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Abstract 
 
In this paper we examine the role of the design of behavioral rules in agent-based macroeconomic 
modeling. Based on clear theoretical foundations, we develop a general representation of the 
behavioral rules governing price and quantity decisions of firms and show how rules used in four 
main families of agent-based macroeconomic models can be interpreted as special cases of these 
general rules. We embed the four variations of these rules into a calibrated agent-based 
macroeconomic framework and show that they all yield qualitatively very similar dynamics in 
business-as-usual times. However, the impact of demand, cost, and productivity shocks differ 
substantially depending on which of the four variants of the price and quantity rules are used. 
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Implications of Behavioral Rules in Agent-based
Macroeconomics

1 Introduction

Since the development of the first agent-based macroeconomic models in the early 2000s1, this approach
has become an important part of the toolbox for macroeconomic analysis, which features strong be-
havioral foundations and the potential for versatile policy analysis. Axtell and Farmer (2024); Dosi
and Roventini (2019) or Dawid and Delli Gatti (2018) provide extensive surveys and discussions of
the merit and the potential of the agent-based approach, as well as of different streams of literature
that have flourished in this field of research. A noteworthy recent development is the emergence of a
substantial stream of ABM literature focusing on the economic impact and potential policy responses
for major challenges, such as green transition (e.g., Filatova and Akkerman (2024); Hötte (2020);
Lamperti et al. (2020, 2024); Turco et al. (2023)) or the outbreak of a pandemic like COVID-19 (e.g.,
Delli Gatti and Reissl (2022); Pichler et al. (2022); Basurto et al. (2023); Poledna et al. (2023)). Sev-
eral of these papers highlight the value of integrating macro ABMs with dynamic models developed
in other disciplines, such as climate research or epidemiology (see also Savin et al. (2023)). In term of
policy impact, ABMs are being used increasingly by central banks for analysing issues such as systemic
risk, housing market dynamics and inflation (see e.g., the survey by Borsos et al. (2024)).

On a more conceptual and methodological level, recent work by Poledna et al. (2023); Hommes
et al. (2024a) demonstrates that ABMs are not only suitable tools for improving our understanding of

1Predecessors closely related in spirit to the agent-based approach, have however been developed substantially earlier.
A main example in this respect is the MOSES model, see Eliasson (2023) for an extensive discussion of its development
and main results.
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the general mechanisms that determine how interactions on the micro level generate macro-level phe-
nomena, but also perform well in terms of short term forecasting capability. Using calibrations based
on Austrian (Poledna et al. (2023)) and Canadian (Hommes et al. (2024a)) data, Poledna, Hommes
and co-authors show that the out-of-sample forecasting performance of the agent-based macroeconomic
model is competitive with that of vector auto-regressive (VAR) and DSGE models. The rich micro-
structure of the model allows also to make sector-specific forecasts and also in this respect the ABM
is fully competitive with forecasts based on VARs.

As the field of agent-based macroeconomics has matured, a relatively small set of model families
has emerged which can be applied to a large number of topics and policy issues. In this chapter we
focus on four families only: the framework developed by Poledna, Hommes, and coauthors (CANVAS2

Poledna et al. (2023); Hommes et al. (2024a,b)), the family of Complex Adaptive Trivial Systems
(CATS, Delli Gatti et al. (2011); Riccetti et al. (2013); Assenza et al. (2015)), the Eurace@Unibi
model (EUBI, Dawid et al. (2018, 2019)) and the Schumpeter meeting Keynes framework (KS Dosi
et al. (2010, 2015)). The focus on these four families is essentially due to the limits of our knowledge
base and to the specificity of our competences. We have therefore been forced to leave out of the
present analysis a few important frameworks with which we are less familiar, such as the baseline
model in Lengnick (2013), the macroeconomic ABM put forward by Peter Howitt and co-authors
(see, e.g., Ashraf et al. (2017)), the Oxford-INET model developed by Doyne Farmer and co-authors
(successfully used in Pichler et al. (2022)), the JAMEL model (Salle and Seppecher (2018)), or the
recently developed MATRIX model (Ciola et al. (2023)).

The four families of macroeconomic ABMs we analyze share the general interpretation of the econ-
omy as a system of interacting heterogeneous agents, whose behavior is determined by rules rather
than equilibrium conditions, in which macro-level dynamic patterns are emergent phenomena due to
micro-level interactions. They differ quite substantially, however, with respect to the specifications of
the interaction structures in different sectors and markets as well as of the behavioral rules used by the
different agents. To a large extent, these differences are due to the fact that the frameworks have been
developed with slightly different research agendas and theoretical foundations in mind. Nevertheless,
the heterogeneity of model assumptions and structures makes it challenging to compare results, such
as insights about the impact of certain policies, that have been found in different macro ABM settings.
Therefore, it is imperative to systematically analyze the impact of differences in the modeling assump-
tions for behavioral rules and interaction structures on the dynamics of key economic variables. This
analysis would not only foster comparability between ABM-based findings but also generate new in-
sights about the relationship between properties of the micro-level behavior and emergent macro-level
phenomena.

Two of us made a first step in this direction in Dawid and Delli Gatti (2018), where the mod-
eling assumptions underlying eight families of macroeconomic ABMs are systematically spelled out
and compared. The analysis also highlights that several of the considered behavioral rules in different
macro ABM families have a common theoretical basis. In this paper we go one step further. We focus
on a specific set of important behavioral rules, namely the rules by which firms3 decide on the quantity
to be produced and the price of their product, and make two main contributions.
First, we derive from a clear theoretical micro-foundation a unified representation for behavioral rules
concerning price and quantity setting, and show that the rules used in each of the macro ABM families
considered (CANVAS, CATS, EUBI, KS) can be interpreted as a special case of that general repre-
sentation. By so doing we can clearly highlight how the rules differ with respect to the information
that is taken into account and also with respect to the underlying economic rationale. Put differently,
our unified representation allows us to identify which “channels” are active under the different rules.
Second, we systematically compare the macro-dynamics across macroeconomic ABMs which differ
only with respect to the behavioural rule used for determining quantities and prices of consumption
goods. More precisely, we incorporate price/quantity decision rules used in each of the four considered
ABM families into a calibrated version of the model as in Poledna et al. (2023), and study how the
out-of-sample dynamics of the model under these four types of decision rules compare to each other
and to the empirical time series. Furthermore, we study how the different rules react to three types of
economic shocks, in particular demand, input prices, and productivity shocks. Based on this exercise

2CANVAS refers specifically to the version developed by the Bank of Canada. The broader family of models to which
CANVAS belongs does not have a formal name, unlike other agent-based model families such as CATS, EUBI, and KS.

3Strictly speaking for EUBI and KS the rules we consider govern the behaviour of consumption goods firms only.
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we can isolate the effect of properties of the firm’s behavioural rules on the dynamics of key economic
variables and thereby gain important insights about the implications of different modelling assump-
tions. Furthermore, our exercise also provides insights into the performance of different behavioural
assumptions with respect to short-term forecasting.4

The paper is organized as follows. In Section 2 we derive a general representation of price-quantity
rules for consumption good firms and show how the rule implemented in each of the four considered
families of macro ABMs can be interpreted as a special case of this representation. The macroeconomic
environment in which the price/quantity rules are embedded is described in Section 3. In Section 4 we
present the results of our analysis of the implications of the use of different price/quantity rules. We
conclude with a discussion of our results and considerations of how to extend our analysis in Section
5.

2 A general treatment of price-quantity rules in macroeco-
nomic ABMs

2.1 The basic framework

Consider the profit maximization problem of a firm (say firm i, with i = 1, 2, ...FC) in an imperfect
competition setting. Using notation similar to Dawid and Delli Gatti (2018)) we write the demand for
the good produced by firm i at time t as

QD
i,t = χtsi,t(Pi,t, P−i,t, zi,t, z−i,t), (1)

where χt is the total demand for consumption goods (which in general depends on macroeconomic dy-
namics, the households’ life cycle, the industry’s life cycle, etc.) while si,t(.) captures the market share
of firm i. The market share is a function of the firm’s own price Pi,t, the vector of competitors’ prices
P−i,t, the firm’s own product characteristics zi,t, the vector of product characteristics of competitors
z−i,t. To be as general as possible, we assume that the functional form of the market share function is
firm-specific and time-varying.

A product characteristic is any feature (such as quality, formal appearance, proximity to a given
buyer or group of buyers etc.) which might imply differentiation among goods from the consumers’
perspective. This differentiation is the source of imperfect competition: Firms produce varieties and
therefore have price setting power on their captive markets.

Notice that in principle χt might depend on the average price level and therefore on the price of
the individual firm, inasmuch as the latter contributes to the formation of the aggregate price level.
Still, we suppose that firm i assumes that changes in its own price do not affect χt, but only its market
share si,t(.).

The firm operates in an uncertain environment. For simplicity, we assume that uncertainty concern
(i) the shape of the market share function si,t(.) and (ii) the vector of competitors’ prices P−i,t. Hence
the firm must estimate the functional form of the market share, that we refer to as the expected market
share function and denote with sei,t(.) where the superscript e indicates an expectation. Moreover,
assuming that the firm’s size is “negligible”, the vector of competitors’ prices can be satisfactorily
proxied by the aggregate price level Pt, a weighted average of the individual prices. The firm may be
not have sufficient information to determine the actual average price level, hence it has to form the
expectation, denoted with P e

t . For simplicity, we assume that the expected average price is uniform
across firms. Taking these considerations into account we can write the expected demand for the
product of firm i as

QD,e
i,t = χts

e
i,t(Pi,t, P

e
t , zi,t, z−i,t), (2)

4Our approach here is to compare the different rules with respect to the implications of their use on the macro level.
Hence, we do not engage in a comparison of the strength of the empirical foundations, respectively the match with
observed data, on the micro level. A discussion of different approaches for developing foundations for decision rules
of firms in agent-based models can be found in Dawid and Harting (2012). This paper also explicitly discusses the
’management science approach’, i.e., the use of decision heuristics that are documented in the management literature,
as the foundation for the decision rules in the EUBI model.
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2.2 Pricing decision

We assume that technology is linear so that the marginal production cost is constant. We assume
moreover that the firm does not know with certainty technology and input prices so that the firm must
form expectations of the marginal cost. We denote the expected marginal (production) cost at t by
cei,t. We assume finally that the firm incurs fixed costs Fi,t. The i-th firm sets its own price Pi,t in
order to maximise expected profits Πe

i,t:

max
Pi,t

Πe
i,t = QD,e

i,t

(
Pi,t − cei,t

)
− Fi,t,

Note that for simplicity we abstract from capacity constraints in this formulation. From the first order
condition we obtain

Pi,t = (1 + µi,t)c
e
i,t (3)

with the markup given by

µi,t =
1

ϵei,t − 1
, (4)

and

ϵei,t = −
∂QD,e

i,t

∂Pi,t

Pi,t

QD,e
i,t

= −
∂sei,t (Pi,t, P

e
t , zi,t, z−i,t)

∂Pi,t

Pi,t

sei,t(Pi,t, P e
t , zi,t, z−i,t)

denoting the (absolute value of the) expected price elasticity of the demand for the product of firm i.
The main problem the firm faces in setting the price consists in estimating the price elasticity of

demand ϵei,t.
5 Different ABMs use different approaches for addressing this problem.

We envision the following protocol for the firm to estimate the elasticity. The firm believes that its
market share is essentially determined by the ratio of its own price to the average market price

Pi,t

Pt
,

a proxy of the relative price of the i-th good. Due to the uncertainty surrounding the average price
level, the firm forms an expectation of the relative price:

Pi,t

P e
t
. Moreover, the firm assumes that the

relationship between the expected market share and the expected relative price is linear. This means
that the slope of the expected market share function (with respect to the expected relative price) is
independent of the price levels. This is tantamount to assuming that there exist two parameter values
ζei,t and ζ̄

e
i,t, both positive, such that the expected market share can be written as follows

sei,t(Pi,t, P
e
t , zi,t, z−i,t) = ζ̄ei,t − ζei,t

(
Pi,t

P e
t

− 1

)
.

Product characteristics zi,t and z−i,t are “embodied” in the above mentioned parameter values.
Let’s assume finally that all firms have identical market shares if they charge the same price. In

this case, the intercept of the expected market share function is uniform across firms and equal to
ζ̄ei,t =

1
FC

. In the end, therefore, we can write the expected market share as follows:

sei,t =
1

FC
− ζei,t

(
Pi,t

P e
t

− 1

)
, (5)

where ζei,t measures the sensitivity of the firm’s market share to the relative price of its product.6

Using this equation, the expected elasticity of the demand for the product of firm i becomes

ϵei,t =
ζei,t
P e
t

Pi,t

sei,t
,

Inserting this expression into (4) and solving for Pi,t in equation (3) gives the following representation
of the firm’s optimal price

Pi,t = cei,t +
sei,tP

e
t

ζei,t
. (6)

5In principle the firm has to face also potential capacity constraints (respectively: inventory targets), which might
imply that an expansion of output induced by a decrease in price leads to an increase in marginal costs. For simplicity
this case is not considered in the present setting.

6A simple microfoundation for this demand structure is presented in Appendix A.
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From the pricing rule we retrieve the mark-up:

µi,t =
sei,tP

e
t

ζei,tc
e
i,t

. (7)

Based on (7) we can formulate the following recursive representation of the markup:

µi,t = µi,t−1 ×
sei,t
sei,t−1︸ ︷︷ ︸

exp. change
in market share

× P e
t

P e
t−1︸ ︷︷ ︸

exp. change
in av. price

/
ζei,t
ζei,t−1︸ ︷︷ ︸

exp. change
in sensitivity

×
cei,t
cei,t−1︸ ︷︷ ︸

exp. change
in marg. cost

. (8)

It is worth noting that the change of the reciprocal of expected sensitivity,
1/ζe

i,t

1/ζe
i,t−1

, is closely

related to unexpected demand. In the absence of rationing and capacity constraints, actual output
would coincide with expected demand: Yi,t = QD,e

i,t . Actual demand QD
i,t, in turn, is increasing with the

current value of ζi,t. A lower (higher) realization of ζi,t relative to ζ
e
i,t (for given prices), therefore, yields

a higher (lower) actual demand relative to expected demand. This results in an increase (reduction)

of unfulfilled demand. Based on these considerations, we interpret the ratio
1/ζe

i,t

1/ζe
i,t−1

as a proxy for

unfulfilled demand expressed as a percentage of output. Hence, we can rewrite and reinterpret the
representation of the markup as follows:

µi,t = µi,t−1 ×
sei,t
sei,t−1︸ ︷︷ ︸

exp. change
in market share

× P e
t

P e
t−1︸ ︷︷ ︸

exp. change
in av. price

×
1/ζei,t

1/ζei,t−1︸ ︷︷ ︸
rate of

excess demand

/
cei,t
cei,t−1︸ ︷︷ ︸

exp. change
in marg. cost

. (9)

Equation (9) shows that different channels might drive a change in the markup, each one identified
by a change in a variable: market share, average price, rate of excess demand and marginal cost. This
representation can be used as an encompassing basis that may generate different heuristics. The main
families of macroeconomic ABMs, in fact, differ with respect to the channels which are embedded in the
pricing heuristics they adopt. To compare these heuristics, in what follows we introduce a dummy for
each of the variables showing up in (9). These dummies will be denoted with δx where x is an element
in the set X = {sei , P e, QD

i , c
e
i}. We therefore will write each of the four growth factors appearing in

(9) in the form (1 + δxπx
t ) or (1 + δxγxt ), where δ

x is set to 1 (zero) if the channel corresponding to
variable x is active (inactive) in any specific ABM, πxN

t is the growth rate of nominal variables (price
level and marginal cost) and γxR

t denotes the growth rate of real variables (market share and the rate
of excess demand). Hence we can write the markup as follows:

µi,t = (δrec + µi,t−1)
(1 + δs

e
i γ

sei
i,t)(1 + δP

e

πP e

t )(1 + δQ
D
i γ

QD
i

i,t )

(1 + δc
e
i π

cei
i,t)

− δrec (10)

with γ
sei
i,t denoting the growth rate of the firm’s expected market share, πP e

t the growth rate of the

expected price level, γ
QD

i
i,t the unfulfilled demand expressed as a percentage of output, and π

cei
t the

expected growth rate of firm i’s marginal cost. In the CATS and CANVAS model families the recursive
representation given in (10) is applied to (1 + µi,t) rather than µi,t. Formally, we represent this by
introducing the dummy δrec, which is set to one for CATS and CANVAS and to zero for EUBI and
KS.
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In the implementation of the model the expected growth rates are determined as follows:

γ
sei
i,t =

sei,t
sei,t−1

− 1 =
si,t−1

si,t−2
− 1 = γsit−1

πP e

t =
P e
t

P e
t−1

− 1 =
Pt−1

Pt−2

(1 + πe
t )

(1 + πe
t−1)

− 1

π
cei
i,t =

cei,t
cei,t−1

− 1 =
ci,t−1

ci,t−2

(1 + πe
t )

(1 + πe
t−1)

− 1

γ
QD

i
i,t =

QD
i,t−1

Yi,t−1
− 1.

We assume that firms have naive expectations about the growth rate of their market share, so that the
expected growth rate of the market share in t is equal to the actual growth rate of the market share

in t-1: γ
sei
t = γsit−1. As to expectations of the average market price, we assume that P e

t = Pt−1(1+ πe
t )

with πe
t the expected overall inflation rate estimated using an AR(1) model applied to the time series

of the producer price index (PPI), which is re-estimated every period.7 Similarly, we assume that
expectations of the nominal marginal costs are updated using the expected inflation rate:

cei,t = ci,t−1(1 + πe
t ). (11)

Finally, as discussed above, γ
QD

i
i,t proxies the ratio

1/ζe
i,t

1/ζe
i,t−1

under the assumption of naive expectations

about ζi,t, i.e., ζ
e
i,t = ζi,t−1.

Using this notation, we can write the general pricing rule as in (3) with µi,t given by (10) and cei,t
given by (11).

2.3 Quantity decision

Generally speaking, in macroeconomic ABMs, firms are assumed to set the desired scale of production
Y ∗
i,t in order to satisfy the demand they expect to receive:

Y ∗
i,t = QD,e

i,t . (12)

When inventories of final goods can be stored, desired production must take into account that the
stock of accumulated inventories up to the previous period ∆i,t can be used to satisfy current demand.

In this case desired production is Ỹ ∗
i,t = max[0, QD,e

i,t −∆i,t].
8

Using QD
i,t−1 = (1 + γ

QD
i

i,t )Yi,t−1, we can write expected demand in t as

QD,e
i,t = (1 + γ

QD
i

i,t )(1 + γYi
i,t)Yi,t−1, (13)

where γYi
i,t is the expected growth rate of demand of firm i. In line with the existing literature, we

assume that firms use the estimated growth rate of aggregate demand as a proxy for this rate: γYi
i,t = γYt

for all i, with γYt estimated on the basis of an AR(1) model applied to past demand data (which might
be proxied by sales). Since supply is set to satisfy expected demand – see (12) – desired output changes
(relative to output in the previous period) if the firm adjusts (i) the quantity produced following a
market disequilibrium (excess demand or supply) and/or (ii) its expectation of aggregate demand. In
symbols:

Y ∗
i,t =

(
1 + (1− δQ

D
i )γ

QD
i

i,t

)
(1 + δYiγYt )Yi,t−1. (14)

where δQ
D
i is the dummy already used in the markup rule (10). Quantity adjustment is not active if

δQ
D
i = 1 (hence 1− δQ

D
i = 0). In this case, in fact, the firm reacts to excess demand or supply with a

7Inflation expectations are computed in every period as log(1+πe
t ) = απ

t−1πt−1+βπ
t−1+ ϵπt−1. Where απ

t−1 and βπ
t−1

are re-estimated every period on the time series of inflation πt′ where t′ = −T ′,−T ′ + 1,−T ′ + 2, . . . , 0, 1, 2, . . . , t − 1.
ϵπt−1 is a random shock with zero mean and variance re-estimated every period from past observations over the last
T ′ + t− 1 periods.

8In some of the considered macroeconomic ABMs firms include positive inventory targets in their production planning.
Since this seems to have little relevance for our analysis we abstract from such inventory planning here.
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price change and does not adjust quantities. On the contrary, for δQ
D
i = 0 (hence 1 − δQ

D
i = 1) only

the quantity is adjusted in response to a difference between demand and supply and the price does not
change.
Furthermore, the firm takes into account the expected change in aggregate demand in its production
planning if δYi = 1. If δYi = 0, desired output does not react to changes in aggregate demand.

2.4 Application to key ABM families

In this subsection we show how the price/quantity heuristics in the CANVAS, CATS, EUBI and KS
families of macroeconomic ABMs can be interpreted as special cases of our general model formulation.

Model δs
e
i δP

e

δQ
D
i δc

e
i δrec δYi

CANVAS 0 0 cond. 0 1 1

CATS 0 0 cond. 1 1 0

EUBI 1 1 0 1 0 1

KS 1 0 0 0 0 0

Table 1: Price-quantity rules in four main families of macroeconomic ABMs

The relationship between these models and our general formulation is summarized in Table 1.
Whereas the first five columns refer to dummies describing different (strategic) aspects of firm’s pricing
strategy, the last one indicates in how far firms have naive expectations about future demand, or
anticipate future changes based on past data. We briefly discuss the different entries in this table,
column-wise, i.e., going through the different dummy variables governing which of the different channels
present in our general formulation are active in each model.

The market power channel (captured by δs
e
i ), is most explicitly present in KS, where markups

are adjusted in parallel to changes in the market share. In EUBI the channel is present implicitly,
due to the fact that firms choose profit maximizing prices based on the estimated9 sensitivity of its
demand with respect to price changes. As can also be seen in (7), this procedure implies a positive
relationship between price and market share. The price adjustment rules in CATS and CANVAS do
not incorporate any dependence of price on market share, and therefore δs

e
i = 0 for these models.

The competitors’ prices channel (δP
e

), is directly present in the EUBI model, due to the fact that
firms communicate the (last period) prices of the competitors to the consumers participating in the
surveys they use to estimate demand. Hence, the derived optimal price is an approximation of a
best reply to competitors’ price setting decisions, which points to a positive correlation between the
individual price and the prices charged by the firm’s competitors. In KS the competitors’ prices have
no direct influence on the firm’s price. In the CATS and CANVAS models the average market price
does not directly influence the level of the firm’s price, but determines whether the latter is adjusted
upwards (in case of excess demand and underpricing in the previous period) or downwards (in case
of excess supply and overpricing).10 The level of the average market price in CATS and CANVAS

determines whether the excess demand channel (captured by δQ
D
i ) is active or not. In particular,

δQ
D
i = 1 if either the firm’s price in t− 1 was below the average market price in case of excess demand

or Pi,t−1 > P̄t in case of excess supply. In KS no direct relationship between excess supply/demand
and pricing can be established, although there is an indirect effect through a potential change in the

9Firms use consumer surveys as the basis of this estimation in EUBI.
10Underpricing (overpricing) occurs when the firm’s price is lower (higher) than the average price.
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firm’s market share. In EUBI excess supply has no impact on future prices, and excess demand would
affect the price only if capacity expansion is too costly for the firm to be carried out. In light of this we

set δQ
D
i = 0 for KS and EUBI, although some effect of excess demand on pricing is possible in EUBI.

The cost absorption channel (δc
e
i ) describes to which extent firms reduce (increase) their markup

if their (marginal) production costs go up (down). When δc
e
i = 1 the markup decreases at the same

rate with which the marginal cost increases, so that cost increases are fully absorbed and the firm’s
profit margin is independent of the size of the cost. This is equivalent to assuming zero pass-through
from cost to price. This is the case in CATS, where pricing does not directly depend on the size of the
production costs. On the contrary, both in CANVAS and KS the markup does not depend on the cost
level, such that cost increases are fully passed through to consumers. In EUBI firms take into account
the estimated production costs in t when determining their optimal price, such that, in accordance
with (7), the markup is inversely related to the cost level, such that δc

e
i = 1.

As discussed above, the dummy δrec expresses whether changes induced by the four channels apply
only to the mark-up µi,t, or to the entire price-cost ratio (1 + µi,t). For EUBI and KS the former
holds (δrec = 0), while the latter applies for CANVAS and CATS (δrec = 1). Finally, the last column
of Table 1 refers to the formation of demand expectation of the firms. In CATS and KS firms have
naive expectations about the size of total demand in t (δYi = 0), whereas in CANVAS and EUBI firms
choose their production quantity using an estimate of the change in demand from t− 1 to t.

3 The macroeconomic environment

In this section we give a brief overview over the macroeconomic model in which these price-quantity
rules are embedded. Similarly to most MABMs, our framework comprises 5 classes of agents: Firms,
households, banks, a government and a central bank, whose relations are summarised in Figure 1.

Each firm belongs to a sector g (g = 1, 2, . . . , G), sectors are organised in an Input-output (IO)
network, with each sector having size Ig. Firms belonging to sector g produce a single homogeneous
good also indexed by g, and the economy as a whole produces G heterogeneous goods. We index firms
using i (i = 1, 2, . . . , I =

∑
g Ig) and use the notation g(i) to indicate i’s sector. Firms produce using

labour, capital, and intermediate goods.
The household sector comprises H (h = 1, 2, . . . ,H) persons. Every individual has an activity

status, that is, a type of economic activity from which she receives an income. The activity status
is categorised into Hact economically active and H inact economically inactive persons. Economically
active persons are HW workers and I investors. Workers are further divided in HE

t employed and HU
t

unemployed persons. Each person also buys goods in the consumption market.
We also assume (i) a representative bank taking deposits from firms and households, extending

loans to firms, and receiving advances from the central bank; (ii) a government consuming on the retail
market (government consumption), levying taxes, and providing social contributions and benefits to
households; (iii) a central bank setting the policy rate, providing liquidity to the banking system,
holding reserves for the bank, and purchasing government bonds.

Finally, the foreign sector is modelled as an exogenous, aggregate entity fully calibrated on data,
i.e. import prices, import supply and export demand are directly taken from data.

In the remainder of this section, we will provide further details only concerning firms’ and house-
holds’ behaviour, since these parts are essential to understand the results presented in section 4. The
interested reader should refer to Poledna et al. (2023) and in particular its appendix, from which this
section borrows extensively, for a more complete description of the model.

3.1 Firms

3.1.1 Production

Firm i produces a single good of type g(i) using labour
(
Ni,t

)
, intermediate goods

(
Mi,t−1

)
, and

physical capital
(
Ki,t−1

)
, which are combined in a Leontief production function:

Yi,t = min
(
Ỹ ∗
i,t, βg(i)Mi,t−1, αi,tNi,t, κg(i)Ki,t−1

)
(15)

Where Ỹ ∗
i,t is the desired production; βg(i) and κg(i) are the productivities of intermediate goods

and capital for any firms in sector g(i); αi,t is the effective labour productivity of firm i at time t.
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Figure 1: Model flow chart. Rectangles represent agent classes, arrows represent money flows, and the
dashed frame contains the domestic economy.

We assume labour productivity
(
ᾱg(i)

)
to be time-invariant and sector-specific. However, since Ni,t

denotes the number of workers employed by firm i at time t, and workers can work part-time or
overtime, Ni,t may differ from the effective amount of labour employed in production. Therefore, αi,t

adjusts in such a way to ensure that the effective amount of labour enters the production function
correctly (see (19) below).

3.1.2 Investment

In each period firm i adjusts its real investment demand
(
Idi,t
)
to the expected wear and tear of the

capital stock
(
Ki,t

)
, where we assume that only the capital actually employed in production depreciates

at the sector-specific rate δg(i):

Idi,t =
δg(i)

κg(i)
min

(
Ỹ ∗
i,t, κg(i)Ki,t−1

)
(16)

The capital stock Ki,t can be seen as a bundle of G goods where each g-good is associated with
a weight bKg . These weights are assumed homogeneous across firms and sectors, therefore each firm

demands a quantity of g-good bKg I
d
i,t for the purpose of investment.

3.1.3 Intermediate goods demand

Each firm i holds a stock of input goodsMi,t. From this stock of intermediate input goods, firm i takes
out materials for production as needed, and it keeps these goods in positive supply to avoid shortfalls
impeding production. In each period, firm i has to decide on the desired amount of intermediate goods(
∆Md

i,t

)
that it intends to purchase to keep its stock in positive supply:

∆Md
i,t =

min
(
Ỹ ∗
i,t, κg(i)Ki,t−1

)
βg(i)

(17)

Firms thus try to keep their stock of material input goods within a certain relationship to Ỹ ∗
i,t by

accounting for planned material input use in this period. As for physical capital, the stock of inter-
mediate goods Mi,t can be seen as a bundle of G goods. In the case of intermediate goods, we assume
the weights bMg(i),g to be sector-specific, so that each firm demands a quantity of intermediate good g(
∆Md

i,g,t

)
equal to bMg(i),g∆M

d
i,t.
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3.1.4 Labour demand

The labour requirement of firm i
(
Nd

i,t

)
is defined in accordance to desired scale of production (Ỹ ∗

i,t)
and the sector-specific labour productivity (ᾱg(i)):

Nd
i,t = max

1,
min

(
Ỹ ∗
i,t, κg(i)Ki,t−1

)
ᾱg(i)

 (18)

As firms can be constrained on the labour, intermediate goods, and physical capital markets, they
might need to adjust their effective labour input by requiring overtime work in case of labour shortages,
or part-time work in case of intermediate inputs and physical capital shortages. We deal with this
issue by adjusting the labour productivity of firm i

(
αi,t

)
as follows:

αi,t = ᾱg(i) min

1.5,
min

(
Ỹ ∗
i,t, βg(i)Mi,t−1, κg(i)Ki,t−1

)
Ni,tᾱg(i)

 (19)

Where the maximum overtime allowed is 50% of a full-time position.
To remunerate part-time and overtime labour as compared to a full-time position, the average wage(

w̄i

)
paid by firm i is adapted accordingly:

wi,t = w̄i min

1.5,
min

(
Ỹ ∗
i,t, βg(i)Mi,t−1, κg(i)Ki,t−1

)
Ni,tᾱg(i)


Where wi,t is the real wage paid by firm i and nominal hourly wages are pegged to inflation expecta-
tions.

3.2 Households

3.2.1 Activity Status

An employed worker h of firm i in period t receives wage wh,t = wi,t. Unemployed workers supply
labour to firms with open vacancies through a labour market modelled as a random search-and-
matching process. All unemployed persons receive unemployment benefits, which are a fraction θUB

of the wage received in the last period of employment.
We assume that each firm is owned by an investor, i.e. the number of investors matches the number

of firms. Each investor receives income in the form of dividends whenever net profits are positive. We
assume limited liability, i.e. in the case of bankruptcy, the associated losses are borne by the creditor
and not the investor household.

An economically inactive person h receives social benefits sbinactt and does not look for a job.
Additionally, each household receives additional social transfers sbothert from the government.

3.2.2 Consumption

Households consume a fraction of their expected disposable net income
(
Y e
h,t

)
. Expected disposable

net income inclusive of social transfers is determined according to the household’s activity status and
the associated income from labour, expected profits or social benefits, as well as tax payments, the
consumer price index of the last period, and inflation expectations

(
πet
)
. The consumption budget

(net of VAT) of household h
(
Cd

h,t

)
is thus given by:

Cd
h,t =

ψY e
h,t

1 + τVAT
(20)

Where ψ ∈ (0, 1) is the propensity to consume out of expected income and τVAT is a value added
tax rate on consumption. Consumers then allocate their consumption budget to purchase different
goods from firms. The consumption budget of the h-th household to purchase the g-th good is

Cd
h,g,t = bHH

g Cd
h,t (21)

Where bHH
g is the homogeneous and time-invariant consumption coefficient for the good g.
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4 How do different types of price-quantity rules affect eco-
nomic dynamics?

To investigate differences across price-quantity rules, we conduct two sets of exercises: forecasting
under business-as-usual scenarios and analyzing model reactions to predefined, exogenous shocks. For
these exercises, we calibrate the framework using Eurostat data for the Austrian economy, following
the calibration approach outlined in Poledna et al. (2023). Starting from a reference quarter, we run
simulations with different price-quantity rules over a 12-quarter horizon, allowing for a systematic
comparison under varying economic conditions.

Before presenting the results, it is important to clarify that they do not necessarily reflect the exact
predictions of the models under consideration. To be precise, our results pertain to the rules discussed
in Section 2.4 within the Poledna et al. (2023) framework. The difference may seem subtle and often
reduces to nuances, but it is important to remember that these rules are applied somewhat outside
their original context. As a result, the outcomes may differ from those produced within their original
models. Whenever we identified such potential differences, we made an effort to alert the reader.

4.1 Forecasting
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Figure 2: Out-of-sample forecasts with the different price-quantity rules. Forecasts for GDP growth
and inflation measured by the CPI are 12 quarters ahead from Q1 2017 until Q4 2019 for the Austrian
economy. The black lines show the respective forecasts with the different price-quantity rules and
observed Eurostat data for Austria is shown with the dashed line. For each forecast, one standard
deviation is plotted around the mean trajectory. Model results are obtained as an average of 500
Monte Carlo simulations.

To illustrate the differences among the respective price-quantity rules under a business-as-usual
scenario, we present representative 12 quarters ahead out-of-sample forecasts in Figure 2. The figure
displays GDP growth and inflation forecasts, measured by the Consumer Price Index (CPI), generated
by the CANVAS, CATS, EUBI, and KS price-quantity rules, with observed Eurostat data for Austria
provided as a benchmark. Overall, in the business-as-usual scenario, the price-quantity rules produce
qualitatively similar forecasts for GDP growth and inflation. As seen in Figure 2, inflation forecasts
are particularly consistent across the CANVAS, EUBI, and KS price-setting rules, with these rules
generating closely aligned projections over the forecast horizon.

Similarly, the growth forecasts of the CANVAS and EUBI rules show a strong degree of compara-
bility. Notable differences, however, are observed in the CATS and KS quantity choices. Both of these
rules simplify by assuming naive demand expectations, where the expected demand is set equal to the
demand of the previous period. This assumption results in somewhat lower forecast performance in
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the short run and introduces a bias in the projections, as these models are slower to adjust to changes
in economic conditions. For the same reason, the CATS price-setting rule also shows a somewhat lower
forecast performance and an overall bias in its projections.

These observations from Figure 2 are further corroborated by the quantitative evaluation of forecast
performance along the lines of Poledna et al. (2023) shown in Appendix B. Table 2 in this appendix
provides detailed out-of-sample forecast performance, showing root mean square error (RMSE) statis-
tics for different forecast horizons. The results indicate that the CANVAS and EUBI price-quantity
rules tend to outperform the CATS and KS rules over short forecast horizons, where the latter models
show a tendency for increased forecast errors. Table 3 in Appendix B further highlights the mean
biases of the models across different forecast horizons, showing that the CATS and KS models tend to
produce more biased forecasts for short forecast horizons.

4.2 Shocks
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Figure 3: Responses of GDP and the Consumer Price Index (CPI) to three types of exogenous
shocks—demand shock, cost-push shock, and technology shock—across four different price-quantity
rules: CANVAS, CATS, EUBI, and KS. The simulations are run over a 12-quarter horizon, starting
from a reference quarter calibrated with Eurostat data for the Austrian economy. The top panels show
the relative changes in GDP, while the bottom panels display the corresponding effects on CPI.

We experiment with three different shocks: a demand shock, a cost-push shock, and a non-
idiosyncratic technological shock. Each shock is imposed in isolation and involves a permanent 10%
increase in one of the following variables: government spending (public consumption), import prices,
or labour productivity. Figure 3 summarizes adjustments to shocks across different rules, focusing on
GDP and CPI expressed as deviations from their baseline values.

The demand shock triggers inflation only in the CANVAS and CATS rules, while the CPI remains
unaffected in EUBI and KS.11 This difference is due to the absence of the demand-pull channel in
the price equations of EUBI and KS, where the entire demand shock is passed into quantities. When
demand-pull is not passed onto prices, the real effects of demand shocks are more pronounced, resulting
in larger multipliers for EUBI and KS compared to CANVAS and CATS. Moreover, we observe a

11It is important to emphasize once again that our results do not necessarily or perfectly reflect the predictions of the
models under consideration. Indeed, although the implemented price and quantity rules closely align with those of the
models, they are applied somewhat outside their original context. For instance, in EUBI and KS, nominal wages grow
when the labour market is tight. It follows that in the original EUBI and KS frameworks, a positive demand shock
would likely lower unemployment and therefore trigger wage inflation, which would then be passed on to prices, resulting
in some level of positive inflation.
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stronger GDP response in EUBI as compared to KS. The reason is that in EUBI, individual quantity
decisions are also linked to expected aggregate demand growth, which in the case of demand shocks,
boils down to an additional, coordinated pull factor. Finally, the inflationary effect is stronger under
the CANVAS rule compared to CATS. This difference stems from how nominal wages feed back into
the price equation via the cost channel. In CATS, wage increases are fully absorbed in the markup,
unlike under CANVAS, where we have full pass-through. Therefore, nominal wages being pegged to
the CPI, demand-pull inflation leads to nominal wage growth, which further drives prices under rules
assuming positive pass-through.12

The cost-push shock impacts only models featuring cost channel in the price equation, specifi-
cally CANVAS, EUBI, and KS.13 However, responses are heterogeneous across rules, with CANVAS
exhibiting moderate inflation as compared to EUBI and KS. This difference stems from the demand-
pull channel in the CANVAS price rule. Cost-push shocks typically lead to stagflation, where the
recessionary aspect of the shock causes individual firms to experience lower-than-expected demand.
In CANVAS, this prompts firms to reduce prices, counteracting the inflationary pressures from the
cost-push shock. We also observe a slight difference in CPI under the EUBI and KS rules, with the
latter featuring more inflation. This is due to the different recursions adopted by the two models
in the markup rule (9), implying perfect pass-through (i.e., more inflation) for KS and only partial
pass-through (i.e., less inflation) for EUBI. Finally, the magnitude of the recession is tightly linked to
the extent of the pass-through, with EUBI and KS showing the strongest GDP loss, CANVAS showing
moderate GDP loss, and CATS being only slightly impacted.

The non-idiosyncratic technological shock is symmetric to the cost-push shock. While CANVAS,
EUBI, and KS see reductions in inflation, the magnitude differs. CANVAS shows a moderate defla-
tionary effect due to its demand-pull channel, which diminishes the price effect of productivity growth.
In contrast, EUBI and KS show stronger deflationary effects, with KS exhibiting the most significant
price reduction due to its perfect pass-through mechanism. The productivity shock also leads to an in-
crease in GDP across all models, with the strongest growth observed in EUBI and KS, and a moderate
increase in CANVAS. CATS, as expected, is only slightly affected.

5 Conclusions

The design of behavioral rules is a key ingredient of agent-based macroeconomic models and an impor-
tant determinant of differences between these models. In this paper we make two main contributions
to foster a systematic analysis of the impact of the design of behavioral rules on model output. First,
focusing on a particular set of firm decisions, namely price and quantity choice, we derive a general
representation of rules, that allows to systematically categorize rules according to which channels are
active in determining the action under the rule. We exploit this approach by considering price and
quantity rules in four families of agent-based macroeconomic models, but the approach is much more
generally applicable as a tool to describe and compare different rules systematically.

Second, we embed the different rules in an identical macroeconomic framework, which allows us
to isolate their effect on the economic dynamics emerging in the model. Our forecasting exercise
reveals only minor differences across rules, indicating that in a business-as-usual scenario, the choice
of a specific rule has little impact on the results. However, we find that the model’s response to
macroeconomic shocks differs significantly across the rules, both quantitatively and qualitatively. This
variability underscores the need for a careful analysis of these rules to understand which ones perform
best under specific conditions. In particular, using data for time windows including severe disruptions,
such as supply respectively demand shocks triggered by COVID-19, or cost push shocks due to energy
price hikes, performance of the models in terms of matching empirical observations could be examined.
Such an analysis is beyond the current chapter and left for future work.

The results presented here should be seen only as a first step. The analysis should be extended to
other important classes of decision rules and a broader spectrum of agent-based macroeconomic models.
Work along these lines will improve our understanding of the drivers of differences in behaviour across

12It should be noted that in this particular case, the cost channel constitutes a second order effect and therefore it is
not sufficient to generate inflation. Since nominal wages are tied to inflation (but not to labour market tightness), the
cost channel only activates if the shock initially triggers inflation through demand-pull, which is not the case for EUBI
and KS.

13The slight increase in CPI observed for CATS is a mechanical effect seen across all models, as import prices are
included in the CPI calculation.
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different models and play an important role in interpreting results, such as insights about policy effects,
that have been obtained in different model frameworks. Finally, this type of analysis might also provide
guidance concerning which types of behavioral rules perform best in terms of short- and medium-term
forecasting.
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Appendix

A Microfoundations for the demand model

In this section of the appendix we demonstrate that the simple linear demand function (5) used by the
firms can be derived from simple interaction structures with heterogeneous consumers. An example
of a market structure giving rise to this form of expected demand is a market setup in which each
consumer c intending to buy the product in t visits two producers and chooses between these producers
based on a utility function uci,t = ū − ζ̃t

Pi,t

P̄t
and a (stochastic) idiosyncratic preference between the

producers. The fact that the dis-utility of paying Pi,t is normalized by P̄t captures that prices are
evaluated in terms of purchasing power and pure inflationary effects are neutralized. More precisely,
consumer visiting firms i1 and i2 purchases from producer i1 if and only if

uci1,t − uci2,t ≥ ϵci1,i2 ,

where ϵci1,i2 captures the idiosyncratic preference of consumer c between the producers and is assumed
to be uniformly distributed in [−k, k] and iid across consumers and firm pairs. Assuming that k is

sufficiently large such that ζ̃t
Pi1,t−Pi2,t

P̄t
∈ [−k, k], then the probability that consumer c buys from firm

i1 is given by

qi1(i2) = IP(ϵci1,i2 ≤ uci1,t − uci2,t) = IP
(
ϵci1,i2 ≤ ζ̃t

Pi2,t−Pi1,t

P̄ e
t

)
= 1

2k

(
ζ̃t

Pi2,t−Pi1,t

P̄t
− (−k)

)
= 1

2 − ζ̃t
2k

Pi1,t−Pi2,t

P̄t
.

Based on this, the probability that an arbitrary consumer c buys from firm i can be calculated as

IP(c buys from i)

= IP(c visits i in t)
∑
ĩ̸=i

IP(c visits ĩ in t|cvisits i in t)qi(̃i)

=
2

FC

1

FC − 1

∑
ĩ ̸=i

(
1

2
− ζ̃t

2k

Pi,t − Pĩ,t

P̄t

)

=
1

FC
− ζ̃t
k

FC∑
ĩ=1

Pi,t − Pĩ,t

FC P̄t

=
1

FC
− ζ̃t
k

(
Pi,t

P̄t
− 1

)
=

1

FC
− ζt

(
Pi,t

P̄t
− 1

)
,

with ζt =
ζ̃t
k . The corresponding expectation of firm i at time t about this parameter is denoted by

ζei,t. This yields an expected market share of firm i given by (5).
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B Forecast performance

Table 2: Out-of-sample forecast performance

GDP Inflation Household consumption Investment

AR(1) RMSE-statistic for different forecast horizons
1q 0.48 0.36 0.76 1.42
2q 0.69 0.37 0.92 1.98
4q 1.17 0.37 1.24 3.16
8q 2.01 0.37 2.1 4.49
12q 2.8 0.37 2.87 6.09
CANVAS Percentage improvements (+) or losses (-) relative to AR(1) model
1q 0.2 (0.83) -11.7 (0.04∗∗) -3.1 (0.79) 3.9 (0.14)
2q 0.1 (0.93) -29.8 (0.04∗∗) -23.2 (0.30) 6.9 (0.06∗)
4q -0.4 (0.95) -8.6 (0.61) -8.2 (0.80) 8.9 (0.11)
8q 7.9 (0.72) -18.3 (0.00∗∗∗) 30.1 (0.45) 12.8 (0.04∗∗)
12q 25.4 (0.49) -30.7 (0.23) 38.7 (0.45) 14.1 (0.00∗∗∗)
CATS Percentage improvements (+) or losses (-) relative to AR(1) model
1q -24.1 (0.08∗) -50.6 (0.00∗∗∗) -13.4 (0.39) -8.4 (0.04∗∗)
2q -22.1 (0.25) -50 (0.00∗∗∗) -30.8 (0.23) -13 (0.04∗∗)
4q -2 (0.93) -38.9 (0.00∗∗∗) -28.5 (0.49) -10.4 (0.06∗)
8q 17.1 (0.69) -16 (0.03∗∗) 2.3 (0.96) -4.5 (0.66)
12q 21.1 (0.65) -7.1 (0.08∗) 23.1 (0.74) 3.5 (0.59)
EUBI Percentage improvements (+) or losses (-) relative to AR(1) model
1q 0.2 (0.83) -11.7 (0.04∗∗) -3.1 (0.79) 3.9 (0.14)
2q -1.1 (0.54) -15.5 (0.08∗) -26.2 (0.27) 4.6 (0.20)
4q -9.6 (0.44) -6.3 (0.56) -17.1 (0.64) 5.4 (0.25)
8q -7.7 (0.77) -11.2 (0.28) 27.1 (0.50) 12.2 (0.05∗)
12q 11.8 (0.66) 5.1 (0.00∗∗∗) 39.7 (0.51) 19.1 (0.01∗∗∗)
KS Percentage improvements (+) or losses (-) relative to AR(1) model
1q -24.4 (0.08∗) -11.7 (0.04∗∗) -14.3 (0.37) -8.2 (0.04∗∗)
2q -40.9 (0.08∗) -17 (0.09∗) -42.3 (0.14) -17.9 (0.02∗∗)
4q -29 (0.36) -8.6 (0.43) -42.4 (0.35) -19.7 (0.01∗∗)
8q 8.6 (0.87) -12.4 (0.29) 6.2 (0.90) -12.3 (0.33)
12q 26.1 (0.68) 6.4 (0.17) 27.1 (0.70) -0.8 (0.86)

Note: The forecast period is 2010:Q2 to 2019:Q4. Models calibrated to 39 different reference quarters from 2010:Q1
to 2019:Q3. ABM results are obtained as an average of 500 Monte Carlo simulations. In parentheses, we show
p-values of (modified) Diebold-Mariano tests (Harvey et al., 1997), where we test whether forecasts are significantly
different in accuracy than the AR(1) (the null hypothesis of the test is that the models have the same accuracy as
the AR(1)). ∗, ∗∗, and ∗∗∗ denotes significance at the 10 per cent, 5 per cent, and 1 per cent levels, respectively.

17



Table 3: Mean biases of models

GDP Inflation Household consumption Investment

AR(1) Mean biases for different forecast horizons
1q 0.0004 (0.34) -0.0007 (0.23) 0.0019 (0.26) -0.0035 (0.20)
2q 0.0011 (0.39) -0.0008 (0.17) 0.0032 (0.07∗) -0.0084 (0.02∗∗)
4q 0.0031 (0.27) -0.0009 (0.26) 0.0065 (0.00∗∗∗) -0.0183 (0.00∗∗∗)
8q 0.0085 (0.02∗∗) -0.001 (0.18) 0.0133 (0.00∗∗∗) -0.0322 (0.00∗∗∗)
12q 0.0149 (0.00∗∗∗) -0.0007 (0.47) 0.0202 (0.00∗∗∗) -0.0469 (0.00∗∗∗)
CANVAS Mean biases for different forecast horizons
1q 0.0003 (0.29) -0.0007 (0.00∗∗∗) -0.0017 (0.14) -0.0034 (0.23)
2q 0.001 (0.35) -0.0019 (0.00∗∗∗) -0.004 (0.01∗∗∗) -0.0075 (0.03∗∗)
4q 0.0031 (0.28) -0.0016 (0.00∗∗∗) -0.0062 (0.00∗∗∗) -0.015 (0.00∗∗∗)
8q 0.0077 (0.03∗∗) 0.0013 (0.00∗∗∗) -0.0044 (0.25) -0.0229 (0.00∗∗∗)
12q 0.0064 (0.03∗∗) 0.0034 (0.00∗∗∗) -0.0004 (0.62) -0.0361 (0.00∗∗∗)
CATS Mean biases for different forecast horizons
1q -0.0039 (0.00∗∗∗) -0.0038 (0.00∗∗∗) -0.0033 (0.02∗∗) -0.0076 (0.00∗∗∗)
2q -0.0049 (0.00∗∗∗) -0.004 (0.00∗∗∗) -0.0066 (0.00∗∗∗) -0.0138 (0.00∗∗∗)
4q -0.005 (0.04∗∗) -0.0038 (0.00∗∗∗) -0.0109 (0.00∗∗∗) -0.0245 (0.00∗∗∗)
8q -0.0012 (0.22) -0.0025 (0.00∗∗∗) -0.015 (0.00∗∗∗) -0.0348 (0.00∗∗∗)
12q 0.0025 (0.05∗∗) -0.0019 (0.03∗∗) -0.0155 (0.00∗∗∗) -0.0444 (0.00∗∗∗)
EUBI Mean biases for different forecast horizons
1q 0.0003 (0.29) -0.0007 (0.00∗∗∗) -0.0017 (0.14) -0.0034 (0.23)
2q 0.0004 (0.48) -0.0009 (0.00∗∗∗) -0.0049 (0.00∗∗∗) -0.0082 (0.02∗∗)
4q 0.002 (0.61) -0.0011 (0.02∗∗) -0.0077 (0.00∗∗∗) -0.0164 (0.00∗∗∗)
8q 0.0106 (0.02∗∗) -0.0009 (0.01∗∗) -0.0057 (0.09∗) -0.0208 (0.00∗∗∗)
12q 0.0131 (0.01∗∗∗) -0.0005 (0.60) -0.0051 (0.23) -0.0313 (0.00∗∗∗)
KS Mean biases for different forecast horizons
1q -0.004 (0.00∗∗∗) -0.0007 (0.00∗∗∗) -0.0036 (0.01∗∗) -0.0075 (0.01∗∗∗)
2q -0.0067 (0.00∗∗∗) -0.0009 (0.00∗∗∗) -0.0079 (0.00∗∗∗) -0.0151 (0.00∗∗∗)
4q -0.0092 (0.00∗∗∗) -0.0009 (0.01∗∗) -0.0126 (0.00∗∗∗) -0.0281 (0.00∗∗∗)
8q -0.0055 (0.22) -0.0011 (0.01∗∗∗) -0.0139 (0.00∗∗∗) -0.0386 (0.00∗∗∗)
12q -0.0023 (0.49) -0.0009 (0.44) -0.0137 (0.00∗∗∗) -0.0488 (0.00∗∗∗)

Note: The forecast period is 2010:Q2 to 2019:Q4. Models calibrated to 39 different reference quarters from 2010:Q1
to 2019:Q3. ABM results are obtained as an average of 500 Monte Carlo simulations. In parentheses, we show
p-values of Mincer and Zarnowitz (1969) tests, where we test whether the bias is significant. ∗, ∗∗, and ∗∗∗ denotes
significance at the 10 per cent, 5 per cent, and 1 per cent levels, respectively.
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