.

Wage share We first calculate the derivative of θ with respect to pe:

∂θ

∂pe
= −

γl

wγe − ∂w
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)2 .
The elasticity ϵθ can be compute as:
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Price We first calculate the derivative of P with respect to pe:
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∂pe
=
(
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1
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The elasticity ϵp can be compute as:
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A.2.3 Monopsony scenario

In the monopsony scenario we have ∂µ
∂pe

< 0 and ∂w
∂pe

= 0.
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Profit share We first calculate the derivative of π with respect to pe:

∂π
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The elasticity ϵp can be computed as:
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+
pe
γe

1(
w
γl +

pe
γe

) =
∂µ

∂pe

pe
µ

µ

1 + µ
+
uce
uc

= ϵµπ + Γe.

B Disentangling redistribution and recession effects

in aggregate wage loss

In Section 5.4.1, we discussed the reduction in the real value of aggregate wages resulting

from a hypothetical oil supply shock occurring in 2019Q1. Here, we describe how to

disentangle the distribution effect contribution to the total aggregate wage decline.

Let us call Ψi
h the response of a generic variable i to an oil supply shock at the time

horizon h. The Ψi
h’s are the IRFs presented in Section 5.4.1; to refer to the effect on

impact, we will use h = 0, and we will focus on three variables: wage share, GDI, and

CPI, indexed as ℓ, Y , and P , respectively.

To isolate the distributive effect on impact, we need a counterfactual where no re-

cession occurred amid the shock, thus we assume that the GDI remain at its 2019Q1

level
(
Y2019Q1

)
, irrespectively of the shock. We can then calculate the implicit level of

aggregate wages as:

W̃ distr
0 =

(
1 +Ψℓ

0

)
ℓ2019Q1︸ ︷︷ ︸

Distribution effect

·Y2019Q1, (25)

where ℓ2019Q1 is the wage share in 2019Q1. Note that W̃ distr
0 is expressed in 2019 U.S.

dollars, and since all other quantities will also be in 2019 U.S. dollars, it can be interpreted

as being in real terms.

We can also calculate the level of aggregate wages resulting from an oil supply shock,

accounting for both distributional and recessionary effects. This can be done by multiply-

ing Y2019Q1 in Equation (25) by the GDI variation due to the shock. However, since GDI

is a nominal variable, this approach would mix price changes with real output changes.

Hence, to isolate the recessionary contribution, we need to remove the CPI fluctuations

induced by the shock. We can therefore write the real value of aggregate wages following

the shock as:
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W̃ total
0 =

(
1 +Ψℓ

0

)
ℓ2019Q1︸ ︷︷ ︸

Distribution effect

·Y2019Q1

(
1 +

ΨY
0

100

)
︸ ︷︷ ︸

GDI response

·

(
1 +

ΨP
0

100

)−1

︸ ︷︷ ︸
Price adjustment︸ ︷︷ ︸

Recession effect

. (26)

To calculate the real value of GDI resulting from the shock, we divide the GDI response

by the CPI level implied by the shock
(
P̃0

)
and then multiply by the actual CPI level in

2019Q1
(
P2019Q1

)
, thereby expressing the result in 2019 U.S. dollars. However, note that

by definition:

P̃0 =

(
1 +

ΨP
0

100

)
P2019Q1 ⇐⇒ P2019Q1

P̃0

=

(
1 +

ΨP
0

100

)−1

,

so we can use
(
1 +

ΨP
0

100

)−1

directly as the price adjustment factor in Equation 26.

The aggregate wage loss on impact due to the distributive effect is therefore defined

as L̃distr
0 = |W̃ distr

0 −W2019Q1|, where W2019Q1 is the actual level of total wages in 2019Q1

calculated as ℓ2019Q1 · Y2019Q1. The total aggregate wage loss is instead given by L̃total
0 =

|W̃ total
0 − W2019Q1|. The distributive effect contribution to the total loss in aggregate

income is finally given by
L̃distr
0

L̃total
0

.

All cumulative effects reported in Section 5.4.1 can easily be obtained by calculating

the desired variable in each relevant time horizon h and sum over the computed values.

For example, the cumulative aggregate wage loss attributable to the distribution effect is

computed as:
12∑
h=0

L̃distr
h .

C Robustness checks

In this section, we provide some robustness checks. In particular: (i) in Section C.1,

we compare the IRFs estimated through the proxy-SVAR with the ones obtained us-

ing heteroscedasticity-based identification; (ii) by combining identification by changes in

volatility and the external instrument, in Section C.2 we verify whether the proxy used

for identification respects the relevance and exogeneity conditions; (iii) in Section C.3, we

compare the IRFs estimated through the proxy-SVAR with the ones obtained using local

projections; (iv) in Section C.4, we investigate the asymmetric effects of an oil shock on

further distributional variables.

C.1 Identification through heteroscedasticity

Identification by changes in volatility (Rigobon, 2003; Rigobon and Sack, 2004) exploits

shifts in the covariance matrix of a time series to identify the structural shocks. Formally,
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since the shifts in the covariance matrix happen at some specific breakpoints, we have

the following representation of the covariance matrix:

E (utu
′
t) = Σt = Σu (m) , (27)

with t = 1, . . . , T and m = 1, . . . ,M , where M is the volatility regime. The structural

break(s) provoking changes in variance can be identified using external information (when

available) or through statistical tools. For our purposes, we identify one structural break

in 2008Q1 and apply a multivariate Chow test. The results of the multivariate Chow test

are reported in Table 6. The null hypothesis of no breaks at a particular time point is

Table 6: Test statistics, 95% critical values and p-values of the multivariate Chow test.

Break-point test

Test statistic 570.1
95% critical value 555.3
p-value 0.0000

rejected, therefore we conclude that the structural break is correctly identified.

Since we detect one structural break, Equation (27) becomes:

E (utu
′
t) =

Σ1, for t = 1, . . . , TB − 1

Σ2, for t = TB, . . . , T,
(28)

where TB ∈ {1, . . . , T} is the time point of the structural break and Σ1 ̸= Σ2.

Since we assume that the impact matrix B is constant, the covariance matrices can

be decomposed as Σm = BΛmB
′. Therefore, for each regime we have:

Σ1 = BΛ1B
′ Σ2 = BΛ2B

′, (29)

where Λm = diag (λ1m, . . . , λKm) with λij > 0 and i, j = 1, . . . , K. The elements λij

represent the variances of the structural shocks in regime two, while in the first regime,

the shocks are normalised in such a way to have unitary variance (i.e. Λ1 = IK). If all

elements of Λ2 are distinct, the structural shocks are uniquely identified. Assuming that

the reduced-form residuals are Gaussian, the matrices B and Λ2 can be estimated by

maximising the following log-likelihood function:

ℓ =
KT

2
log 2π − TB − 1

2

[
log det (BB′) + tr

(
Σ̂1 (BB′)

−1
)]

− T − TB + 1

2

[
log det (BΛ2B

′) + tr
(
Σ̂2 (BΛ2B

′)
−1
)]
. (30)
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Finally, Σ̂1 and Σ̂2 are estimated from ût as follows:

Σ̂1 =
1

TB − 1

TB−1∑
t=1

ûtû
′
t Σ̂2 =

1

T − TB + 1

T∑
t=TB

ûtû
′
t. (31)

The comparison between IRFs based on proxy-SVAR and heteroscedasticity IRFs is

shown in Figures 7 and 8. The black solid lines represent the proxy-based IRFs for oil price

innovation normalised to 10% (the dark grey and light grey shaded areas are 68% and 90%

confidence intervals respectively). The orange solid lines represent the heteroscedasticity-

based IRFs for oil price innovation normalised to 10% (the dotted orange bands and

dashed orange bands are 68% and 90% confidence intervals respectively).
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Figure 7: Solid line: IRFs for oil price innovation normalised to 10%. Dark grey and light grey
shaded areas: proxy-SVAR IRFs 68% and 90% confidence intervals, respectively. Dotted orange
and dashed orange lines: heteroscedasticity-based IRFs 68% and 90% confidence intervals,
respectively. Confidence bands are obtained using 2000 bootstrap replications. Labour share
≡ ℓt; Profits share before taxes ≡ prbtt ; Dividends share ≡ dt; Retained profits share ≡ prrett .
For the variables description we refer to Table 1.
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Figure 8: Solid line: IRFs for oil price innovation normalised to 10%. Dark grey and light grey
shaded areas: proxy-SVAR IRFs 68% and 90% confidence intervals, respectively. Dotted orange
and dashed orange lines: heteroscedasticity-based IRFs 68% and 90% confidence intervals,
respectively. Confidence bands are obtained using 2000 bootstrap replications. Labour sh
(private sec) ≡ ℓprivt ; Labour sh (public sec) ≡ ℓgovt ; Social benefits sh ≡ bt; Non-labour sh
≡ nℓt; Dividends sh ≡ dpit ; Interests sh ≡ isht . For the variables description we refer to Table 1.

The heteroscedasticity-based IRFs yield results that are qualitatively similar to those

obtained using external instrument-based identification. The main finding remains ro-

bust: an oil supply shock leads to a redistribution from wages to profits on impact. To be

fair, the results of the heteroscedasticity-based IRFs are less pronounced: the decline in

the wage share is smaller and the increase in the profit share is less pronounced. Addition-

ally, under the heteroscedasticity-based approach, the drop in the dividend share of GDI

is negligible and statistically insignificant, along with the corresponding increase in the

retained profit share of GDI. However, proxy-SVAR IRFs and heteroscedasticity-based

IRFs are not statistically different.

We also assess the robustness of the results for the shares of aggregate personal income

(Figure 8). In this case, the IRFs are similar on impact, both qualitatively and quan-

titatively. However, some variables revert to their pre-shock levels more quickly when

the IRFs are derived using the heteroscedasticity-based identification method, with this

effect being particularly evident for the private sector labour share.

C.2 Testing instrument validity

In the same vein of Schlaak et al. (2023), we combine the information coming from

the instrument with identification through heteroscedasticity in an AC-SVAR (see, e.g.,

Angelini and Fanelli, 2019; Arias et al., 2021; Giacomini et al., 2022) to test instrument

validity. In the following, without loss of generality, we order the structural shock of
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interest first.

Let us introduce the AC-SVAR model by first rewriting Equation (8) as follows:

yt = µ+Axt + ut, (32)

where yt is the (K × 1) vector of endogenous variables, xt :=
(
x′
t−1, . . . ,x

′
t−P

)′
is the

(KP × 1) vector of lagged variables, A := (A1, . . . ,AP ) is the (K ×KP ) matrix of

autoregressive coefficients. The instrument has a linear data generating process of the

form:

zt = αεt + ηωt, (33)

where εt is the (K × 1)-vector of structural shocks, α = (α1, α2, . . . , αK) is a (1×K)-

vector of coefficients, ωt is a normalised measurement error term orthogonal to εt and η

is a coefficient that scales the effect of the noise.

Now, by combining Equation (32) and Equation (33), we obtain the following aug-

mented VAR:

wt = δ + ζxt + ξt, (34)

where δ is the ((K + 1)× 1)-vector of constants, wt = (y′
t, zt)

′ is a vector of dimension

((K + 1)× 1), ζ is the matrix containing the autoregressive components and ξt is a

((K + 1)× 1) vector of serially uncorrelated residuals. The relation between ξt and the

structural innovations νt is the following:

ξt =Gνt

=

[
B(K×K) 0(K×1)

α(1×K) η

][
εt

ωt

]
. (35)

Identification by changes in volatility allows to identify the matrix G only locally,

which means that is identified up to sign and column permutation if the model respects

the following conditions (Lanne et al., 2010): (i) G is constant; (ii) νt are orthogonal;

(iii) λim = λjm for i, j ∈ {1, . . . , K + 1} with i ̸= j, ∃m ∈ {2, . . . ,M}, which means

that there are sufficiently many and distinct changes in the variances of νt. Conditions

(i) and (ii) are common in the proxy-SVAR literature (Stock and Watson, 2012; Mertens

and Ravn, 2013) and, in general, in the SVAR analysis. Condition (iii) can be verified

by comparing the estimated variances λjm, with j = 1, . . . , K + 1.

To test for exogeneity, we impose zero-restrictions on the vectorα, i.e. α = (α1, 0, . . . , 0),

we estimate the matrix

G̃ =

[
γ1 B2:K 0(K×1)

α1 0(1×(K−1)) η

]
,

where γ1 is the (K × 1)-vector of coefficients of interest, B2:K is the (K × (K − 1))-

41



matrix of coefficients that are not of interest and α1 is the relevance parameter, through

heteroscedasticity and we compute the likelihood of the restricted model. Then, we

estimate the unrestricted model, i.e. α = (α1, α2, . . . , αK), and we compare the likelihood

of the latter with the one of the restricted model using a likelihood ratio test (LR-test).

Formally, we perform the following test:

H0 :α2 = · · · = αK = 0,

H1 :∃j ∈ {2, . . . , K} s.t. αj ̸= 0.

If we reject H0, then the instrument is endogenous.

To test for relevance we impose the restriction α1 = 0, we estimate the matrix G̃ and

we compute the likelihood of the restricted model. Then, we estimate the model with α1

unrestricted and we compare the likelihood of the latter with the one of the restricted

model. Under both H0 and H1, α2 = · · · = αK = 0. In this case, we have the following

test:

H0 :α1 = 0,

H1 :α1 ̸= 0.

If we reject the null, then the instrument is relevant. If the proxy is both relevant and

exogenous, then the instrument is valid.

The results of the tests for different VAR specifications are reported in Table 7. The

Table 7: Testing relevance and exogeneity conditions.

Exogeneity Relevance
SVAR Sample LR-statistic DoF p-value LR-statistic DoF p-value

{P oil
t , Yt, Pt, ℓt} 1983Q1-2019Q4 0.6602 3 0.8825 12.7501 1 0.0004

{P oil
t , Yt, Pt, pr

bt
t } 1983Q1-2019Q4 0.2179 3 0.9746 14.5801 1 0.0001

{P oil
t , Yt, Pt, dt} 1983Q1-2019Q4 0.5322 3 0.9118 10.8241 1 0.001

{P oil
t , Yt, Pt, pr

ret
t } 1983Q1-2019Q4 1.6735 3 0.6428 12.8461 1 0.0003

Notes: The table shows the LR-statistic, the number of restrictions (DoF) and the p-value for the tests
of proxy exogeneity (H0 : α2 = · · · = αK = 0, H1 : α unrestricted) and proxy relevance (H0 : α1 = 0,
H1 : α1 ̸= 0).

LR-statistics for the exogeneity test are small and their p-values are way above the

significance levels. Therefore, we cannot reject the null hypothesis of exogeneity and

the instrument can be considered exogenous. For what concerns the relevance test, we

reject the null hypothesis that the instrument is unrelated to all structural shocks at the

1% significance level. Therefore, it can be considered relevant. Since the proxy is both

exogenous and relevant, we can conclude that it is valid.
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C.3 Local projections

In the same spirit of Känzig (2021) and Ramey and Zubairy (2018), among others, we

compute the IRFs for oil price innovation using local projections (Jordà, 2005) to inves-

tigate whether the dynamic implied by the VAR structure is too restrictive. Therefore,

we run a set of regressions of the type:

yk,t+ℓ = βk
0 + ψk

ℓ ε̂1t + βk,′
ℓ xt−1 + ξk,t,ℓ, (36)

where yk,t+ℓ, for k = 1, . . . , K, t = 1, . . . , T and ℓ = 1, . . . , H, is the outcome variable of

interest, ε̂1t is the structural shock identified through the proxy-SVAR, xt−1 is a vector

of controls, i.e. one lag of the outcome variables of interest to tackle the issue of non-

stationarity, and ξk,t,ℓ is a (serially uncorrelated) error term. Finally, ψk
ℓ is the impulse

response to the oil shock of variable k at horizon ℓ.

The comparison between IRFs based on proxy-SVAR and local projections IRFs is

shown in Figures 9 and 10. The black solid lines represent the proxy-based IRFs for oil

price innovation normalised to 10% (the dark grey and light grey shaded areas are 68%

and 90% confidence intervals respectively). The orange solid lines represent the local

projections-based IRFs for oil price innovation normalised to 10% (the dotted orange

bands and dashed orange bands are 68% and 90% confidence intervals respectively).
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Figure 9: Solid line: IRFs for oil price innovation normalised to 10%. Dark grey and light
grey shaded areas: proxy-SVAR IRFs 68% and 90% confidence intervals, respectively. Dotted
orange and dashed orange lines: Local projections IRFs 68% and 90% confidence intervals,
respectively. Confidence bands are obtained using 2000 bootstrap replications. Labour share
≡ ℓt; Profits share before taxes ≡ prbtt ; Dividends share ≡ dt; Retained profits share ≡ prrett .
For the variables description we refer to Table 1.
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Figure 10: Solid line: IRFs for oil price innovation normalised to 10%. Dark grey and light
grey shaded areas: proxy-SVAR IRFs 68% and 90% confidence intervals, respectively. Dotted
orange and dashed orange lines: Local projections IRFs 68% and 90% confidence intervals,
respectively. Confidence bands are obtained using 2000 bootstrap replications. Labour sh
(private sec) ≡ ℓprivt ; Labour sh (public sec) ≡ ℓgovt ; Social benefits sh ≡ bt; Non-labour sh
≡ nℓt; Dividends sh ≡ dpit ; Interests sh ≡ isht . For the variables description we refer to Table 1.

In this case, since we include the structural shock identified through the proxy-SVAR

directly in the local projection, the IRFs from the local projection estimation closely

match those from the proxy-SVAR, for both distributional variables measured as shares

of GDI and shares of aggregate personal income. This similarity holds true both on

impact and in the periods following the shock.

C.4 Other asymmetric effects

In this section, we further investigate the asymmetric effects of positive and negative

oil shocks on some distributional variables, i.e. profits share before taxes, profits share

after taxes, dividends share and retained profits share. The asymmetric IRFs for oil price

innovation normalised to 10% are shown in Figure 11.
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Figure 11: Solid red line: Asymmetric IRFs for oil price innovation normalised to 10% (neg-
ative shocks). Light red shaded areas: 68% confidence interval. Solid blue line: Asymmetric
IRFs for oil price innovation normalised to 10% (positive shocks). Light blue shaded areas: 68%
confidence interval. All confidence bands are obtained using 2000 bootstrap replications. Prof-
its share before taxes ≡ prbtt ; Profits share after taxes ≡ pratt ; Dividends share ≡ dt; Retained
profits share ≡ prrett .

The asymmetry in the profit share reflects the previously discussed asymmetry in the

wage share: following a negative oil supply shock, the profit share increases significantly,

as firms attempt to maintain profit margins and volume by passing on much of the shock.

In contrast, for a positive oil supply shock, the pass-through is considerably lower, and the

decline in the profit share is not statistically significant. Finally, we do not observe any

asymmetry in the retained profit share of GDI, making any asymmetry in the dividend

share of GDI a direct consequence of the asymmetry in the profit share estimates.
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