
577

Agricultural Economics – Czech, 70, 2024 (12): 577–590 Original Paper

https://doi.org/10.17221/125/2024-AGRICECON

Supported by the Agrotechna s.r.o. Michalovce, grant number NI/1-69/2023/SPU, project titled Possibilities of increasing the 
economic efficiency of crop production.
© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Impact assessment of climate change at farm level: 
A methodological approach based on integrated 
biophysical and economic models

Tatiana Bullová1, Zuzana Bajusová2* , Peter Bielik3, Erwin Schmid4, 
Rastislav Skalský5, Jozef Takáč6, Viktória Benďáková2, Izabela Adamičková2, 
Natália Turčeková2, Ján Jobbágy7

1Bioeconomy Cluster, Nitra, Slovakia
2Institute of Economics and Management, Faculty of Economics and Management, Slovak University of 
Agriculture in Nitra, Nitra, Slovakia

3Pan-European University, Bratislava, Slovakia
4Department of Economics and Social Sciences (WiSo), BOKU University,, Vienna, Austria
5Agriculture, Forestry, and Ecosystem Services Research Group Biodiversity and Natural Resources 
Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

6National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Bratislava, 
Slovakia

7Institute of Agricultural Engineering, Transport and Bioenergetics, Faculty of Engineering, Slovak 
University of Agriculture in Nitra, Nitra, Slovakia

*Corresponding author: zuzana.bajusova@uniag.sk

Citation: Bullová T., Bajusová Z., Bielik P.,  Schmid E., Skalský R., Takáč J., Benďáková V., Adamičková I., Turčeková N., Jo-
bbágy J. (2024): Impact assessment of climate change at farm level: A methodological approach based on integrated biophysical 
and economic models. Agric. Econ. – Czech, 70: 577–590. 

Abstract: The dominant agricultural sector in Slovakia is crop production, with the majority of arable land dedicated 
to cultivating cereals (57%), followed by fodder crops (20%) and industrial crops (19%). Slovakia has technical and bio-
physical potential for expanding biomass production. However, it is crucial to identify optimal production practices, 
alternative costs, and environmental outputs. Farms become more vulnerable to the worldwide threat posed by climate 
change. Based on research, farmers can effectively mitigate the adverse effects of climate change by making necessary 
adjustments to their current farming techniques. Thus, by using an advanced tool like integrated farm models, farmers 
can evaluate and manage a range of risks related to their activities. This paper aims to present the application of integra-
ted modelling frameworks at the farm level and propose a framework for studying the consequences of climate change 
through a scenario-based approach at  the farm level. Integrated assessments provide new insights that complement 
those derived from more detailed assessments. Based on the model developed, the results of two research questions are 
provided. Since, from the viewpoint of the farmer, risk and unpredictability associated with lower yields are frequently 
the main causes of  lower income, spatially explicit integrated modelling is  applied, enabling economic optimisation 
of crop production on a selected farm with a focus on maximising net returns while considering biophysical parame-
ters. The modelling results depict the distribution of selected crops on arable land and the most suitable management 
practices for crop production in terms of nitrogen application and irrigation utilisation. Additionally, we develop an in-
tegrated model proposing the estimation of the risk of yield variability and nitrogen emissions for three climate change 
scenarios for the simulated period of 2020–2100 on  the model farm. In response to  the problems posed by climate 
change, this integrated approach can assist evidence-based decision-making and sustainable agriculture practices.
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Environmentally friendly agricultural systems are in-
creasingly emphasised, particularly in light of the im-
pact of intensive agricultural practices on the environ-
ment: organic farming, precision farming, integrated 
farm management, regenerative agriculture, sustain-
able intensification, and agroecological approaches en-
compass a wide range of techniques, albeit significantly 
overlapping in philosophy and approaches. Their com-
mon goal is  to enhance environmental management 
by increasing biodiversity, regenerating damaged soil, 
and protecting it. Nevertheless, since these systems are 
frequently linked to lower yields, there may be a con-
flict with the pressing need to boost food production 
in order to satisfy the demands of an expanding popu-
lation (Durham and Mizik 2021).

Over the past century, farming systems across Eu-
rope have undergone significant transformation due 
to  mechanisation, intensification, and specialisation 
(Jepsen et  al. 2015). Large increases in  productivity 
and labour efficiency were made possible by the intro-
duction of technology such as chemical fertilisers, im-
proved varieties, and irrigation, along with increased 
access to mechanisation (Matson et al. 1997). However, 
this also resulted in a greater dependence on external, 
frequently non-renewable resources (Pretty 2008). 
These advancements led to  the emergence of  highly 
specialised agricultural systems, which are frequently 
found in concentrated agricultural landscapes that may 
be susceptible to the negative consequences of climate 
change (Olesen and Bindi 2002).

Growing concerns about the environmental conse-
quences of  agricultural activities, as  well as  the need 
to  increase productivity, require the development 
of monitoring and evaluation tools regarding the eco-
logical-economic performance of  agricultural enter-
prises. This is particularly relevant in the context of the 
trade-off between climate impacts and farm economic 
performance, as the adverse effects of global warming 
become increasingly apparent. Measuring ecological 
performance in  terms of  greenhouse gas emissions 
is crucial because it can provide policymakers and farm 
managers with reliable information to  propose meas-
ures to reduce greenhouse gas emissions while improv-
ing economic performance (Stetter and Sauer 2022).

The extent to which a system is affected by climate 
change depends on  its exposure to  climate change, 
its sensitivity and its adaptation potential. Sensitivity 
is the extent to which a system is impacted, either neg-
atively or favourably, by climate-related stimuli, where-
as exposure is  the type and extent to which a system 
is exposed to climatic fluctuations. The ability of a sys-

tem to respond appropriately to current or upcoming 
changes and impacts brought on  by climate change 
is  known as  adaptation potential. Therefore, in  order 
to  deal with the negative effects of  climate change, 
it is necessary to not only understand how vulnerable 
and exposed farming systems are but also to quantita-
tively quantify the impacts of climate change and pro-
vide suitable adaptation strategies (Groot et al. 2016).

To assess compromises and complementarities 
among all key components of  agricultural systems 
and to  determine the costs and benefits of  environ-
mentally friendly practices that are also economically 
viable, an  interdisciplinary approach is  needed (Rob-
erts et  al. 2023). Given the enormous environmental 
impact of  conventional agricultural production, one 
of the main challenges is achieving a balance between 
large-scale food production to meet the growing needs 
of society and the preservation of resilient agroecosys-
tems (Bullock et al. 2017; Kazemi et al. 2018; Skaf et al. 
2019). A  modern approach to  food security and sus-
tainable agriculture should encompass an interdiscipli-
nary perspective that includes economic, biophysical, 
social, and environmental aspects (Skaf et al. 2019).

Environmental, climatic, and economic strategies 
implemented in agriculture are linked to soil, its con-
dition, quality, management, and use. Soil is  a  natu-
ral and the largest carbon reservoir and water accu-
mulator. Soil degradation releases carbon in the form 
of  emissions (Song et  al. 2022). Proper management 
of agricultural production can contribute to carbon se-
questration in the soil.

Managing the agricultural land itself does not cause 
greenhouse gas emissions, but improper agricultural 
practices, such as excessive use of nitrogen fertilisers, 
can lead to significant greenhouse gas emissions from 
agricultural soil; on the other hand, soil and its manage-
ment have the greatest impact on risk reduction, emis-
sion reduction, and CO2 sequestration, making a sig-
nificant and financially effective contribution to  the 
transition towards carbon neutrality (OECD 2014; Lal 
et al. 2015). The benefits and impacts of carbon neu-
trality will be  far-reaching and sustainable in  terms 
of economic development, technological progress, and 
a healthy environment (Koondhar et al. 2021).

Challenging the global issue of climate change cre-
ates risks in  physical systems, ecosystems, economy 
and society; therefore, assessing climate risks across 
domains and in a manner meaningful to decision-mak-
ers is a major scientific challenge (Adger et al. 2018). 
The ongoing climate change increasingly threatens the 
agricultural sector as  well by  jeopardising ecosystem 
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resilience and global food security. Although yields 
of  all crops have increased in  recent decades, this 
growth is primarily attributed to advances in plant ge-
netics, the introduction of new crops, and soil manage-
ment practices (FAO 2017). However, it is challenging 
to differentiate the direct impact of changing tempera-
tures and precipitation on crop productivity, consider-
ing additional contributing factors such as the spatial 
distribution of agricultural land, economic conditions 
of land use, and soil fertility (Termorshuizen and Op-
dam 2009). In terms of research on natural aspects, the 
main emphasis is on creating crop models for dynamic 
simulation of  crop growth and the impact of  climate 
change on crop growth (Hasegawa et al. 2022).

Bioeconomic modelling represents a tool for assess-
ing ex-post or ex-ante the impact of political and tech-
nological changes on agriculture, the economy, and the 
environment (Janssen and Van Ittersum 2007). A bio-
economic model is defined as a model that links farm 
decisions on  resource management with current and 
alternative production options, describing input-out-
put relationships and related externalities (Dreschler 
and Watzold 2001; Rashford et al. 2008).

Models that integrate bio-physical indicators with 
profitability indicators allow the analysis and evalua-
tion of the consequences of various management deci-
sions in agriculture. Integrated modelling enables the 
examination of decision-making processes for farmers 
at various levels, ranging from the farm level to the na-
tional scale.

The main goal of the study is to present the applica-
tion of integrated modelling frameworks at farm levels 
and to  propose a  framework for studying the conse-
quences of  climate change through a  scenario-based 
approach at the farm level.

MATERIAL AND METHODS

To develop a farm-level integrated modelling frame-
work enabling economic optimisation of  crop pro-
duction on  the farm level with respect to  crop man-
agement with a focus on maximising net returns after 
considering environmental parameters, farm data from 
Rišňovce were used. Rišňovce is a village located in the 
Nitra Region of Slovakia, situated in the western part 
of the country.

The model farm was characterised by soil conditions 
that are generally suitable for agricultural activities. 
The region has a mix of different soil types, including 
chernozem, cambisols, fluvisols, and phaeozems. Basic 
data involved five crops (alfa, spring barley, rapeseed, 

maize, and wheat), and five soil types / land covers 
represented by sondes (SA50, SA160, SA 163, SA164, 
SA165). Figure 1 represents the model farm and soil 
types for all sondes. Averaged economic data (per 
crop) were derived from farm financial reports (price, 
variable and fixed cost, labour, subsidies) for the period 
2010–2020.

To create an  integrated model estimating the risk 
of  yield variability and nitrogen emissions for three 
climate change scenarios for the simulated period 
2020–2100 [for RCP (Representative Concentration 
Pathways) scenarios RCP 2.6, RCP 4.5, RCP 8.5].

RCP 2.6 aims to limit global temperature rise to well 
below 2 °C above pre-industrial levels, with efforts 
to keep the increase below 1.5 °C. RCP 4.5 represents 
a scenario where greenhouse gas emissions peak around 
2040. RCP 8.5, on the other hand, is a high emissions 
scenario where greenhouse gas concentrations contin-
ue to rise throughout the 21st century, leading to signifi-
cant warming and climate impacts (Moss et al. 2010).

Data from the model farm Rišňovce (economic data) 
were used, employing climate simulations through 
the DAISY model provided by  the partner institu-
tion VÚPOP (Soil Science and Conservation Research 
Institute), National Agricultural and Food Center 
(NPPC). DAISY represents a  one-dimensional model 
of agroecosystems, simulating crop growth and devel-
opment, soil water dynamics, thermal regime, organic 
matter balance, and nitrogen dynamics in agricultural 
soils. The managerial model enables the development 
of complex management scenarios. The model recog-
nises two types of activities, direct action and condi-
tional decision. A direct action is a simple activity such 
as plowing, sowing or harvesting. A conditional deci-
sion regulates the execution of activities such as fertili-
sation, irrigation or harvesting (Takáč and Šiška 2011).

The model outputs take the form of crop production 
and indicators representing nutrient and water bal-
ances in crops and soil, as well as nutrient, water, and 
temperature stress on crops during their development 
(Takáč and Šiška 2011).

As for the crop production management, there were 
irrigation managements: rainfed/irrigated (rfmgt/ir-
mgt) and five variants of nitrogen fertiliser load (zero 
2_N0, low 3_NN, medium 4_NS, high 5_NH, unlim-
ited 6_NA). Biophysical crop responses were simulated 
based on climate input from five sondes using DAISY 
simulations for the period 1965–2020 (averages).

Farm-level integrated modelling. Integrated mod-
elling combines several types of models into a bottom-
up optimisation model. The framework integrates 
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agronomic information and biophysical models into 
a regional land-use optimisation model from the bot-
tom up, considering the heterogeneity of  alternative 
costs for selecting agricultural production and envi-
ronmental outcomes (Mitter et al. 2015).

The linar programming (LP) optimisation model for 
the farm takes the form:

πs,m = Σr(YLDs,c,m × price) –  
         – (Lc + VCc + FerCc,m + IrrCc,m) (1)

maxπ = Σs,m (πs,m × xs,m) (2)

s.t. = Σs(aa,m × xr,m) ≤ bs (3)

ΣmMs,c,m × θs,m ≤ bs,c (4)

Σcbs,c ≤ Σm(θs,m ΣcMs,c,m) (5)

where: π – net returns; YLD – hectare yield of the crop 
in  dry matter; L – labour costs; VC – variable costs; 
FerC – fertiliser costs; IrrC – irrigation costs; indices 
s, c, m – sonde, crops, and crop management, respec-
tively; objective function is subject to spatial constraints 
(b) available for sonde s; A – Leontief production func-

Figure 1. Rišňovce farm with 
identification of  sonda/land 
cover

Description of land cover type: 
50 clayey brown earth, 160 
sandy brown earth, 163 sandy-
loam chernozem, 164 loam-
sandy chernozem,165 clayey 
chernozem
Source: Author’s own map based 
on LPIS (2022)

50
160
163

165
164
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tion, the technological matrix for transforming inputs 
into crop products; θ – decision variables; M – matrix 
of crop mixes observed at farm.

In LP form, the model includes a convex combina-
tion of observed crop mixes. Non-linear program ac-
counts with calibration to  averages of  observed crop 
shares and crop management reality of farm.

To process all models, the GAMS base module soft-
ware was used with the CPLEX solver installed (license 
S220627|0002AO-WIN).

RESULTS

Farm integrated modelling. Average crop yields 
are higher when farms adopt more intensive farming 
techniques, such as increased nitrogen loads and irri-
gation. This is a crucial factor, especially when farmers 
must face the consequences of  changing climate and 
its impact on crop production systems. Adapting farm-
ing practices on land can ensure a positive relationship 
between agriculture and ecology (Bhusal et al. 2022).

By utilising an LP model for the integration of bio-
physical and economic data in  agriculture, farmers 
can make data-driven decisions regarding crop selec-
tion and production management, ultimately aiming 
to maximise profitability while considering factors like 
land availability and soil type variations.

The LP model enables the optimisation of crop pro-
duction to  select net returns, maximising produc-
tion choices with respect to management and subject 
to land endowment by soil type. Crop responses simu-
lated by the DAISY model provide data on yields and 
environmental parameters for different crop manage-

ment options (nitrogen application and irrigation). The 
model farm incorporated a convex mixture of observed 
crop mixes. The optimal approach, where net returns 
equal EUR 817 651 while adhering to the best crop pro-
duction management option, was obtained by using the 
LP model for maximising net returns. Table 1 provides 
the report on the distribution of optimal management 
production choices with respect to irrigation manage-
ment and nitrogen fertiliser load based on the results 
of the LP model. Given the model results, on soil type 
50 (SA50), a combination of high nitrogen input with 
irrigation for alfalfa and maize (189.46 ha) and non-
limited nitrogen input with irrigation for spring barley, 
rapeseed, and wheat (220.47 ha) appeared to be the op-
timal management production option.

Accordingly, Table 1 provides crop mix for each soil 
type as the observed crop mix yielding the highest net 
returns. It  represents the report on  the crop produc-
tion choice for each crop on each soil type. Thus, given 
soil type 50, clayey brown earth (SA50), alfalfa should 
be grown on 30.1 ha and maintained with a high ni-
trogen fertiliser load and irrigation (NV_irmgt); on the 
other hand, maize should be grown on 159.36 ha and 
managed similarly. Based on  the LP model results, 
spring barley (18.11 ha), rapeseed (34.67 ha), and 
wheat (167.69 ha) should all be irrigated and fertilised 
with an unlimited nitrogen load (NA_irmgt). For sandy 
brown earth (SA160), 14 ha of  alfalfa was optimally 
managed with a medium nitrogen load with irrigation, 
while 69.21 ha of maize was managed as a high nitrogen 
fertiliser load without irrigation, thus rainfed. Sandy-
loam chernozem (SA163) in optimal solution 79.82 ha 
was managed with low nitrogen fertilisers load and ir-
rigation, and 122.02 ha was managed with unlimited 

Table 1. Linear programing model, net returns maximizing crop production choices – crop, management, land allo-
cation (in ha)

Sonde
Crop management Land allocation

5_NV_rfmgt 3_NN_irmgt 4_NS_irmgt 5_NV_irmgt 6_NA_irmgt ALFA BARS MAIZ RAPE WHEW
SA50 – – – 189.46 220.47 30.10 18.11 159.36 34.67 167.69
SA160 69.21 – 14.00 – 230.55 14.00 24.10 69.21 134.16 72.29
SA163 – 79.82 – – 122.02 10.62 18.08 36.83 69.20 67.11
SA164 – – – – 65.51 – 10.43 – 25.13 29.95
SA165 – – – – 264.08 7.55 0.87 124.39 72.48 58.79

Crop production management: 5_NV_rfmgt - high nitrogen fertilizers load, rainfed management; 3_NN_irmgt – low 
nitrogen fertilizers load, irrigated management; 4_NS_irmgt - low nitrogen fertilzers load, irrigated management; 5_NV_
irmgt- high nitrogen fertilizers load, irrigated management; 6_NA_irmgt – unlimited nitrogen fertilizers load, irrigated 
management; Crop mix: ALFA – alfaalfa, BARS – spring barley, RAPE – rapeseed, MAIZ – maize, WHEW – wheat.
Source: Authors’ own data processing of the model farm PD Rišňovce based on simulated data from the DAISY model
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nitrogen fertilisers load and irrigation. Loam-sandy 
chernozem (SA164) and clayey chernozem (SA165) 
were optimally managed as crop management with un-
limited nitrogen fertiliser load and irrigation.

To account for the efficiency of water use, the envi-
ronmental indicator water use efficiency (WUEF) was 
assessed, pointing out the amount of produced grain 
dry matter or dry matter from harvested biomass per 
unit of water consumed (transpiration + evaporation 
from the soil), in  case of  rainfed/irrigated manage-
ment. Table 2 represents the WUEF for crop produc-
tion choices – crop selection, management, and land 
allocation – that maximize net returns, as an exten-
sion of the LP model

Based on Table 2, the type of soil (Figure 1) had a large 
effect on  WUEF, which is clearly indicated by  hav-
ing higher WUEF for irrigated scenarios, sandy soils 

(SA160) would be able to produce sufficient yields even 
aligning with the rainfed management. Yields  would 
be  triggered by  higher application of  nitrogen. How-
ever, a  rainfed or  irrigated scenario depends on  the 
specific environmental conditions, water availability, 
and crop requirements.

An indicator showing the amount of nitrogen (kg/
ha) consumed by  the crop for the formation of  har-
vested biomass during the growing season is  the so-
called nitrogen harvest (Nharvest). The Nharvest (Ta-
ble 3) was an important indicator in determining crop 
yields because it was positively associated with grain 
yield. The relationship between this indicator and crop 
grain yield depends on  crop genotypes and soil and 
crop management practices used (Fageria 2014). The 
most important practices that can improve Nharvest 
were, among others, using adequate nitrogen loads, 

Table 2. Linear programming model, WUEF for net returns maximizing crop production choices – crop, manage-
ment, land allocation (kg/ha)

 Sonda
WUEF

5_NV_rfmgt 3_NN_irmgt 4_NS_irmgt 5_NV_irmgt 6_NA_irmgt
SA50 74.17 45.64 59.57 74.12 83.56
SA160 68.84 57.62 66.15 68.84 69.19
SA163 77.67 58.39 66.25 80.12 84.25
SA164 76.40 57.99 72.35 80.83 82.03
SA165 74.53 47.47 61.27 75.01 83.88

Crop production management: 5_NV_rfmgt – high nitrogen fertilizers load, rainfed management; 3_NN_irmgt – low 
nitrogen fertilizers load, irrigated management; 4_NS_irmgt – low nitrogen fertilizers load, irrigated management; 5_NV_
irmgt- high nitrogen fertilizers load, irrigated management; 6_NA_irmgt – unlimited nitrogen fertilizers load, irrigated 
management; WUEF – water use efficiency
Source: Authors’ own data processing of the model farm Rišňovce based on simulated data from the DAISY model

Table 3. Linear programming model, Nharvest for net returns maximizing crop production choices – crop, manage-
ment, land allocation (kg/ha)

 Sonda
Nharvest

5_NV_rfmgt 3_NN_irmgt 4_NS_irmgt 5_NV_irmgt 6_NA_irmgt
SA50 583.45 378.98 491.95 632.74 894.76
SA160 411.04 278.92 354.07 411.04 441.97
SA163 629.75 413.71 514.33 655.38 845.13
SA164 567.63 370.20 483.80 602.43 715.30
SA165 592.95 395.24 507.62 642.31 899.47

Crop production management: 5_NV_rfmgt high nitrogen fertilizers load, rainfed management; 3_NN_irmgt – low nitrogen 
fertilizers load, irrigated management; 4_NS_irmgt – low nitrogen fertilizers load, irrigated management; 5_NV_irmgt 
– high nitrogen fertilizers load, irrigated management; 6_NA_irmgt – unlimited nitrogen fertilizers load, irrigated man-
agement; Nharvest – nitrogen harvest
Source: Authors’ own data processing of the model farm Rišňovce based on simulated data from the DAISY model
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planting nitrogen-efficient crops, and using appropri-
ate crop mixes.

The non-linear programing (NLP) model enabled 
the optimisation of  crop production to  select net re-
turns, maximising production choices with respect 
to  observed reality on  the farm. For the model farm, 
the NLP model was calibrated to averages of observed 
crop shares. The objective value of net returns, as de-
termined by  the calibrated model, was EUR 464  119. 
The results of the calibrated model are shown in Table 
4, which also shows how the land was allocated among 
the crops. The farm’s observed crop management was 
described as rainfed management and the use of high-
nitrogen fertilisers (NV_rfmgt).

When comparing the optimal solution for the LP and 
the NLP model, the distribution of land among crops 
changed. The LP model allows for the variety of crop 
managements respecting the biophysical responses 
of  crops leading to  net return maximisation. On  the 
other hand, the NLP model represents the calibration 
of the model to observed farm reality. It  is important 
to note two points here: i) the farm currently operates 
without irrigation, thus is entirely rainfed; and ii) un-
limited nitrogen fertilisers represents environmental 
bias as well as legislative bias.

The model in the LP, as well as the NLP form, assumes 
that prices remained constant. This assumption allows 
it to focus on optimising crop management practices and 
assessing the environmental impacts, particularly re-
garding crop yield variability and nitrogen consumption.

Integrated model for estimating the risk of crop 
yield variability and nitrogen emissions. The crea-
tion of a proposal for an integrated model framework 
focused on  modelling risks related to  climate change 
scenarios was aimed at estimating the risks associated 
with the variability of crop yields and nitrogen emis-
sions due to changing climate.

Table 5 represents the correlation analysis of select-
ed biophysical data: YLD (crop yield of grain or dry bio-
mass yield), NYLD (nitrogen content in  the dry mat-
ter of grain), NS (number of days during the growing 
season with nitrogen stress), WS (number of days dur-
ing the growing season with water stress), N_F (total 
amount of nitrogen as NO3 and NH4 fertiliser applied 
during the growing season), N_H (total amount of ni-
trogen consumed by crops for biomass formation dur-
ing the growing season), N_R [total amount of nitrogen 
(kg/ha) consumed by crops for post-harvest residue bi-
omass formation during the growing season], N_Fixa-
tion (total amount of nitrogen fixed by crops during the 
growing season), N_Leak (total amount of leached ni-
trogen from the soil during the growing season). Nitro-
gen indicators enabled us to measure and evaluate en-
vironmental impacts effectively. It is obvious that crop 
yield was most affected by nitrogen consumption and 
therefore was also affected by nitrogen stress and water 
stress. When crops do not receive an adequate amount 
of nitrogen, they may experience nitrogen stress, lead-
ing to reduced yields, and lower-quality produce. Ni-
trogen stress and water stress were interconnected 
factors affecting crop yield. Water stress occurs when 
crops do not receive enough water for optimal growth 
and development. The combined effects of  nitrogen 
stress and water stress can significantly limit the pro-
ductivity and health of crops, ultimately affecting their 
overall yield.

Figure 2 illustrates changes in  hectare yields based 
on data simulated by the DAISY model for the historical 
period 1965–1990 and the historical period 1991–2020. 
Responses of  individual crops are monitored for six 
management scenarios: 1_00: no  nitrogen application 
(manure application), 2_N0: no nitrogen application, 3_
NN: low nitrogen input, 4_NS: medium nitrogen input, 
5_NV: high nitrogen input, 6_NA: unlimited nitrogen 

Table 4. Non-linear programing model, calibrated crop production choices crop, management, land allocation (in ha)

Sonda
Crop management Land allocation

5_NV_rfmgt ALFA BARS MAIZ RAPE WHEW
SA50 409.93 34.03 35.95 173.65 84.29 82.01
SA160 313.76 16.41 73.74 77.30 74.35 71.97
SA163 201.84 7.18 38.21 64.99 42.85 48.62
SA164 65.51 – 16.38 13.08 16.38 19.67
SA165 264.08 4.89 33.12 121.18 47.14 57.75

Crop production management: 5_NV_rfmgt – high nitrogen fertilizers load, rainfed management; crop mix: ALFA – 
alfaalfa, BARS – spring barley, RAPE – rapeseed, MAIZ – maize, WHEW – wheat
Source: Authors’ own data processing of the model farm PD Rišňovce based on simulated data from the DAISY model
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Table 5. Correlation matrix of bio-physical data characterizing the crop response to changing management practices 
under altered climate scenarios

Pearson’s r YLD NYLD NS WS N_F N_H N_R N_Fixation N_Leak
YLD – 0.81 –0.55 –0.35 0.55 0.79 0.44 0.22 0.18
NYLD 0.81 – –0.53 –0.32 0.68 0.91 0.57 0.26 0.23
NS –0.55 –0.53 – –0.21 –0.40 –0.48 –0.24 –0.26 –0.15
WS –0.35 –0.32 –0.21 – –0.14 –0.29 –0.17 –0.17 0.05
N_F 0.55 0.68 –0.40 –0.14 – 0.75 0.76 –0.25 0.20
N_H 0.79 0.91 –0.48 –0.29 0.75 – 0.47 0.12 0.20
N_R 0.44 0.57 –0.24 –0.17 0.76 0.47 – –0.22 0.22
N_Fixation 0.22 0.26 –0.26 –0.17 –0.25 0.12 –0.22 – –0.08
N_Leak 0.18 0.23 –0.15 0.05 0.20 0.20 0.22 –0.08 –
NH4_Volat 0.04 –0.07 0.02 –0.01 0.04 –0.10 0.15 –0.06 0.18
Denit 0.18 0.30 –0.01 –0.36 0.21 0.20 0.20 0.26 –0.08

YLD – dry bio mass yield; NYLD – nitrogen in YLD; NS – nitrogen stress; WS – water stress; N_F – amount of nitrogen 
applied; N_H – amount of nitrogen  consumed by crops; N_R – amount of nitrogen consumed by crops for post-harvest 
residue bi omass formation; N_Fixation – nitrogen fixed; N_Leak – nitrogen leakage; NH4_Volat – NH4 volatilization; 
Denit– denitrification
Source: Authors’ own data processing of the model farm PD Rišňovce based on simulated data from the DAISY model
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Figure 2. Simulated variability of crop yields on the model farm between two periods (1965–1990 and 1991–2020) 
for 6 management scenarios

Crop production management: 1_00_rfmgt – no nitrogen application (manure application) rainfed, 2_N0_rfmgt – no nitrogen 
application rainfed, 3_NN_rfmgt – low nitrogen input rainfed, 4_NS_rfmgt – medium nitrogen input rainfed, 5_NV_rfmgt – 
high nitrogen input rainfed, 6_NA_rfmgt – unlimited nitrogen input rainfed; 1_00_irmgt – no nitrogen application (manure 
application) irrigated, 2_N0_irmgt – no nitrogen application irrigated, 3_NN_irmgt – low nitrogen input irrigated, 4_NS_irmgt 
– medium nitrogen input irrigated, 5_NV_irmgt – high nitrogen input irrigated, 6_NA_irmgt – unlimited nitrogen input irrigated
Source: Author’s own processing based on crop yield simulations by the DAISY model (NPPC, VUPOP)
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input. Each scenario was simulated as  rainfed (rfmgt) 
and with irrigation (irmgt). It was possible to observe 
a decline in yields of individual crops (especially barley, 
maize, and rapeseed) between the periods 1965–1990 
and 1991–2020. It  was also apparent that irrigation-
based management strategies resulted in better hectare 
yields, particularly for maize.

Figure 3 represents simulations of  crop yield vari-
ability for the climate change scenario RCP 4.5. The 
selected RCP scenario projected a peak in greenhouse 
gas emissions around 2040, highlighting the impor-
tance of  considering expected changes in  precipita-
tion patterns as a result of increased emissions (Moss 
et al. 2010). From Figure 3, it is evident that a decrease 
in yields can be anticipated, especially for crops sensi-
tive to water availability, such as maize.

On the other hand, based on  simulated responses, 
it was clear that irrigation application leads to a signifi-

cant increase in  yields, particularly for economically 
significant crops like maize and wheat.

Based on  the integration of  simulated biophysical 
data on crop yields, nitrogen, and water balance with 
economic data, it was possible to derive an integrated 
model for estimating the risk of crop variability and ni-
trogen emission under climate change.

Figure 4 represents a  proposition of  the integrated 
risk estimation model, showing the model inputs (I) 
and outputs (O) for the sample farm. The ultimate 
model outcome would represent optimal production 
choice under the changing climate on the farm level.

DAISY simulated biophysical data. Information 
obtained from simulations of the physical and biologi-
cal processes affecting crop growth, water use, and ni-
trogen availability can shed light on the interactions be-
tween elements in agricultural systems. The proposed 
model took into account the relationship between crop 
yields, nitrogen levels, and water balance. Understand-
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Figure 3. Simulated variability of crop yields on the model farm between two periods (2021–2060 and 2060–2100) 
for the climate change scenario RCP 4.5, considering 6 management scenarios

Crop production management: 1_00_rfmgt – no nitrogen application (manure application) rainfed, 2_N0_rfmgt – no nitro-
gen application rainfed, 3_NN_rfmgt – low nitrogen input rainfed, 4_NS_rfmgt – medium nitrogen input rainfed, 5_
NV_rfmgt – high nitrogen input rainfed, 6_NA_rfmgt – unlimited nitrogen input rainfed; 1_00_irmgt – no nitrogen 
application (manure application) irrigated, 2_N0_irmgt – no nitrogen application irrigated, 3_NN_irmgt – low nitrogen 
input irrigated, 4_NS_irmgt – medium nitrogen input irrigated, 5_NV_irmgt – high nitrogen input irrigated, 6_NA_irmgt 
– unlimited nitrogen input irrigated
Source: Author’s own processing based on crop yield simulations by the DAISY model (NPPC, VUPOP)
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ing these dynamics is crucial for assessing agricultural 
productivity and sustainability.

Farm optimisation model. The model incorporates 
economic data, including market pricing, variable costs, 
and economic indicators. This makes it possible to take 
economic considerations into account when evaluating 
the effects of crop variability and nitrogen emissions.

Risk assessment. The likelihood and magnitude 
of crop yield variations under changing climatic cir-
cumstances can be predicted using an integrated risk 
estimation model. Farmers and policymakers can use 
this information to  help in  planning and decision-
making. The model may bring some insight into the 
risks of  nitrogen pollution and the effects of  agri-
cultural practices on  the environment by examining 
nitrogen levels and emission patterns within agricul-
tural systems.

An integrated risk estimation model for agriculture 
is  a  sophisticated tool that helps assess and manage 

various risks that farmers may face in their operations. 
The proposed model incorporates data from multiple 
sources, such as weather patterns, soil quality, market 
conditions, and crop health, to provide a comprehen-
sive analysis of potential risks. Model in this form can 
help farmers make informed decisions related to crop 
selection, resource allocation, pest control, and more. 
Ultimately, an  integrated risk estimation model aims 
to  enhance the overall resilience and sustainability 
of agricultural practices.

DISCUSSION

Crop simulation model results are used in bio-eco-
nomic farm models to  evaluate how climate change 
and technological advancements affect crop yields. 
Climate change is  expected to  boost crop yields 
in  North-West Europe, according to  crop simulation 
models. They do  not, however, consider the conse-

I

I

I

O

O

O

O

O

DAISY
agro-ecological model

Farm optimisation
model

RISK assessment
risk modelling

with CC scenarios

Soil data from individual
soil site sonde (50, 160,
163, 164, 165) – profile,
horizon, granularity, ...

Climate data – temperature,
precipitation, reference 

evapotranspiration

Management – nutritient 
inputs, irrigation

Bio-physical data; environmental
parameters (by management)

Crop mixes
Economic data by crops – 

variable cost, price, subsidies

Simulated biophysical data
by CC scenario (RCP 2.5; 4.5; 8.5)

Economic data by crops –
variable cost, price, subsidies

Risk aversion parameters levels

Bio-physical data – crop yields,
nitrogen balance, water

balance, WUEF 

Environmental parameters – 
nitrogen fixation, nitrogen
leak, NH4 volatilisation, 

denitrification, SOC content

Net returns maximising
production choices with
respect to management.

Optimal production choices
with respect to environmental

parameters

Optimal production choices
under changing CC scenarios

Policy incentives impact

Figure 4. Description of the integrated risk estimation model

I – model input; O – model output; CC – climate change; SOC –  soil organic carbon; WUEF – water use efficiency
Source: Author’s own processing
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quences of catastrophic occurrences like droughts and 
protracted wet weather. The anticipated benefits of cli-
mate change on crops may be offset by the increased 
frequency of such extreme events and the anticipated 
extra harm from pests and illnesses (Paas et al. 2016). 
Under the condition of  land endowment by soil type, 
the LP and NLP models allow for the optimisation 
of crop production to choose net returns, maximising 
production decisions with regard to management. The 
DAISY model’s simulation of crop responses provides 
the information needed to determine yields and envi-
ronmental parameters for various crop management 
strategies (such as irrigation and nitrogen application). 
Alternative approaches, such as  crop growth simula-
tion models, provide a  speedier and less expensive 
means of  examining how agricultural land manage-
ment practices affect crop yields and the environment. 
When creating agricultural land management strate-
gies, modelling can yield findings that are somewhat 
dependable as long as the models are tested and cali-
brated using trustworthy field data (Santhi et al. 2006; 
Zhao et al. 2016; Choruma et al. 2019). Crop models, 
for instance, have been used to improve management 
techniques like water and fertiliser application at  the 
farm and plot levels (Khan and Walker 2015). Effective 
responsiveness and adaptation are necessary to  deal 
with the negative consequences of climate change and 
maintain agricultural productivity. Given the abun-
dance of existing adaptation strategies, both research-
ers and farming communities have acknowledged 
this (Olesen et al. 2011). Based on Steidl et al. (2015), 
changes in crop species or dates of sowing and harvest-
ing are examples of  short-term adaptation, whereas 
long-term adaptation calls for structural adjustments 
to the farming system, new water-saving land manage-
ment strategies, and improved irrigation use efficiency 
(or the breeding of new crop varieties, which is outside 
the scope of farms).

Considering the allocation of land for different crops 
when using the combined biophysical and economic 
data enables us to respect the agronomic requirements 
of  crop production management while maximising 
profit. According to  the presented farm-integrated 
model for the historical period, depending on the soil 
type, the optimal crop management scenario appeared 
to  be  higher nitrogen fertilisers load and irrigation 
in order to maximise net returns. Crop yields were sig-
nificantly impacted by the frequency of irrigation and 
the rate at which nitrogen is applied. Grain yields were 
generally lower in non-irrigated areas without nitrogen 
treatment, and they tended to rise with increased ni-

trogen application frequency and rate (Cui et al. 2021; 
Jia et al. 2021).

This follows earlier results Bullová et al. (2020), who 
stated that the optimal way of  cultivation must cor-
respond with agronomic requirements and is  influ-
enced by the production area determined by soil type. 
In a previous study (Svetlanská et al. 2017), the authors 
emphasised the importance of  production selection, 
stating that high nitrogen input and irrigation repre-
sent a conventional way of managing crop production, 
which can lead to  environmental pressures in  terms 
of  water resource depletion and soil degradation. 
Investments in  improved technology can motivate 
farmers to transition to lower-input, sustainable man-
agement of  crop production that still ensures a  high 
economic return on crop production. Similarly, Mitter 
et al. (2015) concluded that environmental degradation 
caused by crop cultivation can be  reduced by adjust-
ing management practices and increased incentives 
from policymakers in the form of support for sustain-
able land use management. The environmental impact 
of crop cultivation can be reduced by adjusting man-
agement practices and increased incentives from poli-
cymakers. In contrast to intensive farming, the innova-
tive methods and new approaches toward sustainable 
farming system enhance the agricultural productivity, 
and quality of life of farmers (Frank et al. 2014).

With the global threat caused by  climate change, 
farms are becoming vulnerable. By proposing an inte-
grated modelling framework for assessing the optimal 
crop management decisions under different climate 
change scenarios on the farm level, we are able to iden-
tify solutions which would lead to profit maximisation 
but also yield protecting decisions in terms of nitrogen 
input application and use of  irrigation. This is  in line 
with other research findings claiming that advancing 
climate change risk assessment is  essential for more 
informed decisions reducing negative climate change 
impacts (Zscheischler et al. 2018; Simpson et al. 2021). 
One way of  modelling such risk is  to use the mean-
variance approach (Markowitz 1952, 1987). For exam-
ple, Roche and McQuinn (2004) used mean-variance 
portfolio optimisation to investigate optimal land allo-
cation decisions taking into consideration agricultural 
policy change, and Barkley et  al. (2010) applied it  to 
optimise the selection of wheat varieties in a  specific 
region. The empirical evidence of Delfiyan et al. (2021) 
revealed that farmers can manage the negative impact 
of climate change effectively by adapting their current 
farming practices. Thus, farmers can assess and man-
age a variety of risks associated with their operations 
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with the use of an advanced tool as a risk estimate mod-
el. The model explorations confirmed that a  sudden 
lack of irrigation water will cause a shock and raise the 
demand for an adapted crop sequence, as mentioned 
by Schuler et al. (2020). Both models in this study dem-
onstrated that there is potential for adaptation: switch-
ing the crops cultivated could result in better outcomes 
on the ‘profit’ and ‘soil organic matter balance’ metrics 
while requiring less effort than irrigated scenarios. This 
research revealed that the crops chosen for a  rainfed 
scenario were primarily wheat, barley, and sunflower, 
when maximising profits was the primary goal. Rape-
seed, soybean, maize, or  sorghum were added in dif-
ferent amounts to wheat and barley in FarmDESIGN’s 
outcomes, where other goals (labour, soil organic 
matter balance) were just as significant as operational 
profit. However, operating profitability under rainfed 
conditions will be significantly lower than in a  future 
scenario with irrigation, given the crops and the asso-
ciated assumptions and limits we applied. Alternative 
methods or  revenue streams must be  implemented 
in order to close this disparity.

CONCLUSION

This scientific contribution aimed to  demonstrate 
the use of  an integrated model combining biophysi-
cal and economic data at  the farm level and to  sug-
gest a  framework for scenario-based research on  the 
effects of climate change at the farm level. Guidelines, 
models, and frameworks that were developed to facili-
tate the process of  planning adaptation are examples 
of methods and tools for adapting to climate change. 
The first research objective involved creating a  farm-
explicit integrated model for the identification of op-
timal crop management practices respecting different 
soil types at the farm. The integrated model combined 
agronomic information and biophysical models into 
land-use optimisation model in  a  bottom-up system, 
considering the heterogeneity of  alternative costs 
in the selection of agricultural management practices 
(management choice). Models in  LP and NLP forms 
revealed that the distribution of  land among crops 
enabled a  range of  crop management strategies that 
maximise net return while considering the biophysi-
cal reactions of  the crops. Higher nitrogen fertiliser 
load and irrigation appear to  be the ideal crop man-
agement scenarios, depending on  the soil type, ac-
cording to the farm-integrated model for the historical 
period. It  should be  highlighted that the model farm 
should consider investing in irrigation since it did not 

already use irrigation. The importance of considering 
market dynamics in  future research should be recog-
nised. Environmental policies and climate change may 
influence agricultural prices. As we refine our model, 
incorporating variable price scenarios could provide 
a more comprehensive understanding of the economic 
impacts at both the farm and regional levels.

As a  part of  the second research objective, an  in-
tegrated model for estimating the risk of  crop yield 
variability and nitrogen emissions was proposed. The 
proposed framework involved DAISY simulated bio-
physical data, farm optimisation model and risk assess-
ment. The framework had the potential to bring some 
insight into the risks of  nitrogen pollution induced 
by climate change under different RCP scenarios and 
the effects of agricultural practices on the environment 
by  examining nitrogen levels and emission patterns 
within agricultural systems.

Through the integration of biophysical and economic 
data, this proposed model offers a comprehensive ap-
proach to assessing the risks associated with crop vari-
ability, nitrogen emissions, and their interactions in the 
context of  a  changing climate. This integrated model 
can support evidence-based decision-making and sus-
tainable agricultural practices in response to the chal-
lenges posed by climate change.

The suggested framework will be  expanded into 
a  risk assessment model at  the farm level, which will 
serve as the foundation for an upgrade on the regional 
level, in order to guide future research.
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