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ABSTRACT: The life cycle greenhouse gas (GHG) emissions of
biofuels depend on uncertain estimates of induced land use change
(ILUC) and subsequent emissions from carbon stock changes.
Demand for oilseed-based biofuels is associated with particularly
complex market and supply chain dynamics, which must be
considered. Using the global partial equilibrium model GLOBIOM,
this study explores the uncertainty in market-mediated impacts and
ILUC-related emissions from increasing demand for soybean
biodiesel in the United States in the period 2020−2050. A one-at-
a-time (OAT) analysis and a Monte Carlo (MC) analysis are
performed to assess the sensitivity of modeled ILUC-GHG emissions intensities (gCO2e/MJ) to varying key economic and
biophysical model parameters. Additionally, the influence of the approach on the simulation of future ILUC effects is explored using
two alternative ILUC-GHG metrics: a comparative-static approach for 2030 and a recursive-dynamic approach using model outputs
through 2050. We find that projected ILUC-GHG values largely vary based on which vegetable oils replace diverted soybean oil,
market responses to coproducts, and the carbon content of land converted for agricultural use. These are all, in turn, subject to
decision uncertainty through the choice of the modeling approach and the time horizon considered for each ILUC-GHG metric.
Given the longer simulation period, ILUC-GHG emission uncertainty ranges increase under the recursive-dynamic approach (42.4
± 25.9 gCO2e/MJ) compared to the comparative-static approach (40.8 ± 20.5 gCO2e/MJ). The combination of MC analysis with
other techniques such as Bayesian Additive Regression Trees (BART) is powerful for understanding model behavior and clarifying
the sensitivity of market responses, ILUC, and associated GHG emissions to specific model parameters when simulated with global
economic models. The BART reveals that biophysical parameters generate more linear ILUC-GHG responses to changes in assumed
parameter values while changes in economic parameters lead to more nonlinear ILUC-GHG results as multiple effects at the
interplay of food, feed, and fuel uses overlap. The choice of the recursive-dynamic metric allows capturing the longer-term evolution
of ILUC while generating additional uncertainties derived from the baseline definition.
KEYWORDS: biofuels, climate change, economic model, greenhouse gas, international trade, life cycle assessment, spillover, transport

1. INTRODUCTION
The potential contribution of biofuels to climate change
mitigation has received significant attention in the litera-
ture.1−3 The estimation of land use change (LUC) emissions
associated with biofuels has been debated intensively,
motivated partially by the fact that potential future LUC
impacts cannot be measured but only modeled.4−8 LUC can
refer to either land conversion to grow biofuel feedstocks
(often referred to as direct LUC) or the subsequent land
transformation to support other uses globally, such as food and
feed (referred to as indirect LUC). Induced land use change
(ILUC) hereinafter designates the combination of the two
components, capturing the overall market-mediated displace-
ment of land uses in response to an increased demand for
biomass for fuel.9,10 ILUC results in net greenhouse gas

(GHG) emissions when global net land carbon stocks are lost
through successive land conversions.11,12

The two methods commonly used to quantify the GHG
emissions intensity of biofuels are attributional life cycle
assessment (ALCA) and consequential LCA (CLCA). ALCA
considers impacts from feedstock production up to combus-
tion, often including direct LUC.13−16 Quantifying indirect
LUC emissions requires economic reasoning under con-
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sequential approaches.17,18 For biofuels, CLCA aims to
represent how increased demand for crops causes agricultural
land expansion, crop displacement, intensification, and changes
to crop and livestock production emissions, depending on
relative productivity and price adjustments across sectors and
regions.19,20 CLCA often applies economic modeling to
determine the extent and location of land conversion and the
ecosystems and land uses affected.21−23 In a review of the
science of biofuel LCA, the US National Academies of Science,
Engineering, and Medicine found that CLCA is preferable
when seeking to understand the consequences of decisions or
actions that alter overall quantities of biofuel consumed.24

Recent ALCA studies show that vegetation loss remains a large
contributor to the GHG emission intensity of biofuel
feedstocks, showing that direct LUC emissions can be higher
than ILUC emission values for biofuels produced in specific
locations when using spatially explicit carbon stock and land
use data.25−27

Global economic models provide consistent frameworks to
assess ILUC impacts of biofuels under CLCA approaches.28−30

These models capture key economic mechanisms that shape
the global distribution of land uses, such as yield and cropland
area responses to changes in land availability and trade.31 For
instance, the Computable General Equilibrium (CGE) model
GTAP-BIO32,33 includes several food and nonfood biofuel
sectors −and their coproducts− to simulate economy-wide
effects and land cover change due to expanded biofuel
production. GLOBIOM34,35 is a Partial Equilibrium (PE)
model representing agriculture and forestry sectors, with a
spatially explicit land use representation. Both models have
been widely used for the analysis of biofuel policies.32,36−40

ILUC impacts of biofuels have been analyzed extensively,
initially for the so-called first-generation biofuels41−43 and
more recently for nonfood feedstocks.44−47 Particularly, the
ILUC emission estimation for feedstocks for aviation biofuel
production as part of the Carbon Offsetting and Reduction
Scheme for International Aviation (CORSIA) uses GTAP-BIO
and GLOBIOM to propose a harmonized ILUC emission
intensity value per feedstock, including nonfood crops and
residues.48 In the context of the United States (US), studies
have mainly focused on corn ethanol42,43,49 and soybean
biodiesel,5,50,51 with the impacts of oilseed production and
trade recently gaining more attention.52−55 As international
demand for oilseeds and vegetable oil for various uses
continues to increase worldwide, there are concerns that
these increasing demands impact forest and natural vegetation
loss, especially in the tropics.56−59 Global combined biodiesel
and renewable diesel production expanded from around 20.2
billion liters in 2010 to around 52.7 billion liters in 2021.60

Following a 5-fold increase in US biodiesel supply between
2010 to 2021, the US is now the second largest biodiesel
producer behind the EU, accounting for 20% of global
production.60−63 Most US biodistillate fuel production over
this period has been sourced from vegetable oils, with soybean
oil representing the plurality of biodistillate feedstock.

Estimating ILUC emission intensities of vegetable oil-based
fuels has diverse sources of uncertainty including the choice of
the modeling framework and accompanying assumptions to
quantify current and future effects, e.g., baseline year, analytic
horizon (decision uncertainty) and the lack of full under-
standing of the underlying complex land use dynamics
(epistemic uncertainty).42 The latter is related to the input
parameters and specific values needed to simulate the

processes being modeled and is also referred as parametric
uncertainty.64,65 CLCA modeling requires numerous data and
input parameters, which represent and influence both
economic and biophysical dynamics, to capture responses
across interlinked food, feed, and fuels markets. Key dynamics
for evaluating ILUC effects include cropland intensification/
extensification as well as impacts on land use and management
and livestock production.66 Previous work found that, among
the parameters determining long-term ILUC effects, the most
decisive relate to costs of land transformation, endogenous
productivity responses, and cropland availability.66

Past uncertainty analyses of biofuels focused on the effects of
alternative yield elasticities to crop prices, demand elasticities,
trade elasticities, and land transformation (expansion)
elasticities to land rents.37,40,67 Studies performing sensitivity
analyses with the CGE model GTAP-BIO32 highlight the role
of the elasticity governing land conversion between cropland,
pastureland, and managed forestland.37,68 When assessing
parametric uncertainty in GTAP-BIO with MC analysis,64

the yield elasticity to price, the Armington trade elasticities, the
GHG emissions factor (EF) for cropland-to-pasture con-
version, and the productivity of newly converted cropland were
found to contribute most of the variance in ILUC emission
values for US soybean biodiesel.

The size and complexity of global economic models pose
challenges for designing, implementing, running, and interpret-
ing large-scale sensitivity analyses intended to propagate
uncertainty from parameters to model outcomes. As such,
only a few studies have devoted efforts to execute these
methods.37,44,49,64,65 Using the GLOBIOM global economic
modeling framework,69 this study aims to assess the sensitivity
of two different measures of ILUC-GHG emissions intensities
(hereinafter referred to as “ILUC-GHG values”) of US
soybean biodiesel to the uncertainty in key model parameters
influencing ILUC responses. This is done by combining a one-
at-a-time (OAT) analysis, where each of the selected
parameters is varied individually over a predetermined range;
and a Monte Carlo (MC) analysis, where all parameters are
given specific probability distributions and varied randomly
and simultaneously. Additionally, we assess the influence of the
choice of the time horizon and ILUC emission accounting
procedure by using two different approaches to derive future
ILUC-GHG values: a comparative-static approach, in which
modeled changes in 2030 are amortized over 25 years of
biodiesel production, and a recursive-dynamic approach using
model outputs through 2050. Thus, the goal of the study is to
better understand GLOBIOM model behavior and the role of
certain parameters and assumptions when estimating ILUC-
GHG values. Overall, this study contributes to the under-
standing of the factors driving market-mediated responses to
increased demand for biobased products, while identifying
areas of future research for a better representation of oilseed
biofuels in global economic models.

2. METHODS
2.1. Modeling Framework. The global recursive-dynamic

PE model GLOBIOM40,69 is applied to assess the effects of an
increased demand for soybean biodiesel in the US in the
period 2020−2050, hereinafter called shock. GLOBIOM
computes a global equilibrium in agricultural and forest
product markets in 10-year time steps through the period
2000−2050 by choosing land use and processing activities that
maximize welfare subject to resource, technological, demand,
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and policy constraints. The model does not represent market-
mediated effects of biofuel policies on sectors of the economy
other than land use (forestry and agriculture, including crop
and livestock). For this analysis, the model is aggregated into
57 world regions.34,36 The baseline represents economic
developments according to the Shared Socioeconomic Path-
way 2 scenario,70 while historical yields were recalibrated so
that they include 2017−2019 data.71 Vegetable oil prices were
also recalibrated to align with relative price projections both
for the US versus the rest of the world (ROW), respectively
based on data from the United States Department of
Agriculture (USDA) and the Food and Agriculture Organ-
ization (FAO) Further details are included in Section S1.1 of
the electronic Supporting Information (ESM).
2.2. Scenarios and ILUC Metrics. This study models a

soybean biodiesel consumption shock in the US introduced in
2021 to progressively reach a total additional demand of 126.9
PJ/year in 2030, which corresponds to 1 billion gallons of
gasoline equivalent, or roughly a doubling of current US
consumption. This is compared to a baseline that keeps global
biofuel volumes constant through 2050 at 2020 levels.

To understand the uncertainty brought about by the ILUC
emission accounting procedure, two alternative methods are
applied to calculate ILUC-GHG values, hereinafter referred to
as comparative-static and recursive-dynamic (see equations in the
Appendix). The former projects the ILUC-GHG values in
2030 − the year in which the full biofuel mandate is reached −
over a 10-year period. This approach tries to isolate the effects
of the biofuel shock in the short term, assuming the impacts
will be equally distributed throughout the amortization period
of 25 years. Alternatively, the recursive-dynamic approach
considers a constant demand of 126.9 PJ/year above baseline
levels until 2050, thereby capturing market and land use
developments in the longer term. This corresponds to biofuel
volumes equivalent to 25 years of total mandated biodiesel
consumption in 2020−2050 (Figure S1 in ESM), in line with
the 25-year amortization period under the comparative-static
approach.

Under both approaches, ILUC-GHG values are calculated
considering CO2e emissions/removals from changes across
carbon pools according to IPCC guidelines (IPCC 2006) (eq
1). This refers to net changes in above- and below-ground
biomass, dead wood, litter, and harvested wood products, while
additional emissions arise from peatland oxidation (eq 2) and
changes in soil organic carbon (SOC) relative to reference
soils. In GLOBIOM, net changes in carbon stocks are the
result of the land transitions simulated, ultimately leading to
natural vegetation loss, natural vegetation reversion, and
cropland expansion. The comparative-static ILUC-GHG
value considers changes in land use-related emissions for
2030 when the biofuel consumption mandate is reached (eq
3), whereas the recursive-dynamic ILUC-GHG value considers
cumulative emissions up to 2050 (eq 4). The comparative-
static ILUC-GHG value is often used in scientific literature
looking at short-term responses of a biofuel shock32,39,72 and
hence facilitates comparison of our results, while the recursive-
dynamic ILUC-GHG value gives additional insights on how
the biofuel emissions impacts evolve over time.49,73

2.3. Sensitivity Analysis. Sensitivity analysis is applied to
identify how variation in input parameter values causes
variation in output variables. In this case, sensitivity in
ILUC-GHG values is assessed by changing input parameters
incrementally and individually, as well as stochastically and

simultaneously, in OAT and MC analyses, respectively. The
two analyses are combined to understand the model’s
performance for ILUC-GHG value estimation, shedding light
on the role of the varied parameters in determining
uncertainty. Eleven model parameters and their associated
probability distributions were chosen based on expert knowl-
edge and experience from previous GLOBIOM studies.40,74,75

They include seven economic and four biophysical parameters
(Table S1 in ESM).

To initially understand the influence of these parameters on
estimated ILUC-GHG values, the OAT analysis varies each
parameter alone while keeping the rest at the central value, i.e.,
at the model default. For each key parameter, eight alternative
values were considered, four below and four above the central
value, covering the parameter ranges detailed in ESM Table S1.
For each of the 99 different parameter combinations (eight
alternatives for all 11 parameters, and a central case with all
default values), baseline and shock scenarios were run to
calculate both ILUC-GHG metrics considered.

MC simulation is a stochastic technique that produces a
range of results from which a probability distribution of
modeled results can be inferred. MC analysis involves solving
the model across a number of runs that is sufficiently high
relative to the sample size used for input parameters.76 In each
run, values for specific model input parameters are randomly
selected from defined probability distributions for each
stochastic input parameter. In this study, 1,000 runs are
performed for both the shock and baseline scenarios to
estimate the difference in model outcomes for each scenario
pair with the same combination of input parameters. In
contrast with the OAT analysis, several parameter values are
drawn independently across regions (substitution elasticity−
vegetable oils), commodities (trade elasticity−vegetable oils), or
land types (land expansion into natural vegetation) for each MC
run. This yields 72 individual probability distributions in total,
considering the 11 parameters varied and the specific regions
and products to which they apply.

Lastly, to identify the role of each parameter in MC analysis,
Bayesian Additive Regression Trees (BART) analysis77 was
applied ex-post to approximate the functional form of
GLOBIOM outcomes with respect to the parameters under
investigation. More specifically, the BART model is trained on
the sampled economic and biophysical shock values as
covariates, in order to explain the variation in ILUC-GHG
values obtained across all MC runs. More details on the
approach are detailed in the ESM (Section S1.6).

3. RESULTS
3.1. Central Case. This section presents the central case

(with default model parameter values) to contextualize the
subsequent sensitivity analysis and summarize important
model dynamics in response to the shock. GLOBIOM
estimates that the US biodiesel consumption shock leads to
three key market-mediated effects that determine the ILUC
effects and related GHG intensity values in the central case: 1)
global vegetable oil demand for nonfuel uses decreases, 2)
other vegetable oils (mainly palm oil) substitute for soybean oil
for nonfuel uses globally, and 3) the regional distribution of
soybean production shifts at the margin. The first and second
effects are integral to understanding the ILUC implications of a
US soybean biodiesel shock in the central case.

The US sources most of the additional soybean oil needed
to supply the biofuel shock (a total of 3.5 Mt) in 2030 through
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increased domestic production (1.9 Mt), reduction of net trade
(−1.2 Mt), and domestic reduction of nonfuel uses of soybean
oil (−0.3 Mt) (Figure 1). This significantly affects global
vegetable oil markets and land use dynamics in non-US regions
(Figure S2).

The increased US soybean oil demand and the decreased
exports raise global prices for soybean oil and, subsequently,
other vegetable oils (by 6% and 3% in 2030, respectively).
While global supply of vegetable oils increases in 2030 (2.1
Mt), demand for food and other nonfuel applications decreases
(−1.3 Mt); both because vegetable oil prices rise, especially for
food uses, and because vegetable oils are not perfect
substitutes. Palm and rapeseed oils partly compensate for
decreases in soybean oil consumption (−3.1 Mt) for nonfuel
applications globally, with additional 1.8 Mt consumed in
2030. This strongly affects GHG emissions from ILUC in
GLOBIOM, as additional palm oil originates from Southeast
Asia (SEA), where palm expansion in the past entailed
rainforest conversion and peatland oxidation.

As the US increases domestic soybean production in
response to the shock (+5.7 Mt, + 1.4 Mha harvested area
in 2030), domestic crushing increases availability of soybean
meal (+7.7 Mt), demanded for animal feeding in international
markets. While prices of soybean oil increase 27.1% in the US
and 5.5% globally in 2030, prices of soybean meal decrease
compared to the baseline by 7.8% domestically and 3.3%
globally. The increased availability of relatively cheap US
soybean meal for livestock feeding puts pressure on less
productive producers in Asia but also reduces demand for
soybeans and soybean meal from other leading exporters,
mainly Argentina and Brazil, who, together, account for around
60% of the global market and exports of soybeans. As world
average soybean prices decrease, soybean area expansion in
South America (SAM) in 2020−2030 is more limited and
declines by 1.4 percentage points, to 33.8%, compared to
35.2% expansion in the baseline. This translates into lower
cropland expansion in SAM (+0.3 Mha, + 0.28% in 2030) with
the shock compared to the baseline.

In 2050, cropland expands in SAM by 0.1 Mha (+30.8% in
2020−2050 vs +30.7% in the baseline) due to increased

demand for other agri-food crops globally, mainly through the
livestock rebound ef fect, which herein describes the increased
profitability of livestock sectors globally given the increased
availability of relatively cheap meals in the market, and the
associated increase in animal products consumption. As a
result, animal production systems intensify (especially pig,
poultry, and dairy), demanding more feed concentrates and
other grains to complement feed rations. Global cereal demand
for animal feed increases by 1.3 Mt as well as related harvested
areas (+0.2 Mha in 2030) (Figure 1). Grassland areas also
expand in regions with relatively extensive livestock production
systems, e.g., US, SAM, and Southern Asia (SAS).

ILUC effects increase global GHG emissions relative to the
baseline. The comparative-static ILUC-GHG value is esti-
mated at 29.4 gCO2e/MJ (Figure 1) with the most important
emissions source being peatland oxidation (36.0 gCO2e/MJ),
followed by natural land conversion (16.3 gCO2e/MJ), and
forgone natural land reversion (2.4 gCO2e/MJ). These
emissions are partly compensated by enhanced carbon
sequestration from agricultural biomass (−22.6 gCO2e/MJ)
and SOC (−2.7 gCO2e/MJ). Palm expansion in SEA
contributes significantly to ILUC-related emissions, especially
through natural land conversion and peatland oxidation.
Simultaneously, palm plantations sequester more carbon per
hectare than annual crops thereby generating some carbon sink
in agricultural biomass. The size of the total biomass effect
from palm depends on the type of land that palm plantations
are expanding onto. If palm plantations replace rainforests,
there is net loss in total biomass carbon. Since the model
estimates greater expansion onto previously undisturbed
peatlands, peatland emissions associated with palm expansion
outweigh the biomass sequestration effect. These results in the
central case scenario are higher than the GTAP-BIO value of
around 20 gCO2e/MJ for US soybean biodiesel.32,55,78 Notable
differences in assumptions between these studies include
biofuel volumes, shock year, and biofuel processing efficiencies.
However, as discussed further below, this 20 gCO2e/MJ result
falls within the range of GLOBIOM results described in our
sensitivity analysis.

Figure 1. Absolute changes in global harvested area (left) and global land cover (center) when comparing the shock scenario to the baseline
scenario in 2030 and 2050; and corresponding ILUC-GHG values under comparative-static and recursive-dynamic approaches (right), respectively,
broken down by GHG source. Each “x” represents the net value across categories depicted. Different multicropping intensities across crops and
world regions explain the difference in total harvested area vs total cropland changes.
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Global GHG emissions increase over time, primarily due to
the increasing production and use of palm oil to substitute for
decreased US soybean oil availability for food and other
nonfuel uses (Figure S2 in ESM). The recursive-dynamic
ILUC-GHG value, which, in contrast to the comparative-static
value, accounts for these lagged effects of the shock as the
model recursively solves timesteps through 2050, is 33.6
gCO2e/MJ (Figure 1). Most emissions come from peatland
oxidation (38.8 gCO2e/MJ) while natural land conversion and
associated biomass losses contribute with 9.6 gCO2e/MJ.
Agricultural biomass growth offsets emissions by 25.4 gCO2e/
MJ, mostly through increases in oil palm areas followed by
corn and other cereals for the livestock rebound effect (Figure
1) (see eq 1 in Appendix).
3.2. Sensitivity Analysis. 3.2.1. One-at-a-Time Sensitiv-

ity Analysis. In the OAT analysis, some, but not all, of the
parameter alterations produce considerable variation in the
ILUC-GHG values relative to the central case (Figure 2). For
the comparative-static ILUC-GHG value (mean ± standard
deviation, gCO2e/MJ), the largest variations are associated
with the trade elasticity of vegetable oils (35.8 ± 13.6), the
expansion response of palm into peatland (29.4 ± 12.3), and the
EF for carbon sequestration in biomass in palm plantations (29.9
± 12.3). These results underpin the findings of the central case
and highlight the importance of land use spillovers in the SEA
and SAM regions as major contributors to ILUC-GHG values
and their uncertainty. The demand elasticity for vegetable oils
(38.3 ± 10.7) and the substitution elasticity among vegetable oils
(33.0 ± 10.7), are found to impact ILUC-GHG values as these
determine how much palm oil is substituted in the interna-
tional market in response to changes in prices, thereby altering

where oilseed production expands at the margin. Land
expansion into natural vegetation (35.3 ± 10.4) was found to
impact ILUC-GHG value ranges by affecting land use
expansion dynamics mainly in the US and SEA. The rest of
parameters assessed have minor effects in the comparative-
static ILUC-GHG value, mainly determining cropland area
requirements to meet oilseed demand for biodiesel uses and
further crop demand for animal feed (yield elasticity, demand
elasticity for animal products, and exogenous yield projection); as
well as the GHG emissions intensity of forestland cover loss
and peatland oxidation.

The ranges of recursive-dynamic ILUC-GHG values widen
for most parameters, particularly, the economic parameters
which govern adjustments in international trade and oilseed
markets. The trade elasticity of vegetable oils (44.2 ±18.8
gCO2e/MJ) shows the largest variations. The role of
parameters determining the magnitude of the livestock
rebound effect intensifies with the recursive-dynamic ILUC-
GHG value. For instance, the yield elasticity (44.7 ± 16.1), and
the demand elasticity for animal products (44.0 ± 14.1) have
sizable impacts on the ILUC-GHG value ranges. The demand
elasticity for vegetable oils (34.2 ± 14.1) and the land expansion
into natural vegetation (53.5 ± 18.0) remain very influential,
while the substitution elasticity among vegetable oils (32.1 ± 3.5)
matters less for ILUC-GHG value variability relative to the
comparative-static ILUC-GHG value.

3.2.2. Monte Carlo Analysis. To test sensitivity of the
GLOBIOM results to different assumptions, the OAT
estimates presented above were complemented with a full
MC analysis targeting the same 11 parameters in the model.
Under a MC analysis, each parameter is assigned an assumed

Figure 2. Top and bottom panels show the distribution of ILUC-GHG values (gCO2e/MJ) for each parameter in the OAT analysis for the
comparative-static and recursive-dynamic ILUC-GHG values. Bars represent the 10th and 90th percentile. Whiskers represent the minimum and
maximum values. Solid vertical lines represent the ILUC-GHG value in the central scenario.
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probability distribution and a large number of simulations is
performed, based on a number of simultaneous randomized
draws from each distribution of parameters. This method
allows testing of the overall sensitivity of the model results to
parametric uncertainty. However, this approach does not touch
upon the decision uncertainty related to model design.

Therefore, these results do not represent a comprehensive
probabilistic estimate of ILUC-GHG values for this modeling
framework, but rather a probabilistic estimate specific to the
current model structure. While the OAT identifies the effect of
varying individual parameters on ILUC-GHG values, the MC
analysis allows derivation of uncertainty ranges when all tested

Figure 3. Distribution of comparative-static and recursive-dynamic ILUC-GHG values (gCO2e/MJ) and underlying emissions sources obtained
from the MC analysis. Boxes show values between the 10th and 90th percentiles. The upper whisker is the maximum and the lower whisker is the
minimum value when excluding outliers according to the “1.5 rule;” an estimate is considered an outlier if it is < Q1−1.5 x IQR or > Q3 + 1.5 x
IQR, where IQR is the interquartile range. This is meant to exclude results obtained from the combination of the most extreme values of the
parameters, given the linear programming formulation of the GLOBIOM model.

Figure 4. Distribution of regional comparative-static (upper panels) and recursive-dynamic (lower panels) ILUC-GHG values (gCO2e/MJ)
obtained from the MC analysis (left) and decomposition of the corresponding standard deviation by emissions source (right). The boxes in the box
and whiskers plot show values between the 10th and 90th percentiles; the upper whisker is the maximum and the lower whisker is the minimum
value when excluding outliers according to the “1.5 rule.” An estimate is considered an outlier if it is < Q1−1.5 x IQR or > Q3 + 1.5 x IQR, where
IQR is the interquartile range. This is meant to exclude results obtained from the combination of the most extreme values of the parameters, given
the linear programming formulation of the GLOBIOM model. South America includes Brazil, Argentina, and rest of South America.
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parameters are randomly and simultaneously varied. The MC
analysis finds ILUC-GHG values for US soybean biodiesel
between the 10th and 90th percentiles ranging from 15.1 to
67.7 gCO2e/MJ in comparative-static and from 8.4 to 77.4
gCO2e/MJ in recursive-dynamic approaches (Figure 3). The
full comparative-static (recursive-dynamic) ILUC-GHG value
range spans from a minimum value of −17.0 (−23.7) gCO2e/
MJ to a maximum value of 98.7 (112.8) gCO2e/MJ when
excluding outliers, with both distributions generally symmetric.
The mean values and spread of values slightly increase in the
recursive-dynamic ILUC-GHG value (42.4 ± 25.9 gCO2e/MJ)
relative to the comparative-static one (40.8 ± 20.5 gCO2e/
MJ), mainly through increased emissions (and associated
uncertainty) from peatland oxidation (Figure 3). Most ILUC-
GHG values fall on the positive side of the distribution, with
98.8% and 94.7% of runs being above zero in the comparative-
static and recursive-dynamic ILUC-GHG values, respectively.

Emissions from natural land conversion and peatland
oxidation are the most influential emissions sources, showing
a wider distribution than all others (Figure 3), with a standard
deviation of 13.5 and 11.4 gCO2e/MJ, respectively, in the
comparative-static approach; 18.2 and 12.3 gCO2e/MJ in the
recursive-dynamic one. Natural land conversion contributes
47% and 58%; and peatland emissions contribute 34% and
26% of the total variance of the comparative-static and
recursive-dynamic ILUC-GHG values, respectively. Despite
the large variation, the distributions for these two sources of
emissions remain positive within the 10th and 90th percentiles,
which is consistent with findings from the central case and
OAT analyses (see Sections 3.1 and 3.2.1). Conversely, the
distribution of agricultural biomass emissions falls entirely to
the left of the y-axis in Figure 3, indicating net global carbon
sequestration in agricultural biomass. This stems from a
significant portion of the added agricultural biomass coming
from palm plantations. Agricultural biomass is rather narrowly
distributed around the mean value with a contribution to total
variance of 7% (6%) in the comparative-static (recursive-
dynamic) setup. The remaining emissions from SOC and
natural land reversion span from negative to positive and are

centered around zero. SOC contributes 12% (10%) of the total
variance in the comparative-static (recursive-dynamic) ILUC-
GHG values, while natural land reversion plays a marginal role
(<1% of the variance). As for total ILUC-GHG values, all
emissions sources’ distributions are more spread in the
recursive-dynamic setup than in the comparative-static one,
including SOC (0.3 ± 7.6 vs 2.7 ± 6.7 gCO2e/MJ), natural
land conversion (26.2 ± 18.2 vs 27.9 ± 13.5 gCO2e/MJ),
peatland oxidation (37.4 ± 12.3 vs 34.3 ± 11.4 gCO2e/MJ),
and agricultural biomass (−22.8 ± 5.7 vs −21.9 ± 5.1 gCO2e/
MJ). This result is due to the increased uncertainty in the two
main mechanisms driving ILUC-GHG values, namely the
substitution in vegetable oil and feed feedstock markets, as well
as in the subsequent livestock rebound effect.

The widest uncertainty ranges in both comparative-static
and recursive-dynamic ILUC-GHG values, respectively, are
found for SEA (38.0 ± 15.3; 41.8 ± 18.1 gCO2e/MJ) and
SAM (−7.2 ± 7.4; −5.3 ± 14.1 gCO2e/MJ), while mean
ILUC-GHG values for the US remain rather low and narrow
(4.7 ± 3.7; 6.4 ± 4.4 gCO2e/MJ) (Figure 4). SEA respectively
contributes 73.5% and 54.8% of the comparative-static and
recursive-dynamic ILUC-GHG value variance. Emissions from
peatland oxidation are again a key driver of the variation,
contributing 54% (48%) of the variance of SEA’s comparative-
static (recursive-dynamic) ILUC-GHG value, followed by
natural land conversion with 25% (34%). For SAM, regional
ILUC-GHG value variation is less pronounced than for SEA
(Figure 4). ILUC-GHG values for SAM are negative in 71%
(60%) of the MC simulation runs in the comparative-static
(recursive-dynamic) setup. These negative ILUC-GHG values
correspond to those MC simulations with lower deforestation
rates in Brazil and Argentina, coupled with higher assumed EF
from forest biomass loss values, which translates into net carbon
gains compared to the baseline. MC runs that result in
cropland expansions in SAM are largely showing higher
demand elasticities for vegetable oils, higher yield projection
responses, lower vegetable oil substitution elasticities, and
lower yield elasticities (Section S2.4). This leads to a
marginally greater demand for soybean, corn, and soybean

Figure 5. Marginal effects on the ILUC-GHG value (gCO2e/MJ) from the variation of key model parameters in the MC analysis. Only the most
influential parameters are shown. The bands around the lines indicate the 95% confidence interval of the marginal effect. The values in the x-axis
indicate the percentile within the defined distributions of shifter values applied to the parameters as described in Table S1. Agricultural biomass
emissions factor: EF of agricultural biomass in palm plantations; forest emissions factor: EF from forest biomass loss; palm to peat expansion response:
expansion response of palm into peatland.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c09944
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c09944/suppl_file/es3c09944_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c09944?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c09944?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c09944?fig=fig5&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c09944/suppl_file/es3c09944_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c09944?fig=fig5&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c09944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


oil from SAM used to meet demand for food, feed, and other
uses in regions outside of the US, while palm oil continues to
have a limited market penetration in the global mix.

The BART analysis shows that the EF from forest biomass
loss causes the widest marginal variation of ILUC-GHG values
under the comparative-static approach with a 95% confidence
interval; while that very parameter and especially the expansion
response of palm into peatland cause the sharpest variation in
recursive-dynamic ILUC-GHG values, as the latter directly
influences uncertainty in peatland emissions. The marginal
effects of the EF of agricultural biomass in palm plantations and
the peatland EF also become marked under the two approaches
(Figure 5). The yield projection response has a more irregular
effect, especially under the comparative-static approach, given
the role that this parameter plays in determining cropland area
dynamics in US and SAM. On the one hand, the highest shifter
values result in net cropland increases in SAM; on the other
hand, the lowest values imply larger areas converted into soy in
US. Under the recursive-dynamic approach, yields tend to
increase for all regions and crops over the period considered,
contributing to mitigate global cropland area expansion and
thus ILUC as the shifter increases. The marginal effect of the
economic parameters increases under the recursive-dynamic
approach, though remains more moderate than that of the
biophysical ones. The marginal effect of the vegetable oil
substitution elasticity becomes especially uncertain with the
highest values. Unlike the OAT analysis, BART underlines the
more prominent role of biophysical parameters in driving
ILUC results uncertainty when propagated with MC
simulations.

4. DISCUSSION
4.1. Major Market-Mediated Responses. Increasing

demand for biofuels produced from oilseeds generates diverse
market-mediated effects and cross-sectoral interactions, which
can ultimately translate into intensified competition for land
among all uses and increased land prices.72,79−81 These
characteristics make the potential spillover effects of vegetable
oil demand shocks complex, establishing the need for
systematic uncertainty analysis when estimating ILUC-GHG
values with global economic models. Our study improves the
understanding of the responses across vegetable oil and oilseed
markets and provides additional evidence that modeled
soybean biodiesel ILUC-GHG values are highly sensitive to
both economic and biophysical parameters. OAT analysis and
the combination of BART and MC analyses help identify
model parameters related to vegetable oils markets, and in
particular GHG emissions from oil palm expansion, as key
determinants of ILUC-GHG values and ranges. Results
highlight the role of particular regions, SEA and SAM, where
land use spillovers from the US soybean oil biodiesel
consumption shock are significant. The level of estimated
cropland expansion and associated pressures on natural
ecosystems in SEA and SAM in modeled results depends
significantly on the assumed vegetable oil substitution elasticity −
the ease with which markets may shift consumption from one
vegetable oil to another in response to demand shocks−and
the vegetable oil demand elasticity − the ease with which
consumption of vegetable oils overall may decrease when
prices rise. These parameters alter how much additional
soybean and palm oil is produced in SAM and SEA
respectively, thereby contributing to the interplay between

vegetable oil demand in the US and enhanced production
abroad.

Across the MC runs, GLOBIOM consistently estimates
increasing palm oil use as the primary substitute for diverted
soybean oil from food and other uses in international markets,
causing natural land conversion and peatland emissions in
SEA. This is consistent with several other CLCA studies that
identify palm oil from SEA as the most cost-competitive but
emission intensive82 marginal source of vegetable oil feedstock
in the market.19,45,83,84 This market-mediated effect is also
identified in GTAP-BIO studies,55 especially in scenarios with
relatively higher substitution elasticities that only consider soy
oil-palm oil substitution. The share of Malaysia and Indonesia
in the estimated ILUC-GHG emissions value for soybean
biodiesel (17.5 g CO2e/MJ, + 2 billion gallons) is 78%; in our
case it is <50% (see Figure 1). If other vegetable oils and
animal fats are taken into account, most of the additional
demand for soybean oil is diverted to those produced in the
US or in regions other than the SEA.55 This highlights the role
of the elasticity of substitution among the various types of
biodiesel feedstocks, especially when other kinds of vegetable
oils and animal fats are considered. In this way, we could
expect lower ILUC-GHG values when including more
feedstocks available in the US, such as tallow or used cooking
oil, as combined with greater assumed elasticities. This would
allow for nonpalm vegetable oils and animal fats to substitute
for soybean oil more than in our results, hence decreasing
demand for palm oil and land conversion in SEA.

This difference among findings highlights the decision
uncertainty existing among models, which may be partially
related to the elasticity of substitution among the various types
of vegetable oils and animal fats in the US; greater assumed
elasticity may allow for nonpalm vegetable oils and animal fats
to substitute for soybean oil more so than we have found in
these results. Conversely, GLOBIOM generally estimates a
slowing rate of natural land conversion in SAM. Brazil loses
market share in global soybean markets through the reduced
demand for Brazilian soybean meal for feed applications due to
the increased availability of relatively cheap US soybean meal.
The MC analysis still finds a minority of runs (6.3% in 2030,
and 45.9% in 2050), in which cropland expands in SAM,
increasing ILUC-GHG values. This effect emerged across
diverse arrays of input parameter values and could not be
explained by any one specific parameter. Since both SAM and
SEA include carbon-rich forests and natural lands, any
cropland expansion in these regions will impact the ILUC-
GHG value of US soybean biodiesel (Figure S7) and
associated uncertainty ranges (Figure 4). This highlights the
importance of the four biophysical parameters for the MC
analysis, as these determine the net GHG emissions per
hectare when forest is converted into cropland and the total
peatland emissions from palm expansion. GLOBIOM con-
sistently estimates additional cropland expansion in major
grain-producing regions outside the US to meet increased
demand for animal products when soybean meal availability
increases. This livestock rebound effect78 is also subject to
uncertainty in the parameters considered and contributes
additional GHG emissions in regions such as SAM, SAS, and
the US, especially under the recursive-dynamic approach in
which the impacts of uncertainty in these parameters are
accounted for over multiple decades.
Methodological Considerations. The market-mediated

responses summarized above highlight the integration of
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globalized food, feed, and fuel markets. Similar effects could be
expected when simulating increased demand for other oilseeds,
especially those with meal coproduction, such as rapeseed.40

Uncertainties persist in estimates of projected future impacts
from vegetable oil-based fuels. Our results highlight the need
for better empirical estimates for critical economic parameters
such as elasticities of vegetable oil substitution and consumer
demand elasticities to vegetable oil prices. Further efforts are
needed to refine estimates on biophysical parameters, such as
EFs from land conversion benefiting from improving spatially
explicit data on yields, land areas, and associated carbon
stocks.31 Increased availability of remote sensing data and
associated processing capacities can help to better characterize
the inherent uncertainty related to the variability of the
modeled systems, e.g., spatial variability in carbon stocks.25,42

However, given the size and mathematical complexity of global
economic models, epistemic uncertainty will always remain a
challenge when estimating and interpreting ILUC-GHG
values.

MC analysis is often used to assess sensitivity and
uncertainty in results from global economic models. However,
the number of varied model parameters tends to be limited.
This study uses MC analysis to explore the ILUC-GHG value
sensitivity to parametric uncertainty, where both the number of
parameters and their individual value ranges and distributions
have been chosen in advance, essentially defining the assumed
likelihood that each parameter takes a value within a certain
range. Although this is a common practice for uncertainty
analysis,14,49,85 other important parameters may be overlooked
by this approach. It should also be noted that for many
parameters, the probability distribution is not very well-known,
such that epistemic uncertainty may not be fully represented.
The decision of which parameters to include and how to shape
their stochastic distribution of values is a critical analytical
choice by the modeler. This highlights the importance of
transparency regarding the choice of parameters, model
structure and underlying assumptions for CLCA, while
assessing trade-offs on different temporal and spatial
scales.37,42,43,86 The MC analysis presented helps understand
model behavior when specific model inputs are modified
arbitrarily, as a mean to propagate uncertainty in ILUC-GHG
values. However, a more comprehensive uncertainty analysis
would require a previous characterization of an expected range
of possible behaviors or data and would need to carry that
characterization through to a range of implied possible
outcomes.64,87

Despite the considerations above, this study covers a
comprehensive set of parameters and distributions in the
MC simulation based on recent literature and expert judgment
(Table S1 in ESM). Seven economic parameters and four
biophysical parameters are varied, expanding the number of
parameters varied relative to previous GLOBIOM uncertainty
studies.40 The assumed distributions could be refined further,
for instance, by defining the elasticities based on econometric
methods and empiric approaches, or by using improved, finer-
scale, and more up-to-date remote sensing data to determine
the stochastic distribution of biophysical parameters across the
globe. This is out of the scope of the present study but should
be addressed in future work. Given the nonlinear nature of
ILUC-GHG values, our MC analysis shows that including
more parameters does not necessarily yield wider ILUC-GHG
value ranges, as many parameters interact, especially the
economic ones that affect several regions and commodities

simultaneously. This study applies BART as a tool to better
understand the role of each parameter in the variation of
ILUC-GHG values, aiding the interpretation of MC analysis
results from global economic models. Still, MC analysis proves
useful to propagate uncertainty in input parameters and obtain
probability distributions of ILUC and other model-based
outcomes.86,88

Other crucial modeling choices include the magnitude of
feedstock consumption simulated exogenously, the biofuel
shock size, and the baseline used as counterfactual.18,40

Furthermore, the time frame over which a biofuel shock is
evaluated can have a significant impact on resulting ILUC-
GHG value.86 These choices explain differences in the mean
ILUC-GHG value estimated in the MC analysis in this study
(between 40.8 and 42.7 gCO2e/MJ, depending on the
approach) as compared to previous assessments such as Prussi
et al.48 The comparative-static approach may be more
appropriate when one seeks to understand near-term market
dynamics, as it relies on only assumptions relevant to the next
immediate future time step and provides better computational
efficiency. The recursive-dynamic approach may be more
appropriate when seeking to understand longer-term bioeco-
nomic dynamics, such as impacts on ILUC-GHG emissions, as
it better captures the inherent temporal variation and
uncertainty in such estimates. Most recent literature has
considered only one of these approaches, with the predom-
inant focus on the comparative-static approach. The two
metrics apply different temporal scopes, hence providing
different insights since results vary depending on the baseline
developments and underlying assumptions. For example, the
recursive-dynamic ILUC-GHG value (up to 2050) also
considers other important drivers over time, e.g., the fact
that yields are larger in 2050, which reduces the impact of the
biofuel shock. This study’s explicit comparison of comparative-
static and recursive-dynamic approaches in an otherwise
consistent modeling framework demonstrates the methodo-
logical choices modelers should consider in the face of model
uncertainty, particularly related to the treatment of time. When
relying on biofuel CLCA modeling to inform decision-making,
modelers should acknowledge which uncertainties are and are
not represented in their supporting analyses, including related
to assumptions implicit to utilized methods of quantifying
ILUC-GHG impacts.

■ APPENDIX
CONV: natural land cover conversion including above- and
below-ground biomass, dead wood, litter, and harvested wood
products

REV: natural land cover reversion or forest regrowth
BIOM: carbon sequestration in agricultural biomass of

bioenergy crops
SOC: soil organic carbon
PEAT: GHG emissions from peatland oxidation
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Where y refers to the time step within the period of study after
the full mandated consumption is reached in 2030; ΔLUCy
refers to the total GHG emissions from carbon stock changes
due to subsequent land cover changes over each 10-year period
(y), as the sum of net changes in carbon pools (ΔAGBy,
ΔBGBy, ΔDWy, ΔLIy, ΔBIOMy, ΔREVy, and ΔHWPy);
ΔAGBy, ΔBGBy, ΔDWy, and ΔLIy are hereinafter referred to
as emissions from natural land conversion and associated
vegetation loss. ΔSOCy are the emissions from SOC change in
mineral soils, subsequently annualized with the IPCC Tier 1
assumptions over a 20 year period; PEATy are the annual
emissions from peatland oxidation following peatland con-
version; In the comparative-static ILUC calculation, emissions
from SOC and PEAT are considered over the full amortization
period as these emissions continue beyond 2030. Δbiodiesel
refers to the increase in annual biodiesel demand in the US
following the shock, in this case, 126.9 PJ.
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