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Abstract

Streamflow—a key component of the water cycle—is experiencing drastic alteration due to human
actions. The global extent and degree of this change have been widely assessed, but understanding of
its drivers remains limited because previous global-scale approaches have largely relied on modelled
hypothetical scenarios. Here, we advance this understanding by providing an observation-based
association analysis of streamflow change and its drivers. We use observed streamflow data in 3,293
catchments globally and combine them with data on precipitation, evapotranspiration, water use, and
damming. Building on a robust annual trend analysis covering years 1971-2010, we first determine
flow regime change (FRC) classes, and then use them to investigate associations between streamflow
change and its drivers. We find that 91% of all catchments are assigned to four main FRCs, which
indicates globally consistent flow regime changes. By associating driver trends with the FRCs, we
further characterise them by trends and changes in the four investigated drivers. We find that FRCs
depicting decreasing streamflow quantity and variability are strongly associated with direct human
drivers, either water use or damming. In contrast, associations with indirect drivers (precipitation and
evapotranspiration) are more dominant in FRCs that depict increasing streamflow quantity and
variability. Our key advance is that our comprehensive, observation-based association analysis
substantiates the model-based findings of previous global-scale studies, and thus adds detail and
validation to their interpretations. This may further support developing and adopting efficient
measures to mitigate streamflow change and its subsequent impacts across scales.

1. Introduction

The global freshwater cycle has undergone drastic, anthropogenically driven changes since industrialisation.
Globally widespread streamflow alterations are perhaps some of the most prominent examples of this change
(Gudmundsson etal 2021, Yang et al 2021, Virkki et al 2022). These alterations have become so pervasive that
recent studies have suggested they undermine the Earth system functions related to freshwater and elevate risks
related to diminishing resilience and stability of the Earth system (Gleeson et al 2020, Richardson et al 2023,
Porkka et al 2024). To effectively mitigate these risks, it is important to disentangle the underlying drivers behind
the remarkable global change in streamflow.

The key drivers of streamflow alteration are related to climatic factors modifying water availability and
human actions on the land surface diverting the flows of this water. Climate change and variability alter the
spatiotemporal distribution of precipitation and evapotranspiration (Adler et al 2017, Zhang et al 2023), and
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land cover change can further attenuate or amplify these impacts by modifying the land-atmosphere moisture
exchange (Wang-Erlandsson et al 2018, Theeuwen et al 2023). These indirect drivers affect runoff generation
and, ultimately, streamflow volume. Once streamflow is generated from the available water, it may be altered by
direct human actions. Consumptive water use, mainly for agricultural purposes, may appropriate and divert
streamflow from its natural course (Wada and Bierkens 2014, Huang et al 2018), and flow regulation by dams
and reservoirs may change the temporal distribution of streamflow, often towards homogenised flow regimes
(Poffetal 2007, Best 2019, Grill et al 2019).

Studies across scales have assessed the contributions of different drivers on streamflow alterations. Yet,
global-scale studies often lack the depth and detail of local and regional approaches that can, for instance,
incorporate highly specialised hydrological modelling setups and extensive data (Dennedy-Frank and
Gorelick 2019, Horton et al 2021) or advanced empirical models (Levy et al 2018, Chagas et al 2022). Instead,
global studies on streamflow change often focus on describing the hydrological outcome and attaching driver
attribution to this by, for example, qualitative discussion (Porkka et al 2024), static information on human
drivers (Yang et al 2021), or incorporation of a limited set of drivers (Zhang et al 2023). In global studies whose
main objective is explicit driver attribution, perhaps the most prominent approach is to utilise hydrological
modelling scenarios with variable driver configurations (Veldkamp et al 2018, Gudmundsson et al 2021,
Kéresdotter et al 2022, Pastor et al 2022). This general approach is based on running globally applicable
hydrological models in a suite of scenarios, including or excluding one or more drivers at a time. Model outputs
are then compared to assess how much each inclusion or exclusion affects modelled streamflow, and the
differences between scenarios are attributed to the distinct drivers.

The predominant global-scale driver attribution approach, however, suffers from two major drawbacks.
First, global hydrological models can strictly assess the hydrological impacts of mechanisms and interactions
implemented in the models, which are relatively simplified with variable parameterisations and uncertainties
(Telteu etal 2021). Second, the assessed scenarios are largely hypothetical—for instance, a typical control
scenario in global hydrological modelling may assume static climate and dynamic water use (Frieler et al 2024).
These scenarios, thus, do not necessarily represent hydrological systems that have existed in the past, which
further deepens the dependence on how hydrological processes are mechanistically implemented in the models.
This is especially relevant because the direct and indirect drivers depend on each other, and streamflow changes
have been observed more commonly in catchments that are influenced by both types of drivers (Yang et al 2021).
We therefore argue that the hypothetical model-based approaches should be complemented with observation-
based approaches to improve the understanding of how streamflow regime changes link to anthropogenically
related drivers at the global scale.

This study overcomes the limitations of existing global-scale driver attribution studies by composing a near-
global, observation-based association analysis of streamflow change and related drivers. We present an annual
trend analysis covering years 1971-2010, utilising streamflow observations and global data on four drivers:
precipitation, evapotranspiration, water use, and damming. Our large sample of catchments with streamflow
observations across the globe allows for robustly associating common streamflow regime alterations with these
drivers. This approach is less assumptive and dependent on modelling scenarios than existing global-scale
approaches and balanced between using historically coherent evidence and a large enough sample size. Our
approach thus allows us to associate streamflow change and its related drivers at the global scale in a way that
substantiates and advances the existing, model-based studies.

2. Methods

Figure 1 presents the methodological outline of this study. To compose a global sample of streamflow data, we
queried the Global Streamflow Indices and Metadata Archive (GSIM) (Do et al 2018, Gudmundsson et al 2018)
to find catchments with a sufficiently long and reliable monthly streamflow record. We then determined flow
regime change (FRC) classes that depict streamflow regime alteration based on linear trends in four annual
streamflow metrics. We similarly derived linear trends in the indirect and direct drivers using 0.1-degree
resolution monthly precipitation and evapotranspiration data from ERA5-Land (Mufioz-Sabater et al 2021),
0.5-degree resolution monthly total consumptive water use data from Huang et al (2018), and dam records from
GeoDAR (Wang et al 2022). Finally, we grouped driver trends using four main FRC classes to reveal how
streamflow change and its drivers are associated.

2.1. Data preparation

The GSIM database collates streamflow observations from national authorities and international collections,
covering over 35,000 streamflow records in a consistently formatted and quality-controlled collection (Do et al
2018, Gudmundsson et al 2018). Out of these, we selected all mean monthly streamflow records that fulfilled
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Figure 1. Methodological outline of the study. Streamflow data were prepared by sampling catchments and filling in missing monthly
data entries. (a) Driver data were prepared by extracting zonal statistics (for precipitation; P, evapotranspiration; ET, and water use)
and querying dam points within catchment polygons. (b) Monthly values were then transformed into annual metrics, followed by an
assessment of linear trends using Theil-Sen slopes (streamflow, P, ET, water use) and absolute change in the degree of regulation
(DOR) for dams. (c) Finally, trends in four streamflow metrics were used to assign catchments to flow regime change (FRC) classes
that were subsequently used to group driver trends and changes to associate streamflow change with its drivers (d).

three conditions: (1) the catchment area is greater than 1,000 km?; (2) streamflow observations cover at least

30 years within 1971-2010; and (3) more than 50% of monthly values between the first and last month of record
are available. Although streamflow data were available before 1971 and after 2010, the temporal extent was
limited by the driver data availability on water use. Missing monthly streamflow values were filled with the mean
of available values of the same month within 10 years of the missing value. These conditions ensured that the
selected catchments were large enough for zonal statistics and that the streamflow records were long enough for
fitting linear trends.

To ensure accuracy for zonal statistics, streamflow records flagged as ‘caution’ were mainly discarded. This
GSIM quality flag is marked for records whose delineated catchment area differs from the reported catchment
area by more than 50% and for records with no reported catchment area. However, we included 353 records
with no reported catchment area in GSIM. This was done by matching the streamflow gauge station and river
names with a newer release of the GRDC station catalogue (GRDC 2023) and assessing that the delineated GSIM
catchment area had a less than 50% mismatch with the matched GRDC reported catchment area. Duplicate
catchments were additionally handled by identifying catchment groups in which all catchments had more than
90% area overlap with each other. In the identified duplicate groups, the catchment with the highest number of
monthly streamflow observations was selected, totalling 186 preserved duplicates; 206 redundant duplicates
were discarded. Nested catchments (sub-catchments of larger basins) with less than 90% common area overlap
were left in the sample and treated as individual catchments.

After applying the above sampling criteria, 3,293 catchment records from GSIM were included, with 2,290
catchments having a full 40-year record from 1971 to 2010 (figure S1(a)). Most records required only little filling
of missing monthly streamflow values, as the majority (80%) of all streamflow records had more than 90% of
monthly mean streamflow values available (figure S1(b)). Therefore, our sample could be considered robust for
assessing streamflow trends. All continents were represented in the selected records; however, most catchments
(88%) were in Europe, North America, or South America, which were also the regions that had many smaller
nested catchments within larger basins (figure S1(c)).

Gridded precipitation and evapotranspiration data were fetched from ERAS5-Land (Mufioz-Sabater et al
2021). Although ERA5-Land is a reanalysis product, we chose to use it since it has recently been evaluated as
adequate for simulating river discharge (Gebrechorkos et al 2024). Gridded sectoral water use data—comprising
the irrigation, domestic, electricity generation, livestock, mining, and manufacturing sectors (Huang et al 2018)
—were summed to total water use. For all these monthly gridded data, we extracted zonal statistics within
spatially explicit catchment boundaries provided by GSIM. As all three variables were expressed as water column
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depths (millimetres/month), we used cell area-weighted mean as the aggregation metric, utilising the
exact_extract R function (Baston 2022). This function considers partial overlaps between polygon and gridded
data, using in summarisation only the fraction of each grid cell that overlaps with the catchment boundary.
While this increases the utility of zonal statistics for small catchments and coarse driver data, it also assumes that
the respective grid variable value is spread evenly over the grid cell, incurring some uncertainty. In all
catchments, the temporal extent of streamflow data dictated the temporal extent of driver data; for each driver,
we only considered the years that had streamflow observations. Thus, in an individual catchment, streamflow
and driver trends were always computed from the same time period of streamflow and driver data.

The GeoDAR database georeferences approximately 25,000 dam records from the World Register of Dams
(WRD) and is currently one of the most comprehensive global databases containing both locations and
attributes of large dams (Wang et al 2022). Although dam locations are openly available in GeoDAR, dam
attributes are proprietary to the WRD. We updated the dam attributes with recent data from the WRD (retrieved
on 20 July 2023). Dams within each spatially explicit catchment boundary were queried by point-in-polygon
operations, repeating the same procedure also for all nested catchments. Further, the reservoir capacity of each
matched dam was related to the total annual volumetric streamflow at the catchment outlet. This corresponds to
the commonly used metric ‘degree of regulation’ (DOR) (Nilsson et al 2005). We set the DOR value of each dam
to apply from the first month of the year of dam completion, and cumulatively summed the DOR values for each
catchment. The cumulative DOR only considered increasing regulation as removed dams are absent in
the WRD.

2.2. Trend analysis and flow regime change (FRC) classification

Throughout the analysis, we estimated linear trends using Theil-Sen regression, which is a robust linear
regression method that outputs the median of trend slopes between all possible pairs of data points
(Hurtado 2020). This makes the resulting Theil-Sen slope less sensitive to outliers. We estimated Theil-Sen
slopes using annual metrics, which were computed from monthly streamflow and driver values (except for
DOR). For streamflow, we calculated annual metrics and subsequently estimated trends for annual mean,
standard deviation, and 5th and 95th percentiles. For precipitation and evapotranspiration, we used annual
mean and standard deviation, whereas for water use, we used annual mean only.

Each catchment was assigned an FRC class based on the Theil-Sen slopes of four annual streamflow metrics
(table 1; figure S2). Four main FRCs were predefined: decreasing and increasing trends in mean streamflow
(depicting quantity) characterised the ‘shift down’ and ‘shift up’ FRCs, respectively, whereas decreasing and
increasing trends in the standard deviation of streamflow (depicting variability) characterised the ‘shrink’ and
‘expand’ FRCs, respectively. Conditions on trend direction were not enforced for one of the four streamflow
trends in each FRC (labelled ‘unconstrained’ in table 1). The four main FRCs thus comprised eight out of sixteen
possible combinations that can be derived from trend directions in four streamflow metrics. Catchments with
one of the remaining eight trend combinations not covered by the four main FRCs were assigned a class ‘other’.
This was also done for special cases where the Theil-Sen slope was zero, for instance, when the 5th percentile
streamflow was zero throughout the record.

Table 1. Assignment rules for the four main flow regime change (FRC) classes. For each catchment and
streamflow metric (mean, standard deviation, high flow, low flow), trends (Theil-Sen slopes) were computed
based on annual metrics within the interval 19712010, with the sample size ranging from 30 to 40 years,
depending on streamflow record length in each catchment (figure S1(a)). Catchments were assigned to an FRC
class based on the combination of four Theil-Sen slopes; in the table, ‘decreasing’ means that the Theil-Sen slope is
negative, and ‘increasing’ means that the Theil-Sen slope is positive. For conditions marked as ‘unconstrained’,
the Theil-Sen slope can be either negative or positive. Should the combination of four trends in a catchment not
match any of the four main FRC classes, it was assigned a class ‘other’. The Theil-Sen slopes needed not to be
statistically significant in the FRC assignments.

Flow regime change (FRC) class

Streamflow metric

‘Shift down’ ‘Shift up’ ‘Shrink’ ‘Expand’
Mean Decreasing Increasing Unconstrained Unconstrained
Standard deviation Unconstrained Unconstrained Decreasing Increasing
High (95th percentile) flow Decreasing Increasing Decreasing Increasing
Low (5th percentile) flow Decreasing Increasing Increasing Decreasing
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Figure 2. Linear trends in four streamflow metrics: mean (a), standard deviation (b), low (5th percentile) flows (c), and high (95th
percentile) flows (d). All trends (Theil-Sen slopes) are computed based on annual metrics within the interval 1971-2010, with the
sample size ranging from 30 to 40 years, depending on streamflow record length in each catchment (figure S1(a)). Nested catchments
are plotted so that small catchments are drawn on top of larger ones, thus showing the maximum available detail.

3. Results

3.1. Flow regime changes

The key characteristics of a flow regime—the quantity, variability, and typical range of streamflow—exhibit
globally widespread change. For all four annual streamflow metrics (mean, standard deviation, and high and low
flows), decreasing trends are more frequent than increasing trends (figure 2). Most of the Theil-Sen slopes
presented here are not statistically significant, although some statistically significant trends can be seen especially
in small catchments (figure S3). When looking at trends in the decreasing direction, some of the most impacted
regions consist of the southwestern coast of North America and central Brazil, for instance—here, trends in all
four metrics would suggest decreasing streamflow. Contrarily, regions in northern Amazonia and Central
Europe, for example, commonly show increasing trends in all four metrics, indicating that streamflow is
increasing across all facets of the flow regime.

Catchments assigned to the four FRCs (table 1) comprise 2,986 out of 3,293 (91%) of all catchments
(figure 3). The remaining 307 catchments that were not assigned to one of the four FRCs were assigned to the
class ‘other’. A large majority of all catchments falling into one of the four FRCs indicates that streamflow
alteration prevails throughout flow regimes, commonly in one of these four archetypal patterns. The ‘shift
down’and ‘shrink’ FRCs are more common than their opposite direction counterparts, ‘shift up’ and ‘expand’,
across all catchment size groups (figure 3). Additionally, the large majority of ‘shift down’ and ‘shift up’
catchments have, respectively, a decreasing and an increasing trend also for standard deviation (table S1). For
‘shrink’ and ‘expand’, the fraction of this kind of parallel direction trends for the mean is not equally high,
though still a majority (table S1). This would suggest that decreases in streamflow quantity and variability are
more common than increases, and that consistent, unidirectional shifts throughout the flow regime (either
towards the drying or wetting direction) are the most common FRCs globally.

The ‘shift down’ FRC s prevalent in central South America and on the eastern and western sides of North
America (figure 3), which are regions where also the decreasing streamflow trend slopes are comparatively
strong (figure 2). On the contrary, many catchments in the Eurasian boreal zone and northern parts of Canada
are assigned to the ‘shift up’ or ‘shrink’ FRC class (figure 3). Similarly, the streamflow trend slopes there are
moderate to strong (figure 2), although it should be noted that the geographically extensive Eurasian boreal zone
is covered by relatively few large catchments (n ~ 160; figure S1(c)). Some large basins, such as the Rhine and the
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Figure 3. Assignment of flow regime change (FRC) classes for 3,293 catchments globally. The FRCs are determined by the direction of
linear trends (Theil-Sen slopes) in four annual streamflow metrics (table 1). Catchments are additionally grouped into three size
groups, using a minimum catchment area of 1,000 km? in the small catchments group, a catchment area of 2,500 km? as the threshold
between small and medium catchments, and a catchment area of 10,000 km? as the threshold between medium and large catchments.
Nested catchments are plotted so that small catchments are drawn on top of larger ones, thus showing the maximum available detail.

Colorado River, have most of their sub-catchments assigned to the same FRC with the main basin (‘shift up’ and
‘shift down’, respectively), whereas, for instance, sub-catchments of the Parana and the Saskatchewan rivers
represent all four FRCs.

3.2. Driver trends and changes

At the global scale, mean precipitation and evapotranspiration trends are moderately correlated, whereas the
standard deviation trends of precipitation and evapotranspiration appear independent (figures 4(a)—(d), figure
S4). Although opposite direction trends for mean precipitation and evapotranspiration are visible at large scales
in eastern Europe, Siberia, and north-western South America, for instance, trends in parallel direction for these
two indirect drivers appear globally prevalent (figures 4(a)—(b)). Mean precipitation trends (figure 4(a)) are the
only case for which, among all sampled catchments, decreasing trends are more frequent than increasing trends.
In contrast, for the other three climatic variables, increasing trends are more common (figures 4(b)—(d)).

Strong water use trends are concentrated in relatively small regions (figure 4(e)). On the one hand, in
southern Asia and in parts of South America, water use trends have been strongly increasing. On the other hand,
much of Europe and North America show moderate to strongly decreasing mean water use trends. However,
most regions show negligible water use trends—possibly due to their very low absolute water use. Furthermore,
atotal of 8,435 dams are captured within the sampled catchments, with the heaviest increases in regulation
found in large catchments. More than half of catchments (58%) with an area greater than 10,000 km? have seen
anincrease in DOR, whereas the same figure is 29% for catchments below this threshold. Increasing large-scale
river regulation during the study period is the most clearly visible in many catchments in southern Africa and
southern North America, as well as in the Murray-Darling River basin in Australia (figure 4(f)).

3.3. Associations between FRCs and driver trends

A systematic assessment of associations between the FRC assignments (figure 3) and trends and changes in
drivers (figure 4) reveals how the four FRCs not only characterise changes in streamflow regimes but also allow
for suggesting possible drivers underlying this change. This association is done here in two stages. Presuming
that streamflow regimes are predominantly shaped by the amount and variability of precipitation; figure 5 first
investigates how increasing and decreasing precipitation trends are associated with the FRCs. Following this,
figure 6 additionally summarises trends in evapotranspiration, water use, and changes in the degree of
regulation. These two stages jointly enable a characterisation of FRCs by the most commonly occurring driver
trends and changes, relating streamflow change with some of its external drivers.

6
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Figure 4. Trends and changes in driver variables: mean precipitation trend (a), mean evapotranspiration trend (b), trend in the
standard deviation of precipitation (c), trend in the standard deviation of evapotranspiration (d), mean total water use trend (), and
increase in the degree of regulation (DOR) (f). Trends (Theil-Sen slopes) in panels (a)—(e) are computed based on annual metrics
within the interval 1971-2010, with the sample size ranging from 30 to 40 years, depending on streamflow record length in each
catchment (figure S1(a)). For dams (f), instead of the Theil-Sen slope, change in time is assessed by absolute increase in the degree of
regulation (DOR), measured in percentage points. Catchments that have not experienced an increase in DOR (being mainly sub-
catchments of large basins) are overlaid on top of panel (f) with a transparent grey overlay.

The direction of precipitation trends mostly agrees with the direction of streamflow mean or standard
deviation trend in each FRC class. For ‘shift down’ and ‘shift up’, most catchments assigned to these FRCs (81%
and 67%, respectively) show a mean precipitation trend in decreasing and increasing direction, respectively
(figure 5(a)). This could suggest that mean precipitation trends that are parallel with mean streamflow trends are
associated with the ‘shift’ FRCs. For ‘expand’, most catchments similarly show an increasing trend in the
standard deviation of precipitation (267 out of 376; figure 5(b)), which possibly implicates an equivalent
situation, in which increasing precipitation variability may link to increasing streamflow variability. However,
for ‘shrink’, this does not appear as common, as 287 ‘shrink’ catchments show increasing trends and 291 show
decreasing trends in the standard deviation of precipitation (figure 5(b)). Therefore, particularly in the case of
‘shrink’, factors beyond precipitation likely associate with flow regime change.
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Like how the ‘expand’ and ‘shrink’ FRCs are related with trends in precipitation variability (figures 5(b);
6(b)—(d)), ‘expand’ catchments commonly show increasing trends in the standard deviation of
evapotranspiration, but for ‘shrink’, this correspondence is not as discernible (figures 6(e)—(g)). Additionally,
notwithstanding if the FRC describes a decreasing (‘shift down’) or an increasing change (‘shift up’) in
streamflow quantity, mean evapotranspiration trends are generally weaker than precipitation trends and point
to the same direction (figures 6(b)—(g)). This also holds for nearly all FRC subgroups consisting of catchments in
which the mean precipitation trend is opposite to the mean streamflow trend; for instance, when mean
precipitation trends are increasing in ‘shift down’ catchments (figure S5(a)—(c)). In this sample, since
precipitation trends appear stronger than evapotranspiration trends, they may be considered the more
dominant factor among these two climate-related drivers.

Increasing water use trends are the strongest in the ‘shift down’ FRC (figures 6(h)—(j)) and additionally in the
‘expand’ FRC, although it should be noted that ‘expand’ contains the smallest number of catchments among all
FRC:s (table S2). On the contrary, across all catchment size groups, water use trends in the ‘shrink’ FRC are
comparatively weak, while for the ‘shift up’ FRC, decreasing water use trends are the most common among the
four FRCs. These decreasing trends in the ‘shift up” FRC show some scale-dependence with slightly stronger
decreasing water use trends when comparing large catchments to small catchments (figures 6(h)—(j)).

Increases in DOR are heavily concentrated in large catchments in the ‘shift down’ and ‘shrink’ FRCs
(figures 6(k)—(m)). Although some damming occurs across all catchment size groups and FRCs—evidenced by
the group means in figures 6(k)—(m) rising above zero—large catchments are by far the most affected by
damming. A peculiar example of damming is seen in the ‘shift down’ FRC subgroup where precipitation trends
are increasing; here, the mean increase in DOR reaches more than 60 percentage points and is notably larger
than in any other subgroup (figure S5(i)). Though this group consists of few catchments (n = 73; table S2), this
divergence may suggest cases in which large-scale flow regulation combined with increased water use
(figure S5(f)) potentially offset the increasing water availability trend, eventually resulting in decreased
streamflow. However, these interpretations cannot be thoroughly validated given that this analysis builds only
on linear trends.

To summarise, associations between indirect drivers—precipitation and evapotranspiration—and the FRCs
are strong except for ‘shrink’, which appears primarily associated with increasing flow regulation. The ‘shift
down’ FRC is additionally associated with strongly increasing trends in water use, and thus related to both direct
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driver variables: precipitation (b)—(d), evapotranspiration (e)—(g), water use (h)—(j), and degree of regulation (k)—(m). Panel (a)
corresponds to figure 3. Each bar in panels (b)-(m) represents an interquartile range of Theil-Sen slopes in catchments assigned to an
FRC class; group mean is denoted with a horizontal line. For precipitation and evapotranspiration, the FRC groups ‘shift down’, ‘shift
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m). Prior to drawing interquartile ranges and group means, outliers were removed from each FRC group, by excluding trend slopes
with a magnitude more than two standard deviations away from the group mean.

P Letters

and indirect drivers. The ‘expand’ and ‘shift up’ FRCs likely associate the strongest with indirect drivers, while
some evidence exists for associations between water use and reshaped flow regimes in the ‘expand’ FRC and
replenished streamflow in the ‘shift up’ FRC. These characteristic associations also differentiate the four FRCs
from the ‘other’ class, within which driver trends show no clear patterns (figure 6).

As the FRCs are characterised not only by streamflow trends but also by driver trends (figures (5)—(6)), the
FRC map (figures 3, 6(a)) also serves as a map of possible drivers of streamflow change. The systematic
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association analysis supports general patterns of, for example, ‘shift down’ catchments often co-locating with the
most intensive water use regions and ‘shrink’ catchments with the heaviest flow regulation (figures (3)—(4)). It
should, however, be noted that these findings are based on trend correlation and co-existence rather than
mechanistic representation of the water cycle. This means that the globally most frequent associations do not
necessarily hold in all individual catchments, as any other trend combination beyond the globally most frequent
associations between FRCs and driver trends may prevail. Without more knowledge of individual catchments,
we are thus unable to assume causal relationships based on this analysis. The distinct characterisations of the
four FRCs can, however, suggest broadly generalised associations between streamflow change and its drivers.

4. Discussion

The FRC assignments (figure 3) correspond well with independent estimates of streamflow change. The spatially
extensive FRCs ‘shift down’, ‘shift up’ and ‘shrink’ largely agree with estimates of increased frequency of
exceptionally dry and wet conditions, analogous to alteration in low and high flows (Porkka et al 2024). This is
the case, especially in South and North America and Europe, where our catchment sampling density is the
highest (figure S1(c)). Similarly, the FRCs coincide with recent trends in water availability in South America, but
at the same time, discrepancies are seen in the southeastern United States where the ‘shift down’ FRC is
prevalent, notwithstanding an increasing trend in water availability (Zhang et al 2023). This may be related to
high water use (Huang et al 2018) and flow regulation (Grill ez al 2019) in the region, which are both associated
with the ‘shift down’ FRC.

In our catchment sample, precipitation trends appear stronger than evapotranspiration trends, which
suggests that precipitation is the dominant driver of change in water availability. This agrees with Zhang et al
(2023) who find similar dominance across regions that contain most of our catchments. Furthermore, climate
change contributes to decreasing streamflow across South and North America, and to increasing streamflow in
Central and Northern Europe (Gudmundsson et al 202 1), which often show instances of the ‘shift down’ and
‘shift up’ FRCs, respectively. Direct drivers being especially relevant for the ‘shrink’ and ‘shift down’ FRCs and
showing moderate association with the ‘expand’ FRC additionally agrees with Yang et al (2021) and Pastor et al
(2022), who find that streamflow changes are more likely in the strong presence of direct human drivers. Thus,
our key findings—based on observations—corroborate existing knowledge, which is predominantly based on
modelled data at the global scale.

In agreement with comparable studies (Gudmundsson et al 2021, Yang et al 2021, Pastor et al 2022, Zhang
etal 2023, Porkka et al 2024), we find that associations between streamflow change and its drivers vary spatially.
As discussed in section 3.3, the main limitation of this study is that the globally most frequent associations do not
necessarily implicate causal relationships at the scale of an individual catchment. Additionally, although we
characterise the FRCs by driver trends that presumably propagate to streamflow alteration, we are unable to
robustly assess the absolute contributions of the different drivers (for example, how many units does streamflow
change, given a unit change in precipitation). Moreover, our study lacks explicit representation of groundwater
that has a considerable impact on streamflow and is subject to manifold human pressures (Kuang et al 2024).

Notwithstanding the above-outlined limitations of this study, our proposed FRCs allow for shaping generic
associations between streamflow change and its drivers. In future research, following recent developments of
releasing observed streamflow data in structured collections (Kratzert et al 2023) and evolving future projections
(Frieler et al 2024) can develop and further validate our main results across scales. Ideally with even more
comprehensive catchment samples and additional drivers, future studies can increasingly add to understanding
the complex dynamics of streamflow change. Advancing this knowledge is essential for evaluating the most
impactful and meaningful measures for mitigating adverse impacts stemming from streamflow change.

5. Conclusion

Here, we have shown how the formation of four archetypal flow regime change (FRC) classes can provide a
straightforward way to associate streamflow alteration with its drivers. Nearly all catchments (91%) in our
sample are assigned to one of the four FRC classes, which also appear associated with trends in the key drivers of
streamflow alteration. We find that indirect drivers, including precipitation and evapotranspiration, are strongly
associated with all FRCs except for ‘shrink’, which describes decreasing streamflow variability and is strongly
linked with increasing flow regulation. Increasing water use and decreasing trends in water availability are
frequently associated with decreasing streamflow, as described by the ‘shift down’ FRC. The ‘shift up” and
‘expand’ FRCs that describe increasing quantity and variability of streamflow, respectively, are weaker coupled
with direct human drivers, although some moderate associations exist. These observation-based outcomes
generally agree with existing knowledge grounded on model-based studies. Although an inherent drawback of
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our approach is that it cannot resolve causal relationships, our observation-based results provide associations
that build on historically coherent hydrological systems instead of hypothetical modelling scenarios. This
notably advances existing studies by highlighting the globally most frequent relations between streamflow
regime alterations and their drivers, which offers action points for mitigating the adverse impacts of streamflow
change. This can further support aims to decrease the manifold human pressures on the freshwater cycle.
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