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moving forward is to simply increase the representation of regional cultural knowledge in these areas and assess 
the accuracy of future versions of the maps with global and local reference validation samples/datasets.

Nevertheless, we can reasonably assume that some of these issues are related to very similar values of two or 
more classes in the feature space (limited detectability in Landsat images), where our ML models did not allow 
separation among areas with distinct LULC dynamics as embodied in our visually interpreted training dataset. 

Fig. 9  Examples of predicted probabilities for cultivated and natural/semi-natural grassland in (A) Paraguay, 
(B) Scotland - UK, (C) Democratic Republic of the Congo–DRC, (D) Kazakhstan and (E) Australia. Landsat 
ARD-2 images are shown as true colour composite (red, green and blue) for the year of grassland probabilities. 
The composites are from Mar. & Apr. (all years) in Paraguay and Scotland; Mar. & Apr. 2002 and Nov. & Dec. 
2012 in DRC; Aug. & Sep. 2015 and May. & Jun. 2020 in Kazakhstan; and May & Jun. 2007 and Mar. & Apr 2017 
in Australia.
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It appears that intensively managed grasslands, with high homogeneity under many conditions, have a high 
chance of being confused with other classes that have very similar spectral properties, such as urban mosaics (i.e. 
buildings, sparse trees and grass fields with different densities) or (greenish) croplands with similar vegetation 
height and spatial configuration (such as cereal crops70,71). Less intensively cultivated grasslands, where more 
diverse plant species can be found and where the landscape may not be very regular, are easily confused with 
grasslands that are not cultivated or (semi) natural herbaceous vegetation, in general68. In addition, the spectral 

Fig. 10  Cultivated grassland probabilities for 2000, 2019 and 2022 at 30 m spatial resolution (below) for a 
deforested area in in Brazil (Rio Maria, Pará state) as compared to the very high resolution images of ESRI 
Wayback (above).
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Fig. 11  Future Global Pasture Watch applications for the produced grassland probability maps: (a) to 
delineate for example active grazing areas matching with census estimates and help produce more reasonable 
livestock density maps75, (b) to help produce global time-series of ensemble land cover products harmonizing 
and combining multiple existing products (Esa WorldCover14 UMD GLAD GLCLUC13, GLC FCS3078 and 
GLanCE3077).
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signal of cultivated grasslands can not be as clearly distinguished from natural/semi-natural grassland as it could 
be from croplands, where there are clear breaks in vegetation growth in cases where multi-temporal clear-sky 
images are available79.

The distinction between cultivated and natural/semi-natural grasslands has been notoriously difficult to map 
in the past16,17,80, which has also affected our reference data collection and harmonization process. Hence, our 
reference labeling protocol relied on more indirect indicators of management, such as fences and other typi-
cal infrastructure, hay bales, machine presence, and even animal presence in the field or geometric shapes of 
the landscape. This may lead to an underestimation of signs of cultivation that may be less intensive or where 
VHR imagery was not available at the time of management practices. Regarding our harmonization process, the 
description or labeling among different datasets is a limiting factor. Since we analyzed samples from a wide range 
of sources, all with their own ontological definitions and classification taxonomy, harmonization was possible 
only based on rough estimations. Even when acknowledging language and conceptual differences; some funda-
mental differences between scientific domains/schools of thought/cultural views may also result in ambiguous 
terms or descriptions. For example, while it may be called “rangeland” in the U.S., the same concept would be 
called “pasture” in Europe, while a “pastagem” (the literal translation of ‘pasture’) would be regarded as a cul-
tivated grassland in Brazil. Often, the finer distinctions of how dataset creators perceive and interpret mental 
concepts whilst creating the training dataset, is missing from their fundamental description, making it harder 
for downstream applications to form a proper semantic match across many datasets. Due to these challenges, 
we have attempted to be as clear and as transparent as possible in our reference labeling criteria and to plan for 
active inclusion of regional cultural knowledge in further versions of Global Pasture Watch products.

One possible way to resolve such semantic/ontological issues is through international registers where land 
cover and land use classes/systems are unequivocally specified and illustrated with decision trees and photo-
graphs accompanied by multi-lingual descriptions. However, for this, the international community would have 
not just to provide such context, but to also have to agree on some thresholds and recommendations, such as the 
minimum livestock densities in relation to productivity, the minimum number of years under some land use 
system, and the duration of fallow periods. Disregarding such forward looking assertions, our predicted grass-
land distribution for 2000–2022 aims to become an integral component of a broader framework of monitoring 
products to be produced by Global Pasture Watch and will also include aspects of grassland productivity, frac-
tion of scrubs and woody vegetation, and densities of multiple livestock animals (i.e. cattle, goat, sheep, buffalo 
and horses). The data set presented here is the first essential step toward these future products, serving as both a 
pioneering demonstration and a foundation for ongoing refinements (follow the project at https://landcarbon-
lab.org/data/global-grassland-and-livestock-monitoring/).

Users need to be aware of the limitations and the known issues discussed in this section; whilst considering 
them carefully to ensure appropriate use of maps at this initial prediction stage (e.g. we do not recommend the 
usage of our global maps as replacement for fieldwork campaigns and/or source of ground-truth data for grass-
land ecosystems). Alongside noting shortcomings in current maps, we are working actively to address most of 
the these issues through mapping feedback campaigns on the Geo-Wiki platform, where experts and/or users 

Under-estimation of grassland extent

• Grassland extent is under-predicted in southeastern Africa (mainly in Zimbabwe and Mozambique) and in eastern Australia (mainly in the 
shrublands and woodlands of the Mulga ecoregion).

Cropland misclassified as grassland

• In the state of Montana, USA, cropland areas located on historical prairie areas have high probability values for natural/semi-natural 
grassland and low values for cultivated grassland,

• In arid and hyperarid landscapes of northern Africa and the Arabian Peninsula herbaceous croplands areas (irrigated pivot agriculture) 
presented high probability values for cultivated grasslands,

• Sudan, Niger, Uganda, Kenya, and Mali have several cropland areas with high probability values for natural/semi-natural grassland,

• In the state of Western Australia, New Zealand, the center of Bolivia, and the state of Mato Grosso (Brazil), large cropland areas have high 
probability values of cultivated grasslands.

Mixed farmland mosaics misclassified as grassland

• Farmland mosaics in North-Eastern Uganda’s present high probability for both grassland classes,

• In eastern Madagascar extensive areas of shifting agriculture have high values for cultivated grassland probabilities

Woody vegetation lost misclassified as grassland

• In arid and hyperarid landscapes of northern Africa and the Arabian Peninsula mixed crop-livestock systems and tree crops presented high 
probability values for cultivated grasslands,

• Western African Sahel belt, the Northern-Central African and the savanna-desert transition zone (Eastern Chad/Western Sudan) have high 
values of cultivated grassland probabilities in intensively grazed areas with partially lost woody vegetation,

• Non-cultivated (low-input) pastures/herbaceous cover in recently deforested areas in Selva Maya (Chiapas, Petén) and the Arc of 
Deforestation in Amazon Region presented high probability values for cultivated grasslands.

Macroscopic errors

• Although important for grassland separation, the 1-km accessibility maps and MODIS products (MOD11A2 and MCD19A2) introduced 
curvilinear macroscopic errors (due to the downscaling strategy based on cubicspline) in Uruguay, Southwest Argentina, South of Angola and 
in Sahel region in Africa.

• Due to the Landsat 7 Scan Line Corrector failure, regular stripes of grassland probabilities are visible at parcel-level. This issue is more 
prominent in 2012, where GLAD Landsat ARD-2 relies only in Landsat 7 imagery.

Table 6.  Issues and limitation currently identified in the global grassland maps.
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with local knowledge of LULC classes can visualize and interact with the most recent versions of our prod-
ucts. Additionally, all global products used in our comparison analyzes (UMD GLAD, GLC FCS30D, HILDA+, 
Ramankutty et al.9) have been uploaded on the platform, supporting users in the provision of feedback regard-
ing overall agreement, spatio-temporal consistency, and over- and under-estimated grassland extent. Solicited 
feedback via Geo-Wiki may consist of drawing polygons in designated or non-designated areas, concentrating 
on the differentiation of (1) grassland or non-grass cover and (2) cultivated or natural/semi-natural grassland. 
In order to improve the consistency of the mapping feedback and avoid ambiguities in visual interpretation and 
classification, users are provided with sufficient materials to follow the predefined labeling criteria and protocols. 
The consortium considers that systematically collected feedback, together with multiple partnerships and wide 
stakeholder participation, will lead to the most efficient path for improving future versions of the Global Pasture 
Watch products, supporting the development of fit-for-purpose applications able to advance the protection, 
restoration and sustainable use of global grasslands. We encourage and welcome all readers of this publication 
to contribute knowledge to this effort.

Code availability
All workflow presented in this paper were implemented in Python, and the source code is publicly available 
(MIT License) at: https://github.com/wri/global-pasture-watch. For reproducibility purposes, we have 
archived a snapshot of the source code (release ggc30m_v1) (https://doi.org/10.5281/zenodo.1395286781), all 
reference samples (https://doi.org/10.5281/zenodo.1403545782) and trained models (https://doi.org/10.5281/
zenodo.1395280683) in Zenodo.
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