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PREFACE 

Water supply planning has t r a d i t i o n a l l y  been c a r r i e d  o u t  i n  
two s t eps :  f i r s t ,  water  requirements a r e  fo r eca s t ;  and second, 
water systems a r e  planned t o  m e e t  t h e se  requirements.  This  
t r a d i t i o n a l  approach served water  planners w e l l  u n t i l  t h e  1960's. 
Then c o s t s  began t o  i nc r ea se  d ramat ica l ly  bu t  r egu l a to r s  f a i l e d  
t o  al low revenues t o  inc rease  a s  rap id ly .  A s  a  r e s u l t ,  t h e  
t r a d i t i o n a l  approach t o  water supply planning became inadequate. 
To reduce c o s t s  and reduce waste, p lanners  began t o  consider  
water conservat ion p o l i c i e s .  Moreover, some planners  began t o  
explore  t h e  m e r i t s  of us ing an economic approach t o  system planning. 

This  monograph r e f l e c t s  my involvement i n  both t h e  economic 
research  requ i red  t o  develop a genera l  economic approach t o  water 
system planning and t h e  a t tempts  t o  apply benef i t -cos t  ana ly s i s  
t o  t h e  eva lua t i on  of water  conservation p o l i c i e s .  With encourage- 
ment from Janusz Kindler ,  Chairman of t h e  Resources and Environ- 
ment Area of t h e  I n t e r n a t i o n a l  I n s t i t u t e  f o r  Applied Systems 
Analysis  (IIASA), I have at tempted t o  p resen t ,  i n  a  sys temat ic  
manner, my r e f l e c t i o n s  on my research  and app l ied  experience.  
The work was c a r r i e d  o u t  wi th in  t h e  framework of t h e  p r o j e c t  
"Water Management: Modeling Techniques f o r  Est imating Regional 
Water Demand and f o r  Demand/Supply In t eg ra t i on"  supported j o i n t l y  
by IIASA and t h e  S t i f t u n g  Volkswagenwerk, Hannover, Federa l  Republic 
of Germany. I a n t i c i p a t e  t h a t  t he se  r e f l e c t i o n s  w i l l  a s s i s t  
r esea rchers  and p r a c t i c a l  p lanners  i n  developing i n t e g r a t e d  
research  programs on t h e  economics of water supply and a l s o  i n  
applying economic ana ly s i s  t o  t h e  p r a c t i c a l  problems t h a t  f a ce  
water system planners .  



The monograph develops t h e  general  p r i n c i p l e s  required t o  
apply t h e  economic approach. The i n t e n t  i s  t o  f ami l i a r i ze  t h e  
reader with t h e  economic way of th inking about water conservation.  
I n  addi t ion ,  s p e c i f i c  examples and numerical r e s u l t s  a r e  presented. 
Hopefully, t h i s  w i l l  allow the  readers  t o  ga in  an apprec ia t ion  
f o r  t he  "how to t t  aspec ts  of t h e  economic approach t o  planning. 

I n  c los ing ,  I would l i k e  t o  express my apprec ia t ion  t o  those 
who of fe red  valuable  comments on ea r ly  d r a f t s  of t h i s  monograph: 
Andy Anderson, J e s se  Ausubel, Lennart de Mare, Don Er lenkot te r  
and Janusz Kindler. 

Steve H. Hanke 
Baltimore, Maryland U.S.A. 
December 1982  
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Chapter 1 

WATER SUPPLY AND ECONOMICS 

Traditional Water Supply Planning 

Two elements a r e  central  t o  t rad i t iona l  water supply planning: a 

water requirements forecast  and a cost minimizing s t ra tegy  t o  supply the  

requirements. Three s teps a re  necessary t o  produce a water requirements 

forecast.  F i r s t ,  a population forecast i s  made. This is usual ly 

accomplished by extrapolating past trends. Second, a forecas t  of per  

capi ta  water use is prepared. Again, the technique used is cornonly an 

extrapolation of past  trends. A water requirements forecast  i s  then 

produced by multiplying t h e  population f igures  times t h e  per  cap i t a  use 

f igures  . 
After a water requirements forecast is produced, the  problem s h i f t s  t o  

an evaluation of the  a l te rna t ive  means of meeting the  requirements. This 

problem is one of select ing a cost minimizing supply strategy. 

Traditional water supply planning, therefore, accepts water requirements 

as  a given,and then cost minimizing systems a r e  designed t o  m e e t  t h e  fixed 

o r  given requirements. A t  no point i n  the  t rad i t iona l  process a r e  benefits 

balanced.with costs. Rather, t he  benefits associated with meeting water 

requirements a re  implici t ly  assumed t o  always exceed costs .  The only real 

analyt ical  problem is t o  minimize the costs  of meeting a f ixed  objective,  

namely the  water use requirements. 

Until t he  19609s, t he  t rad i t iona l  method of  water supply planning 

appeared t o  serve water systems well. Supplies were usual ly adequate, 

and t o t a l  revenues were suf f ic ien t  t o  meet the  real cos ts  of supply. 



The s ix t ies ,  however, brought with them inflation. Inflat ion increased 

the costs of making investments in  both new and replacement f a c i l i t i e s .  

These cost increases contributed t o  serious problems f o r  water supply 

systems. Water supply revenue sources are regulated d i r e c t l y  o r  indirect ly 

by p o l i t i c a l  o r  quasi-polit ical bodies. Hence, revenues a r e  not determined 

by the f r e e  play ofsupply and demand in unregulated markets. This arrange- 

ment f o r  se t t ing  allowed revenues and the f a c t  that regulatory bodies have 

e i the r  been unwilling o r  incapable of responding t o  cost  increases has 

resulted i n  insuff icient  water system'revemres. Herein l i e s  the core of 

the problem faced by water system planners. 

Without suff ic ient  revenues, water systems have begun t o  deter iorate  

and new capacity has become increasingly d i f f i c u l t  t o  finance (Carron and 

MacAvoy, 1981). Faced with a financial c r i s i s ,  same water supply planners 

have begun t o  question t radi t ional  planning methods. Rather than assuming 

tha t  requirements a r e  fixed and must be met, planners are beginning t o  ask: 

what a r e  the benefits and costs associated with a l te rnat ive  water conserva- 

t ion  policies? (Binnie International (Australia) Pty, Ltd. e t  al., 1977; 

Hanke, September, 1978; Hanke, 1980(a) ; Hanke, 1980Cb) ; Banke, February 

1981; Hanke, April 1981; Hanke, 1982; and Gil l i land and Hanke, 1982.) 

The Economic Approach t o  Water Supply Planning 

The economic approach requires tha t  the  benefits and costs of a l te rnat ive  

pol icies  be estimated. Some water supply planners have begun t o  adopt the  

economic approach t o  water supply planning, The object ive of t h i s  approach 

is t o  avoid waste i n  the allocation of resources. The economic approach 

involves forecasting demands, not requirements (see Figure 1.1) . These 

demands have an economic meaning: f o r  each level  of water use, the demand 
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Figure . . 1.1 "Requirements" and Demands 



represents the incremental o r  marginal valuation tha t  consumers place on 

t h  
tha t  un i t  of water use. For example, the value o r  benefit  of the A- un i t  

of water consumed i n  Figure 1.1 is equal t o  AB. The demand function, is  

therefore, a marginal o r  incremental benefit  function. A supply function 

(Figure 1.2), which represents the  least-costly combination of resources 

required t o  produce a l te rna t ive  quant i t ies  of water, is the  second element 

t h  
i n  the  economic approach. To produce the A- uni t  of water i n  Figure 1.2, 

t h  
the cost is AB, which represents the incremental o r  marginal cost of the  A- 

unit .  Therefore, the  supply function is a marginal cost function. To 

avoid waste and a l loca te  resources e f f ic ien t ly ,  plans must be made so  tha t  

demands and supplies a r e  equal. In Figure 1.2, t h i s  balance of marginal 

benefi ts  and costs occurs a t  the  consumption-production l eve l  OA. 

The economic balance of demands and supplies avoids waste and is 

e f f i c i en t  because: 

(1) Production is increased by using low-valued resources f i r s t .  

Production i s  increased by moving along the  supply function from 

l e f t  t o  r igh t  (from D t o  B i n  Figure 1.2). 

(2) Production is allocated t o  high-valued uses f i r s t .  Production 

i s  allocated by moving along the  demand function from l e f t  t o  

r igh t  (from C t o  B i n  Figure 1.2). 

(3) Production and consumption (supply and demand) a r e  balanced 

a t  an e f f i c i en t  level.  Production and consumption a r e  expanded 

as  long as t h e i r  marginal costs a r e  l e s s  than t h e i r  marginal 

benefits,  and production and consumption a re  balanced a t  the 

point where t h e i r  marginal benefits equal t h e i r  marginal costs. 

In our example (Figure 1.2), demand and supply a r e  e f f i c i en t ly  
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balanced a t  an output level of OA. We do not expand production 

and consumption beyond t h i s  level ,  s ince  any increment would 

generate marginal costs  t ha t  exceed marginal benef i ts ,  and t h i s  

would r e s u l t  i n  economic waste. Alternatively,  i f  we fail t o  

expand output t o  OA, economic waste occurs, s i nce  t h e  marginal 

costs  of expansion up t o  OA a r e  less than t h e  marginal benef i ts .  

The Plan f o r  t h i s  Monograph 

The purpose of t h i s  monograph is t o  apply economic analysis  t o  t h e  

problem of urban water supply planning. Since t h e  economic approach 

represents a departure from the t r ad i t i ona l  approach, emphasis is placed 

on the  development of general economic pr inciples  and t h e  p rac t i ca l  

appl icat ion of these pr inciples  t o  t he  spec i f ic  problems t h a t  f requent ly  

confront those who a re  responsible for  urban water supply planning and 

management. 

The plan fo r  t he  monograph is t o  f irst  present t h e  bas ic  concepts and 

t oo l s  f o r  analysis.  This is accomplished i n  Chapters two through f i v e  and 

Appendix 1. The concepts and too l s  a r e  applied t o  urban water supply 

problems i n  Chapters s i x  and seven. In the  eighth and f i n a l  chapter, w e  

discuss t h e  policy implications and ins igh ts  which can be derived from 

using economic analysis t o  in tegra te  urban water supply and demand. 



Chapter 2 

A BENEFIT-COST MODEL 

On the  Economic Objective and Criterion f o r  Choice 

In order t o  make statements about the  des i r ab i l i t y  of an action o r  

policy, we must s t a t e  our objective and determine a c r i t e r i o n  f o r  choice. 

Since we limit the scope of our analysis t o  economics and the  attainment 

of efficiency i n  the al locat ion of resources, our object ive is t o  maximize 

the  net  benefi ts  from the  use of resources. We wish, therefore,  t o  

maximize the  ne t  benefi ts  ( the difference between the  t o t a l  benef i t s  arid 

t o t a l  costs)  of using resources. This i s  accomplished by pursuing an action 

o r  policy as long a s  its marginal o r  incremental benefi ts  exceed its inarginal 

or.incrementa1 costs.  I f  t h i s  c r i t e r ion  fo r  choice is employed, resources 

w i l l  be used e f f i c i en t ly  and waste w i l l  be avoided. 

We i l l u s t r a t e  t he  pr inciples  and define the terms, which w e  use 

throughout t h i s  monograph, by the use of Figure 2.1. Our object ive is  t o  maximize 

the  difference between t o t a l  benefits  and t o t a l  costs. Since the  marginal 

benef i t  function is the  first der ivat ive of the t o t a l  benef i t  function, 

we determine the  t o t a l  benefi ts  of consumption by in tegra t ing  the  marginal 

benefi t  function over the relevant range of water use (for numerical 

examples, see: Powers, 1978). I f  water is  rationed t o  t h e  highest 

valued users first, s t a r t i n g  at point C on t h e  demand function first and 

then moving t o  the r igh t  toward point B as consumption is increased, then 

the  t o t a l  benefi ts  from consuming OA u n i t s  will be equal t o  the  area OCBA. 

Since the  marginal cost  function is the  first der iva t ive  of t h e  t o t a l  

cost  function, we determine the  t o t a l  costs  of production by integrat ing 

the  marginal cost  function over the relevant range of water production. 
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~f water is produced from the l eas t  costly sources first, then the t o t a l  

costs  of producing OA uni t s  w i l l  equal ODBA. 

In our example and with our cr i te r ion  fo r  choice, we can observe 

tha t  net  benefits a re  at a maxintum when OA un i t s  a re  e f f i c i e n t l y  

consumed and produced. A t  t h i s  level of water use, demands and supplies  

a r e  balanced and net  benefits are equal t o  the area CBD, which is t h e  

difference between t o t a l  benefits (OCBA) and t o t a l  cos ts  (ODBA), An 

e f f i c i en t  plan should be targeted t o  produce OA units e f f i c i e n t l y  and t o  

ra t ion  them eff ic ient ly  t o  consumers. 

The method t h a t  w i l l  achieve an e f f i c i en t  outcome and avoid is 

t o  produce an ef f i c i en t  level of output, OA (see Figure 2.1). and r a t i o n  

it by se t t ing  pr ice  equal t o  OE, the marginal cost  of OA units .  By 

applying t h i s  method, the ef f ic ient  output w i l l  be produced; it w i l l  be 

ratQned t o  the  highest valued uses; and as a m s u l t ,  t h e  n e t  benefirs w i l l  

be at  a maximum, area DCB. 

If the  p r i ce  i s  s e t  abwe OE, the  e f f i c i en t  level, e c o n d c  waste w i l l  

'occur and the  e f f i c i en t  plan w i l l  not be achieved. For wrample, a pr ice  of 

0.7 w i l l  r e s u l t  i n  consumption of OK and net  benefi ts  equal to the m a  

DCML. To eliminate the  waste associated with t h i s  suboptimal result, we  

must lower the  price t o  OE and increase output t o  OA- This w i l l  increase 

efficiency, s ince the marginal benefits of consumption exceed the marginal 

costs  of production i n  the  range of output and consunrption ICA. The h m a s e  

i n  ne t  benefi ts  w i l l  equal the area IMB. 

If the  price i s  s e t  below OE, the  e f f i c i en t  level,  economic waste w i l l  

occur and the  e f f i c i en t  plan w i l l  not be achieved. There are several  



p o s s i b i l i t i e s  t h a t  could exist .  One poss ib i l i ty  involves the  necessity of 

nonprice rationing. We use a simple example t o  i l l u s t r a t e  the  nature of 

the waste associated with t h i s  possibi l i ty .  If the output is OA, t h e  

e f f ic ien t  level,  and the  pr ice  i s  s e t  a t  OG, then the  quantity of water 

demanded would exceed the system's output by AH units.  To ra t ion  the  

capacity OA and r e t a in  the  pr ice  of OG, we must employ some form of nonprice 

rationing. If we could devise a "perfect" nonprice rationing mechanism -- 
one which would eliminate the uses represented by the segment of the  demaad 

function BF -- and if this could be iniplemented with no administrative costs,  

then we could obtain the e f f i c i en t  output, r a t ion  consumption t o  the  highest 

valued uses, and obtain the  maximum net  benefits. However, such a system 

of nonprice rationing cannot be devised. Although a nonprice rat ioning 

system can constrain consumption t o  OA uni ts ,  it cannot guarantee that  

only the  highest valued uses, represented by the  segment CB on the  demand 

function, w i l l  be served (Hanke, 1980(b)). I n  fac t ,  some of t h e  lower 

valued uses, which a r e  represented by the segment of the  BF of the  demand 

function, w i l l  be subst i tuted f o r  some of the higher valued uses, which 

are  represented by segment CB on the demand function. As a resu l t ,  t h e  

t o t a l  gross benefi ts  of OA u n i t s  of consumption with nonprice rat ioning -- 
which would equal the area OCBA, i f  consumption was al located t o  the  

highest valued uses first -- w i l l  be l e s s  than the  area OCBA. Hence, with 

nonprice rationing, t he  ne t  benefits of OA un i t s  of consumption w i l l  be 

l e s s  than the  area DCB, which represents the  maximum net  benef i t s  of OA 

output and consumption. I n  addition t o  these reduced benefits,  nonprice 

rationing w i l l  impose another cost, the administrative cos t  of the nonprice 

rationing system. 



Another poss ib i l i t y  t ha t  can occur when the  p r i ce  is set below OE i s  

the  following: nonprice ra t ioning i s  not imposed; then excess demands 

ex i s t  ( i f  the  pr ice  i s  OG and output is  OA, excess demands equal AH); t h e  

qua l i ty  of service deter iorates ;  and p o l i t i c a l  pressure t o  expand capacity 

r e su l t s .  In t h i s  example, t he  t o t a l  demands of OH can be m e t  by expanding 

output with an increment i n  capacity of AH. This expansion w i l l  be wasteful 

because t h e  marginal costs  exceed t h e  marginal benef i t s  i n  the range of 

output and consumption AH. The waste of expanding output and consumption 

f r o m  OA t o  Okf i s  determined by subtract ing the  gross cos t s  of t h a t  

increment, which equal t h e  area  ABIH, from the  gross benef i ts ,  which equal 

the  area ABFH. The r e s u l t  i s  a ne t  l o s s  or  waste of t h e  increment i n  

capacity equal t o  the  area BIF. 

A Benefit-Cost Model f o r  Water Conservation 

Since water supply systems' revenue sources a r e  regulated and have 

been l imited i n  many cases t o  leve ls  t h a t  a r e  below the real c o s t s  of 

maintaining ex is t ing  systems, some water supply planners have abandoned 

the  t r ad i t i ona l  approach t o  planning. Instead, they have begun to 

focus on water conservation programs and methods of managing water demands. 

In  addit ion,  some water supply planners have begun t o  use  t h e  eccmomic approach 

as a means of evaluating a l t e rna t ive  water conservation pol ic ies .  In 

short ,  t i g h t  budget cons t ra in t s  have introduced a new d i s c i p l i n e  i n t o  water 

supply planning. The economic approach has offered a new means of  avoiding 

economic waste and accommodating f i s c a l  discipl ine.  

The economic approach d i f f e r s  from t h e  t r ad i t i ona l  approach, which 

assumes t h a t  meeting water use requirements is  des i rab le  per se. Rather, 



t he  economic approach has a s  i t s  objective t he  avoidance of economic waste 

and the  maximization of ne t  benefits. Given t h i s  objective,  meeting f ixed 

water use requirements o r  a l te rna t ive ly  conserving water may o r  may not  be 

desirable.  The d e s i r a b i l i t y  of e i t he r  of these po l i c i e s  w i l l  depend on t h e  

benef i t s  and cos t s  associated with each. Since t h e  determination o f  benef i t s  

and cos t s  is cen t r a l  t o  t he  economic approach t o  planning and s ince  water 

conservation is  t h e  dominant pol icy present ly  under consideration, we focus 

d i r e c t l y  on the  measurement of t h e  benef i ts  and cos t s  of water conservation, 

However, we should note t h a t  the  economic t o o l s  that are developed are 

necessary and can be used t o  evaluate t he  benef i t s  and cos t s  o f  system 

expansion. 

To evaluate t he  d e s i r a b i l i t y  of conservation pol ic ies ,  we need a 

benefit-cost model f o r  water conservation. Based on t h e  economic concepts 

presented, we first def ine a change i n  t o t a l  benefits. The change is t h e  

savings i n  resources which is expected t o  r e s u l t  from t h e  introduct ion of a 

water conservation policy. The incremental benef i t s  (0) a r e  calculated 

by taking the  product of t he  reduction i n  water use  r e su l t i ng  from the 

policy (Q) and the  marginal cost  of water (MC): 

(2.1) AB = Q MC. 

Second, we def ine the  change i n  cos t s  (AC). The change is the sum of: 

(1) t h e  resource cos t s  t o  the  water u t i l i t y  o r  authori ty  of adopting the  

policy (U) (These could include such items as water meters, conservatian 

devices, leakage detection programs, educational programs and enforcement 

programs,), (2) t he  resource costs  t o  t h e  consumers (E) (These could 

include such items a s  t h e  purchase and i n s t a l l a t i o n  of conservation devices, 



the  value of time and e f for t  used t o  r epa i r  leaks.), and (3) t h e  value of 

l lusefullf  consumption foregone (F) (This f igure  is equal t o  benef i t s  

l o s t  because consumption i s  l e s s  a f t e r  t he  policy is introduced.), Hence, 

the  incremental cos t s  a r e  represented by: 

With these  def in i t ions ,  and our object ive  of maximizing ne t  benef i t s  

from any conservation policy, we can s t a t e  t h a t  any conservation policy is  

des i rab le  only i f  t h e  change i n  benef i t s  exceed o r  are equal t o  t he  change 

i n  costs :  

Thus, equation (2.3) becomes our c r i t e r i o n  f o r  choice o r  our 

benefit-cost  model, for  determining whether a conservation pol icy  is  

desi rable .  



Chapter 3 

DEMAND ANALYSIS 

To implement our benefit-cost model (Equation 2.3), we must analyze 

the  demand for  water. Two types of demand information are  required. F i r s t ,  

we must ident ify the determinants of water use tha t  can be modified o r  

controlled by water authorit ies.  Each of these determinants i s  a potent ial  

water conservation policy, and i s ,  therefore, a candidate f o r  benefit-cost 

analysis. Once we ident ify each determinant, we must be able t o  predict  

the impact of each on water use. That is,  we must be able  t o  predict  water 

use without the conservation policy and water use with the  policy. The 

difference between these two values is  the change i n  water use which r e s u l t s  

from the  use of the conservation policy. I t  is equal t o  Q i n  our benefit-  

cost model. 

Second, we must be able t o  ident ify the demand function f o r  water. 

This is necessary, so t h a t  we can estimate the  value of wusefulw con- 

sumption foregone when a water conservation policy is introduced. Once 

we have estimated the  reduction i n  water use t h a t  w i l l  accompany a 

conservation policy, we must estimate the  value of water t h a t  w i l l  

no longer be consumed. This value is represented by F i n  our benefit-cost 

model. 

On the  Determinants of Water Use 

Price - the pr ice charged per m3 of water is  one of the  determinants 

of water use. Price is  controlled d i rec t ly  by water au thor i t ies  and/or 

regulatory bodies. Since water use is  negatively correlated with price,  pr ice  

is considered t o  be an important conservation measure. To measure the 



impact of p r i ce  changes on water use (Q i n  Equation 2.3), we need t o  est imate 

p r i ce  e l a s t i c i t i e s  of demand f o r  various types of urban water use; where t he  

p r i ce  e l a s t i c i t y  i s  a dimensionless number t ha t  expresses t he  responsiveness 

of water use  t o  changes i n  price.  For r e l a t i v e l y  l a rge  changes i n  pr ice ,  

the p r i ce  e l a s t i c i t y  is given by the  following formula: 

where e = t h e  p r i ce  e l a s t i c i t y  of demand, P = or ig ina l  p r i c e  of water, 

Q = t he  or ig ina l  quant i ty  of water use, AP = t h e  change i n  pr ice ,  and 

AQ = t he  change i n  water use. In  cases where AP and AQ become small, 

then t he  e l a s t i c i t y  formula given by Equation 3.1 becomes: 

In al l  cases, t h e  p r i ce  e l a s t i c i t y  coef f ic ien t  w i l l  have a negative 

sign, indicat ing a negative re la t ionsh ip  between water use and pr ice .  Also, 

when t h e  absolute value of t h e  e l a s t i c i t y  coeff ic ient  i s  g rea t e r  than 1.0, 

water use i s  r e l a t i ve ly  responsive t o  a change i n  pr ice;  whereas, water 

use is  r e l a t i ve ly  unresponsive, when the  absolute value of t h e  coef f ic ien t  

i s  l e s s  than 1.0. 

There have been many s tud ies  i n  which p r i ce  e l a s t i c i t i e s  have been 

estimated f o r  urban water use (Hanke, September 1978). Most of them have 

been conducted i n  the  United S ta tes .  Since they vary widely i n  qual i ty ,  

we should use caution when using the  r e su l t s .  

The most r e l i a b l e  est imates of p r i ce  e l a s t i c i t i e s  a r e  derived from 

studies  t h a t  have t h e  following cha rac t e r i s t i c s  ( fo r  more d e t a i l s ,  see: 

Hanke and Mehrez, December 1979 and Hanke and deMar6, August 1982): 



(1) metered water use data i s  used t o  construct t h e  demand models; 

(2) data a r e  disaggregated by user c lass ,  and these user  c lasses  a r e  

defined, s o  t h a t  they contain customers who a re  s imi la r  and 

thought t o  have s imilar  responses t o  pr ice  changes; 

(3) water use and pr ice  data a re  collected a t  one location fo r  a 

r e l a t i ve ly  long time-series, with a r e l a t i ve ly  la rge  number of 

r e a l  p r i ce  changes. 

One study t h a t  has these charac te r i s t ics  was conducted i n  Malmii, 

Sweden (Hanke and deMar6, August 1982). Table 3.1 provides a summary 

of t h e  data  t h a t  were collected.  Several points  a r e  pa r t i cu l a r ly  note- 

worthy. The t ime-series da ta  used were f o r  14 semi-annual time periods, 

s t a r t i n g  with t h e  l a s t  quar ter  of 1971 and ending with t h e  t h i r d  quar ter  

of 1978. The cross-section data  t h a t  were used were from a s t r a t i f i e d  

sample of 69, single-family houses i n  Malm'd. (The 69 houses were separated 

i n t o  two groups. One group was constructed i n  t he  period 1936-1946 and 

t h e  o ther  1968-1969.) The water use data  were obtained from semi-annual, 

metered water use records. The income data  were from income t a x  records. 

The number of adul t s  and children occupying each house and r a i n f a l l  per 

semi-annual period were a l l  from records maintained by t h e  c i t y  of Malm6. 

3 The pr ice  of water was the  r e a l  marginal p r ice  per  m . Its value remained 

constant f o r  each house in each b i l l i n g  period, regardless of  t h e  quanti ty 

of water t h a t  each house used. During t h e  period under study t h e  nominal 

p r i ce  per  m3 was changed f i v e  times and t h e  r e a l  p r i ce  changed i n  12 of 

t h e  14 semi-annual periods. 

Using a pooled, time-series, cross-section approach, t he  demand fo r  

r e s iden t i a l  water demand i n  Malmii was estimated. The model used was a 



Table 3.1. Characteristics of the  Malmtl data. 

Variable 
Standard 

Mean Deviation 
Type of 

Data 

Quantity 75.2106 36,2893 TS-CS 

Income 49497.0000 21781,0000 TS-CS 

Adults 2.0500 0,7460 TS-CS 

Chi 1 dren 0.9260 1,0418 TS-CS 

Rainf a1 1 39.1324 7,7768 TS 

Age of Houses 0.5401 0.4986 CS 

Price of water 1,7241 0,3190 TS 

Notes : 

I t  is important t o  note tha t  the  data contain no proxies. The data 
represent r e a l  values f o r  the  ~ a r i a b l e s ~ s t u d i e d ,  

Quantity = quantity of metered water per  house, per semi-annual period, 
i n  m3. 

Income = r e a l  gross income per house i n  Swedish Crowns (actual values 
reported per  annum and i n t e q o l a t e d  values used f o r  mid-year 
periods). 

Adults = number of adults per house, per semi-annual period, 

Chi 1 dren = number of children per house, per  semi-annual period. 

Rainfall = r a i n f a l l  per semi-annual period/6, i n  nun, 

Age of Houses = a dummy variable with a value of 1 f o r  those houses b u i l t  
.between 1968 and 1969 and a value of 0 f o r  those houses 
-bui l t  between 1936 and 1946. 

Price of Water= r e a l  pr ice  in  Swedish Crowns per m3 of water, par  semi- 
annual period (includes a l l  water and sewer commodity 
charges tha t  a re  a function of water use), 

= time-series data (14 semi-annual periods, s t a r t i n g  with t h e  
last quarter of 1971 through t h e  first quarter  of 1972 and 
ending with the  second and th i rd  quarters of  1978, 

CS = cross-section data (69 houses which have remained with the  
same. head-of-household during the  seven-year study period, 

Prices and incomes were deflated t o  r e a l  values by using the  Swedish consumer 
price index. 

Source: Wanke and de Mare, August 1982) 



s t a t i c ,  equilibrium model t h a t  assumes a l i nea r  re la t ionship among the  

variables.  The r e su l t s  of applying ordinary l e a s t  squares regression 

analysis t o  the  da ta  a r e  contained i n  Table 3.2. 

The equation and estimates of parameters a re  s t a t i s t i c a l l y  s ignif icant .  

Furthermore, t he  s igns of the  independent variables a r e  a s  w e  expected. 

With the  r e s u l t s  obtained, e l a s t i c i t i e s  can be derived. I t  is the 

information on pr ice  e l a s t i c i t i e s  t h a t  is required t o  estimate t h e  impact 

of pr ice  changes on water use. This e l a s t i c i t y  information i s  summarized 

i n  Table 3.3. 

Recall t h a t  t o  evaluate the  benefits  and costs  of a p r i ce  increase, 

we must estimate Q i n  Equation 2.3, where Q represents t h e  change i n  water 

use t h a t  w i l l  r e s u l t  from a pr ice  increase. This i s  accomplished by.using 

pr ice  e l a s t i c i t i e s .  For example, if the  or ig ina l  p r i ce  f o r  water in  Malmij 

3 3 
was 2.0 Swedish Crowns per m , water use was 100,000 m and we consider 

a 50 percent p r i ce  increase, then consumption would decrease ( i f  a l l  

other  determinants of water demand remain constant) by 7.5 percent o r  

3 3 7,500 m . Hence, t he  value of Q i n  Equation 2.3 would equal 7,500 m . 
To make t h i s  calculation, a l l  we must do is multiply the  e l a s t i c i t y  (-.IS) 

times the  percentage pr ice  increase (.SO) and then multiply the  r e s u l t  

3 
(-. 075) times the  or iginal  water use (100,000 m ) . 

Water Use Restr ic t ions - Water use r e s t r i c t i o n s  a r e  regulat ions which 

require  water users t o  use t h e i r  exis t ing stock of water-using equipment 

i n  an involuntary way, so  t h a t  water use i s  reduced. Although these 

r e s t r i c t ions  a r e  widely used, primarily during droughts and short-term 

emergencies, there  is only one study which measures t h e  impact t h a t  

r e s t r i c t ions  have on water use and determines r e s t r i c t i o n  e l a s t i c i t i e s  

(Hanke and Mehrez, 1979) . 
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Table 3.3. Elas t ic i t ies  fo r  Malmll. 

. Variable Elas t ic i ty  

Income 

Adults 

Children 

Rainf a l  l 

Price of Water 
- - - -- 

Notes: 

The general concept of e las t ic i ty  as follows: 

elast icisy = dD I when D = the dependent variable and I = the  independent ar 5' 
variable. A l inear demand function has a different e las t i c i ty  at each 

point. I t  is suggested that  the mean values of D and I be used t o  

determine a single e las t i c i ty  fo r  l inear equations. For example, the price 
3 

e las t i c i ty  for  the demand model is  computed as follows: 

Source: (Hanke and de Mare, August, 1982) 



To conduct t h i s  study, multiple regression analysis  was used t o  

analyze time-series da ta  fo r  a 30-year period (1946-1975) f o r  Perth, 

Western Australia. During t h i s  period, water use r e s t r i c t i o n s  were 

employed i n  t he  summer months (December, January and February) i n  13  

of the  30 years studied. These r e s t r i c t i o n s  were directed a t  reducing sprink- 

l i ng  use f o r  r e s iden t i a l  water use. The r e s t r i c t i o n s  consisted of bans on t h e  

use of outside spr inklers .  The use of hand-held garden hoses was allowed. 

The equation of best  f i t  f o r  the  month of December was found t o  be: 

(3.2) loge Q = -4.35 + 2.509 log T e max -0.025 loge Rain -0.214 loge Res, 

where Q = mean da i ly  water use per  account i n  imperial gallons,  Tmax a mean 

maximum da i ly  temperature i n  OF for  each month, Rain = t o t a l  r a i n  i n  millimeters 

for  each month, and Res = a dummy var iab le  which receives the  value of 2, , 

if r e s t r i c t i o n s  were used, and the  value of 1, i f  r e s t r i c t i o n s  were not used. 

In much t h e  same way as pr ice  e l a s t i c i t i e s  allowed us t o  pred ic t  t he  

impact of p r ice  increases on water use, r e s t r i c t i o n  e l a s t i c i t i e s  allow us 

t o  predict  t h e  impact of water use r e s t r i c t i o n s  on water use. The restriction 

e l a s t i c i t y  i n  equation 3.2 is given by the  coeff ic ient  of loge Res and i s  

equal t o  -0.214. (Note t h a t  the  r e s t r i c t i o n  e l a s t i c i t y  f o r  January i s  

-0.222 and February is -0.162.) 

Using Equation 3.2, and s e t t i n g  Tmax = 86.4'~. Rain = 2 mu, and Res - 2 

with r e s t r i c t i o n s  and 1 without r e s t r i c t i ons ,  w e  compute estimates of water 

use f o r  December of 917 imperial gal lons  per account per day with r e s t r i c t i ons .  

For each day in  .December and f o r  the  average water customer, water use i s  

reduced by 127 imperial gallons o r  14 percent due t o  imposition of  water 



use r e s t r e i c t i ons .  Therefore, i f  we want t o  operat ional ize  our benefit-  

cost  model f o r  water use r e s t r i c t i o n s  on the  average customer i n  Perth, 

Western Australia f o r  t h e  month of December, we must s u b s t i t u t e  t h e  value 

of 3937 imperial gallons f o r  Q in  Equation 2.3. (To obtain  t h i s  value (3937), 

we subtract  790 from 917 and multiply by 31.) 

Even though only one study has produced r e s t r i c t i o n  e l a s t i c i t y  

estimates, we should note t h a t  these e l a s t i c i t i e s  a r e  consis tent  with 

engineers'  rules-of-thumb which a re  used i n  North America t o  predict  t h e  

impact of r e s t r i c t i o n s  (Grima, 1972). For example, engineers of ten assme 

t h a t  water use w i l l  be about 85 percent normal, when water use  r e s t r i c t i o n s  

of t h e  type evaluated i n  Perth a r e  imposed ( for  similar r e s u l t s ,  see 

T a b l e  3.4). 

As is the  case with p r i ce  e l a s t i c i t i e s ,  we must conclude t h a t  t h e  

lipsited information t h a t  we have on r e s t r i c t i o n  e l a s t i c i t i e s ,  must be 

applied with caution. Although our r e s t r i c t i o n  elasticities conceptually 

measure t h e  proper quant i t i es  which a r e  relevant f o r  a benefit-cost  study, 

they represent a l imited data  base: they a r e  f o r  r e s iden t i a l  water use, a t  

one location and f o r  one type of water use  r e s t r i c t i on .  To be ab le  t o  make 

general izat ions  t h a t  a r e  based on sound analysis,  w e  must conduct more 

s tud ies  with time-series data,  a t  d i f f e r en t  locat ions  and with various 

types of r e s t r i c t i o n s  f o r  d i f fe ren t  c lasses  of water users .  

Water Meters - Water meters provide another method f o r  conserving water. 

3 Consumers who purchase metered water must pay a p r i ce  p e r  m , while m e t e r e d  

customers do not. Hence, metered customers have a g rea t e r  i n c e n t i v e , t o  

control  t h e i r  u s e ,  than do m e t e r e d  customers. 



Table 3 . 4  The Impact o f  Water Use Restr ict ions  
(Perth, Western Australia) 

* 
Note that  the  exponents i n  each r a t i o  are the r e s t r i c t i o n  
e l a s t i c i t y  c o e f f i c i e n t s  

; 

Month 

December 

January 

February' 

I 

* 
Water U s e  

Ratio 

2 -0.214 

1 -0.214 

2 -0.222 

1 -0 .222 

2 -0.162 

1 o ' 1 6 2  
C 

Water Use with ~ e s t r i c t i o n s  
(a s  a % o f  use without restric- 

t i ons )  

86.2 

85.7 

89.4 

r 



The impact of water metering on water use can be seen by reviewing 

the  data  i n  Table 3.5. These data,  which were collected on a cross- 

sect ional  bas i s  from 18 locations in  the United S ta tes  ind ica te  t h a t  

res ident ia l  users who were metered used l e s s  water than those who were 

unmetered. In metered areas, average sprinkling use was about 45 percent 

t h a t  .of * unmetered areas. Household use for  domestic purposes was not  

s ign i f ican t ly  d i f f e r en t  between the  metered and unmetered areas. 

Another carefu l ly  controlled cross-sectional study i n  Israel, 

however, indicates  t h a t  household use can be reduced by t h e  i n s t a l l a t i o n  

of meters (Kamen and Dar, 1973). The Kamen and Dar study included a sample 

from apartments i n  which sprinkling use did not occur. Their  sample 

included I157 apartment u n i t s  (households), located within apartment 

buildings, which were metered with 1157 separate  water meters. I n  

addit ion,  469 apartment un i t s  located within apartment buildings, which 

were not individually metered,were included. In t he  second group, each 

whole building which contained apartment un i t s  was metered. A review 

of Table 3.6 indicates  t h a t  domestic use i n  the  apartment u n i t s  t h a t  were 

individual ly  metered was about 75 percent of those t h a t  were unmetered. 

Moreover, t he  use i n  each of the  metered apartments was more c losely 

grouped around the  mean use per apartment f o r  t he  metered than f o r  t h e  

unmetered apartment un i t s .  

One study. has evaluated the  impact of metering a t  one locat ion,  

Boulder, Colorado, U. S .A. over time (Hanke, 1970a) . Time-series da ta  

f o r  domestic and spr inkl ing use, from 1955-1968, and f o r  3086 customers 

were used. ~ e s i d e n t i a l  customers were unmetered from 1955-1961 and 

metered from 1962-1968. This study found t h a t  domestic and spr inkl ing 

water use were 65 and 51 percent, respectively,  of what they had been p r i o r  
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Table 3.5 Water U s e  i n  Metered and Unmetered Areas 

* 
Data were c o l l e c t e d  tor e ighteen l o c a t i o n s  i n  t h e  U.S.A. 
from October 1963 - September 1965, and a t  15 minute i n t e r v a l s .  

Annual Average 

Leakage and waste 
Household 
Sprinkling 

Total  

Maximum Day 

Peak Hour 

Source: (Howe and Linaweaver, 1967) 

Metered Areas (10)  Unmetered Areas (8) 

(gal/day per dwel l ing  u n i t ) *  

25 36 
24 7 236 
186 420 

458 692 

979 2354 

2481 5170 



Table 3.6. Annual Per Capita Water Use by Town and Type of  Metering. 

Apartment Unit Unmetered Apartment Unit Metered 

3 
Town (m apartment u n i t )  

Tel Aviv 

Jerusalem 56.0 

S.D. = 35.5 

S.E. = 4.37 

86.4 

S.D. = 58.2 

S.E. = 3.75 

Dan Region 87.3 

S.D. = 241.0 

S.E. = 20.1 

48.0 

S.D. = 38.4 

S.E. = 3.21 

65.3 

S.D. = 38.5 

S.E. = 2.31 

57.3 

S.D. = 36.4 

S.E. = 1.96 

Notes: 

1. S B .  = standard devia t ion 

2. S.E. = standard e r r o r  

Source: (Kamen and Dar, 1973) 



t o  metering. Moreover, t h e  impact on w a t e r u s e  of i n s t a l l i n g  meters i n  1962 

was s l i g h t l y  g rea t e r  i n  1968 than i n  1962. That is, t h e  long-term impact 

was s l i g h t l y  g rea t e r  than the  short-term impact. Table 3.7 presents  t h e  

da ta  required t o  determine the  impact of metering on water use ( the  value 

of Q i n  Equation 2.3). 

Leakage Detection and Control - Another determinant of water demand 

(water production), which can be controlled by water u t i l i t i e s ,  is  t h e  water 

production l o s t  through system leakage. Leakage demands do not come fnrm 

t h e  f i n a l  users,  s ince no one uses water l o s t  by leakage. Rather, they 

a r e  demands which a r e  a function of t he  physical cha rac t e r i s t i c s  of t h e  

systems and t h e  way i n  which systems a r e  operated. To determine t h e  impact 

of leakage detection and control  programs on water production, we must 

es t ab l i sh  a re la t ionsh ip  between inputs f o r  leakage de tec t ion  and control  

and t h e  output, which i s  reduced system leakage. With such a re la t ionsh ip  

o r  production function f o r  leakage detect ion and control ,  we can determine 

t h e  amount of water saved by applying various l eve l s  o f  detect ion and 

control  e f fo r t .  

Figure 3.1 represents  a production function f o r  l eak  detect ion and 

control  f o r  t he  c i t y  of Perth, Western Australia.  The values f o r  annual 

water saved can be used t o  determine Q i n  our benefit-cost  model. For 

example, t h e  impact of increasing leak detection and control  workers from 

A t o  B (Figure 3.1) is equal t o  CD, which is equal t o  Q i n  our benef i t -  

cos t  model . 
On t h e  Demand Function f o r  Water 

In addit ion t o  e l a s t i c i t y  estimates, our benef i t -cost  model requires  

us  t o  be ab le  t o  loca te  t h e  demand o r  marginal benefit  function over t h e  



Table 3.7. The Impact o f  Water Meters on Residential Use (Boulder, Colorado, U.S.A.) 

*Note that  the  exponents i n  each.Patio are the  metering elasticities. 

Water Use with Meters 
(as a percent o f  use  without meters: 

J 

6 5 

51 

Type o f  Use 

Domestic 

Sprinkling 

Water Use* 
Ratio 

2 
-0.62 

1 -0.62 

2 -0.97 

7 



Figure 3.1 Production Function for Leak Detection and Control 
(Perth, Western Australia). 

Leak Detection . 
and Control 
Workers 10,000 

dwell ings.  

Source: (Binnie ~ n t e r n a t i o n a l  (Australia) Pty-Ltd.,  et a l . ,  1977) 



range of consumption and output being considered. Recall t h a t  t he  a rea  

under t he  demand function equals the  t o t a l  benef i ts  of consumption. 

Therefore, t he  value of "useful" consumption foregone, F i n  our benefit-  

cost  model, i s  determined by measuring the  area under t h e  demand function 

from t h e  consumption leve l  which would e x i t  with t he  conservation policy 

t o  t h a t  which would e x i s t  without t he  conservation policy. 

I f  we can specify t he  demand function mathematically, we can compute 

t h e  value of t h e  area under t he  demand function over t h e  re levant  range 

of consumption by taking the  in tegra l  'of t he  demand function over t h i s  

range of consumption. For most p rac t ica l  problems, however, we w i l l  not 

have a demand function t h a t  can be used f o r  d i r e c t  computations of "useful" 

consumption foregone. We often only know t h e  p r i ce  per  m3 and the  leve l  of 

water use. That is, we only have information about one point on t h e  demand 

function. In  addit ion,  we w i l l  be able  t o  make a reasonable estimate of 

the  pr ice  e l a s t i c i t y  coeff ic ient  o r  a range of p r ice  e l a s t i c i t y  coefficients' .  

With these parameters, however, we can construct a demand function ind i rec t ly ,  I 
and determine t h e  value of  vvusefulvl consumption foregone. 

We begin by construction a l i nea r  demand curve (Demandl i n  Figure 3.2). 

We know tha t :  

P1 = t h e  pr ice  per  m3 of water i n  period 1, 

Ql = water use i n  period 1, and 

e = t h e  p r i ce  e l a s t i c i t y  coeff ic ient .  

We a l so  know t h a t  f o r  d i sc re t e  changes i n  price:  

We can determine the  slope of a l i nea r  demand function by rearranging (3.3) 



+ DemandZ 

Demand, 

Figure 3 .2  The Construction o f  Demand Functions 



Now l e t  us use our analysis t o  construct a demand function (Figure 3.2). 

We know the values of P1 and P2. Hence, we know the location of point A. 

We a lso  know the  value of the price e l a s t i c i ty  coeff icient  at point A. 

By solving Equation 3.4, we can determine the  slope of the  demand function 

tha t  b isec ts  point A. By using t h i s  information, we can construct a l inea r  

demand function (Demandl) tha t  has an intercept on the ve r t i ca l  ax is  of 

Figure 3.2 at  point B. To compute the value of "usefulw consumption 

foregone t h a t  is  associated with a reduction i n  consumption from Q t o  Q 1 2 ' 
we must: 

(1) take the  original  pr ice  (OP1) times t h e  reduced consumption (Q Q ). 
2 1 

This equals the area Q2EAQl on Figure 3.2. 
I 

(2) then take the  d i f f e ~ e n c e  between the  original  p r i ce  (OP ) and a pr ice  
1 

(Q C) tha t  would generate consumption at the  new lower level  2 

(OQ2). This difference is CE. We then multiply CE times t h e  

reduced consumption Q Q and multiply the  answer by 0.5. This 2 1' 

procedure yields the area CEA on Figure 3.2. 

(3) add the  r e su l t s  obtained i n  s teps (1) and (2) t o  obtain F, t h e  1 
value of "usefultt consumption foregone. In t h i s  case, F is equal I 
t o  the area Q2CAQl on Figure 3.2. 

Since the  absolute value of the pr ice  e l a s t i c i t y  coeff ic ient  increases 

as we move from point A t o  point B on our l inea r  demand curve and we usually 

only have one estimate of pr ice e l a s t i c i ty ,  it is often desirable  t o  use a 

constant e l a s t i c i t y  demand function t o  predict changes i n  water use. Such 

a constant e l a s t i c i t y  demand function is curvelinear, and has t h e  following 

functional form: 

(3 5) 



where Q = the  water use per period, a = nonprice fac tors  t h a t  determine 

water use, P = the  pr ice  per  m3 and e = t he  pr ice  e l a s t i c i t y  coeff ic ient .  

A constant e l a s t i c i t y  demand function is represented by Demand2 on Figure 

3.2, and can be derived by using the  same method t h a t  we employed in the  

l i nea r  case. 

I t  is  in te res t ing  t o  note t h a t  most conservation programs generate 

r e l a t ive ly  small reductions i n  use, when compared t o  t h e  t o t a l  water used. 

Therefore, t h e  use of e i t h e r  the  l i nea r  o r  curv i l inear  form of  t h e  demand 

function w i l l  generate values f o r  ttusefulw consumption foregone (F i n  Equation 

2.3) which are very close t o  each other. For example, i f  water use is  

reduced from Q t o  Q because of a conservation program, t h e  value of F 1 2 

would be equal t o  t h e  area QZCAQl with the  l i nea r  demand function and Q DAQ 2 1 

with the  curvi l inear  demand function. The difference between the  two measures 

of F is equal t o  CDA, and i s  r e l a t ive ly  small. Hence, even though the  constant 

e l a s t i c i t y  demand function i s  often the  most convenient f o r  predicting changes 

i n  water use, t h e  l i nea r  demand function associated with it can be conveniently 

used f o r  determining t h e  flusefulw consumption foregone. 



Chapter 4 

MARGINAL COST ANALYSIS 

In the  l a s t  chapter we discussed methods f o r  determining the  values 

f o r  reduced water use and ttusefultt consumption foregone. We dea l t  with 

t he  demand-side of t h e  conservation problem. I n  t h i s  chapter we deal with 

t h e  supply-side of t h e  problem and analyze t h e  marginal cost  of urban 

water supply. This allows us  t o  determine t h e  value of another term 

i n  our benefit-cost  model. 

On t h e  Nature of Water Supply Systems 

Before we analyze t h e  marginal cost  of water supply, it is important 

t o  describe the  general nature of urban water supply systems, s ince  the  

measurement of marginal cost  i s  an a c t i v i t y  t h a t  requires  a special ized 

knowledge of t he  engineering and technology of t h e  industry.  For our 

purposes it is important t o  dis t inguish among three  types of  works within 

a water system: (1) water source works, (2) water treatment works, and 

(3) water d i s t r i bu t ion  works. The water source works include a l l  of t he  

components associated with obtaining water and del iver ing it t o  treatment 

f a c i l i t i e s .  These components can include reservoirs ,  groundwater w e l l  

f i e l d s  and transmission mains. They a r e  necessary t o  supply water t o  

treatment f a c i l i t i e s  o r  generate annual y i e ld  f o r  t h e  water system. They 

a r e  usual ly  designed t o  meet average annual da i ly  demands. The s i z e  and 

nature  of source works a r e  a d i r ec t  function of  t he  water used by f i n a l  

users.  

In  many systems, t he  raw water generated by the  source works 

requi res  treatment p r i o r  t o  use. The treatment works usua l ly  include a 



treatment plant  and small storage reservoirs .  These f a c i l i t i e s  a r e  

generally designed t o  meet maximum day demands, which usual ly  occur i n  t h e  

summer sprinkling season. The s i z e  and nature of these f a c i l i t i e s ,  l i k e  

t h e  source works, a r e  a d i r ec t  function of t he  water used. 

After appropriate treatment, the  t rea ted  water is  ready t o  be 

dis t r ibuted.  The d is t r ibu t ion  works can consis t  of d i s t r i bu t ion  mains, 

storage reservoirs  and tanks. Although these f a c i l i t i e s  a r e  designed 

t o  meet maximum day and maximum hourly use, t h e i r  s i z e  and nature, 

unl ike source and treatment works, a r e  usually a d i r e c t  function of t h e  

number and type of users  a s  well as  regulations associated with t h e  

provision of water f o r  f i re  f igh t ing  purposes. 

On t he  Relevant Concept of Marginal Cost 

The concept of marginal cost  t h a t  we use depends on our objective.  

Our application of marginal cost  information i s  f o r  t h e  evaluation of t h e  

benef i t s  and cos t s  of water conservation programs, and our object ive i s  

t o  maximize the  difference between t o t a l  benef i t s  and cos t s  of these 

programs. Hence, we define the  marginal cost  of water so  t h a t  it allows 

us  t o  measure t he  opportunity cost  of using (or saving) an increment of 

water. To measure these marginal o r  forward-looking costs ,  w e  measure t h e  

value of o ther  products t h a t  t he  inputs used t o  produce water could have 

been used t o  produce. This measure d i f f e r s  from t h e  standard, static, nee- 

c l a s s i ca l  cost  analysis ,  which was represented i n  our discussions and 

diagramatic treatment of cos t s  i n  Chapter two. Our e a r l i e r  treatment d e a l t  

with an exposition of basic pr inciples  and the  method of reasoning required 

i n  t h e  economic approach. While our e a r l i e r  treatment was appropriate f o r  



pedagogic purposes o r  what is  often termed "textbook economicsBtl it is too 

s implis t ic  t o  be useful operationally (Turvey 1969). 

A general defini t ion of marginal cost, which allows us  t o  estimate 

the  opportunity cost of water use in  operational dynamic terms, i s  s t ra ight -  

forward. To estimate the  marginal capi tal  cost fo r  any year, y, we can 

compute the  present worth i n  year y of planned system costs  with a small 

increment i n  permanent output s t a r t ing  i n  year t, where t can equal y. 

We then subtract from it the  present worth i n  year y of system costs  with 

the  increment i n  permanent output s t a r t ing  i n  year t+l. This difference i s  

then divided by the  s i z e  of the  permanent increment i n  use, t o  obtain the  

marginal capi tal  cost per un i t  of output. Hence, the  marginal capi tal  

cost is  a measure of the  effect  of use upon the  t o t a l  system costs, where 

the  relevant t o t a l  system costs include only those investments which a re  

planned t o  sa t i s fy  increases i n  use o r  demand, and where the  opportunity cost 

is  measured i n  terms of a slowing down o r  a speeding up of  the  growth i n  

water use and associated investments. 

I t  should be recognized tha t  the  permanent output increment used t o  

estimate marginal capacity costs represents nothing more than a convenient 

analyt ical  device f o r  estimating the marginal impact, brought about by a 

small permanent change i n  output occurring i n  year t, on the  e n t i r e  future 

time stream of costs.  In a pract ical  sense, w e  need simply t o  forecast 

the future growth (or decline) i n  the demand f o r  water services up t o  the 

end of the planning horizon, superimpose a small constant increment on t h i s  

forecast,  and then observe the change in  present worth of the  f a c i l i t i e s  

resul t ing from the  constant increment i n  the  forecast- 



The marginal running cost per uni t  of output o r  use .is added t o  the  

marginal capi ta l  cost,  t o  yield a t o t a l  marginal cost f o r  each un i t  of 

output used. The running costs  include only those costs  tha t  vary with 

water use (largely e l e c t r i c i t y  and chemicals). To obtain a marginal 

running cost for  year y, we estimate the  t o t a l  running cost and divide by 

the  t o t a l  water used i n  year y. 

The economic interpretat ion of our def ini t ion of marginal cost  is 

of par t icu lar  in t e re s t .  The defini t ion and measurement of marginal running 

cost presents us with l i t t l e  diff icul ty .  This r e s u l t s  from the  f a c t  t h a t  

the opportunity cost of output occurs a t  the  same time when the  output is 

produced. The marginal capi ta l  cost concept, however, is more complex. 

In t h i s  ease, there  is  a displacement i n  time, between t h e  time when a 

permanent increment i n  use o r  output occurs, and the time when its 

opportunity cost  occurs. For example, when a permanent increment i n  use 

u t i l i z e s  an increment of system capacity, there  is  often no need f o r  

immediate reduction i n  any a l te rna t ive  outputs, and no opportunity cost  occurs 

a t  t h a t  time. However, resources which could be used t o  produce something 

e l s e  w i l l  eventually have t o  be used t o  produce system capacity sooner than 

was or iginal ly  planned. This represents the  opportunity cost of adding a 

permanent increment t o  use today. Our marginal cost concept is designed t o  

measure t h i s  "displacedw opportunity costs. If we s e t  pr ices  equal t o  

marginal cost, then consumers w i l l  receive a s ignal  as t o  t h e  opportunity 

costs  tha t  t h e i r  current use imposes. 

Another example w i l l  fu r ther  i l l u s t r a t e  our reasoning. The use of 

system capacity by a.permanent increase i n  use is analogous t o  t h e  use of 

an inventory of raw materials i n  a production process. If output o r  use 

occurs today, t he  opportunity cost of the  use of the  raw materials does 



not occur today. However, the use today r e su l t s  i n  the  inventory having t o  

be replenished sooner than planned. Hence, the  use of t h e  inventory today 

i s  not without i t s  opportunity cost.  I t  i s  t h i s  future o r  "displacedw 

opportunity cost t h a t  must be computed a s  of today, t he  time when it i s  

caused, i f  pr ices  of the  goods produced a re  t o  r e f l e c t  t h e  r ea l  costs  of 

the  resources used t o  produce them. Our marginal cost concept is designed 

spec i f ica l ly  f o r  measuring these "displacedn opportunity costs. 

Before computing the  marginal cost,  it is important t o  recognize 

t h a t  t h e  t o t a l  marginal cost,  calculated by the.method outlined above, may 

not be the  relevant t o t a l  marginal cost f o r  our benefit-cost model. If, 

as a r e su l t  of an or iginal  overinvestment i n  capacity o r  f a l l i n g  demands, a 

water u t i l i t y  has capacity tha t  is  la rger  than the  e f f i c i e n t  level ,  then the  

calculated t o t a l  marginal cost w i l l  exceed the  relevant t o t a l  marginal cost. 

We i l l u s t r a t e  the  existence of a divergence between t h e  calculated and 

relevant marginal cost by evaluating costs  i n  t h e  case where water demands 

a re  f a l l i ng  (see Figure 3.1). We begin by obsenring magnitudes i n  year one: 

the  current pr ice  i s  OP1; the  currend demand function is Demandl; the  

current water use and capacity i s  OQ and the  calculated t o t a l  marginal 1 ; 
3 cost isQlAper m . I f  t he  demand function is  f a l l i n g  and is equal t o  

DemandZ i n  year two, then the  calculated t o t a l  marginal cos t  'exceeds 

the  relevant marginal cost. 

The reason f o r  t h i s  divergence between t h e  calculated and relevant 

marginal costs  i s  because a pr ice  s e t  a t  the  calculated marginal cost  (op ) 1 

would cause the  water use t o  f a l l  t o  CQ2 i n  year two. Since t h i s  use level  

i s  below the  use level  where demand equals exis t ing capacity (OQ1), waste 

occurs. Waste can be eliminated by simply reducing t h e  p r i ce  t o  OP 2' a 



Figure 4.1. Calculated and Relevant Marginal Costs 

Total Marginal 
Cost (calculated) 

- - - I - - - -  

I I I 



level  t ha t  w i l l  equate use and capacity i n  year two. In t h i s  example, 

therefore, the relevant marginal cost i s  0B, which is equal t o  the  pr ice 

level t h a t  w i l l  equate use t o  capacity i n  year two. 

The relevant marginal cost i s  equal t o  the  calculated one, i f  a pr ice  

s e t  a t  t he  calculated marginal cost equates use with new capacity. If a 

pr ice  s e t  a t  t he  calculated marginal cost level causes use t o  f a l l  below 

exis t ing capacity, then the  relevant marginal cost is not equal t o  the 

calculated one. In t h i s  last case, the  relevant marginal cost is below the  

calculated one, and is equal t o  the level  a t  which a pr ice  s e t  equal t o  the.  

relevant marginal cost would equate use with existing capacity. The rule,  

therefore,  f o r  determining the  relevant marginal cost is t h a t  t he  relevant 

marginal cost is equal t o  the  calculated one, unless t h e  calculated one 

h , a t  a level  t ha t  exceeds the  pr ice  that  would equate use with exis t ing 

c a p s i t y .  I f  t h i s  l a t t e r  s i tuat ion exis ts ,  then the  relevant marginal 

cost w i l l  be lower than the calculated one, and w i l l  be equal t o  t h e  

pr ice  tha t  equates use and existing capacity. Si tuat ions t h a t  w i l l  cause 

the  calculated marginal cost t o  exceed the  relevant one w i l l  occur when 

demand is fa l l ing ,  per our example, or  when the  or iginal  capacity is too 

large.  

On the  Measurement of Marginal Cost 

In t h i s  section, we use our def ini t ion of marginal cost  t o  measure 

t h e  marginal cost  of water fo r  Perth, Western Australia. 

Perth, Western ~ u s t r a l i a l -  Perth is a rapidly growing c i ty .  For 

example, between 1946 and 1975 the  number of water accounts o r  connections 

' ~ o t e  t h a t  we w i l l  use Perth fo r  purposes of applying our benefit-cost 
model t o  various conservation programs (see Chapters 6 and 7). Also, note 
tha t ,  unless s ta ted  otherwise, a11 of our analyses w i l l  consider "normalw 
conditions. That is, a l l  water use, water supply and cost calculat ions a r e  
made on the  basis  of average (mean) conditions. These a r e  appropriate f o r  
a l l  long-term analyses 



increased from 96,000 t o  245,000. Perth is  located on Austral ia ' s  West 

Coast a t  a l a t i t u d e  of 32's. Its climate includes wet winters and dry 

summers. Most res idents  l i v e  i n  detached, single-family dwellings. 

Suburban sprawl i s  a common feature,  with the  density of.development 

being 8.5 dwellings per gross res ident ia l  hectare. 

In 1976 t h e  t o t a l  water produced was d i s t r ibu ted  t o  t h e  following user  

c lasses:  (1) metered res ident ia l  in-house use (20 percent), (2) metered 

res ident ia l  spr inkl ing (outdoor) use (36 percent), (3) metered non-residential  

use (15 percent), (4) unmetered use (14 percent)' and leakage (15 percent). 

In  addit ion t o  t h i s  d i s t r ibu t ion  among user  classes,  it is  of importance t o  

note t ha t  73 percent of t he  annual water produced o ~ c u r m d  i n  t h e  sunnner 

period (November-April) . 
Water Use and Investment Program - The f i r s t  s t e p  t o  implement our 

def ini t ion of marginal cost  i s  the  preparation of a water we forecast .  

Table 4.1 represents t h e  forecast  of water use f o r  Perth. This forecast  is 

based on the  assumption t h a t  the  policy var iables  controlled by the u t i l i t y ,  

. such a s  price,  w i l l  remain constant ( in  r ea l  terms) wer t h e  next 20 years. 

This forecast  is, therefore,  a requirements forecast .  The important 

elements of t he  forecast ,  f o r  purposes of marginal cost  analysis ,  are the  

permanent increments i n  annual use (AQA], summer use (AQs) and winter use 

( A ) .  I t  is these increments i n  use t h a t  determine t h e  schedule f o r  

investments i n  supply t h a t  a r e  s t r i c t l y  a function of water we. 

The next s t e p  i n  our analysis  is t o  forecast  the  investments t h a t  a r e  

required t o  meet t he  growth i n  water use. Once t h e  water use forecas t  has 

been constructed, we sequence and schedule the  pro jec t s  t h a t  w i l l  meet t h e  

requirements i n  the  l e a s t  cos t ly  manner. These a r e  summarized i n  Table 4.2. 
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Table 4.1  Annual Water U s e  and 'Connections 

N o t e s :  continued . . . , 

Year 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

r 

- 0 4 2  

- 0 4 6  

- 0 4 3  

-045  

-042  

,043 

- 0 4 1  

- 0 4 0  

. 0 30 

-030  

- 0 3 1  

- 0 3 1  

,030 

- 0 3 1  

,030 

.031  

- 0  30 

.031  

- 0 3 0  

- 0 3 1  

*Qs 

6 .0  

6.6 

6.7 

7.1 

7.2 

7 .3  

7 .6  

7.5 

6 . 0  

6.1 

6.4 

6.6 

6 .8  

7.0 

7.2 

7.4 

7 .7  

7.8 

8.1 

8.4 

c 

254.1 

263.6 

274.1 

284.8 

295.8 

307.0 

318.3 

229.8 

341.3 

351.5 

362.1 

373.0 

384.1 

395.7 

407.5 

419.8 

432.4 

445 .3  

458.7 

472.4 

QS 

140.9 

146.9 

153.5 

160.2 

167.3 

174.5 

181.8 

189.4 

196.9 

202.9 

209.0 

215.4 

222 .0  

228.8 

235 .8  

243.0 

250.4 

258 .1  

265.9 

274.0 

QW 

52.1  

54.3 

56.8 

59 .3  

61.9 

64.5 

67.3 

70.0 

72.8 

75.0 

77.3 

79.7 

82.1 

84.6 

87.2 

89.9 

92.6 

95.4 

98.4 

101.3 

QA 

193.0 

201.2 

210.3 

219.5 

229.2 

239.0 

249.1 

259.4 

269.7 

277.9 

286.3 

295.1 

304.1 

313.4 

323.0 

332.9 

343.0 

353.5 

364.3 

375.3 

*Qw 

2.2 

2.5 

2.5 

2.6 

2.6 

2.8 

2.7 

2.8 

2 .2  

2 . 3  

2.4 

2.4 

2.5 

2.6 

2.7 

2.7 

2.8 

3 .O 

2.9 

3.2 

*QA 

8.2  

9 .1  

9 . 2  

9.7 

9.8 

10 .1  

10.3 

10.3 

8 .2  

8.4 

8-8 

9 .0  

9 .3  

9 .6  

9 .9  

10.1 

10.5 

10 .8  

11.0 

17.6 
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Table 4.2 Planned System Investments 

Notes: continued .... 

Year 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

199 1 

1992 

1993 

1994 

1995 

A 
- 

I A 

$ 7.94 

6.54 

4.98 

9.16 

8.28 

4.28 

5.92 

7.30 

7.13 

6.70 

8.30 

10.68 

21 -41  

18.85 

13.16 

24.05 

18.96 

12.49 

12.50 

13.50 

IS 

$ 1.62 

0.86 

2.97 

3.84 

2.80 

3.01 

2 -46 

2.22 

1.90 

1.54 

2 -45 

3.40 

3.79 

3.24 

2.05 

2.85 

3.10 

1.43 

1.50 

2.50 

rn 

IW 

$ 6.32 

5.68 

2.01 

5.32 

5.48 

1.27 

3.46 

5.08 

5.23 

5.16 

5.85 

7.28 

17.62 

15.61 

11.11 

21 -20 

15.86 

11.06 

11 .OO 

11.00 



Notes: ( f o r  Table 4 . 1 )  

1. = Annual water use i n  m3 x 10 
6 

A 

2. AQA = Change i n  annual water i n  m3 x 10 6 

3. Qs = Summer water use i n  m3 x l o 6  (November - Apr i l ) .  

4 .  Aqs = Change i n  summer water use i n  m3 x 10 6 

5. OW 
= Winter water use i n  m3 x l o 6  (May - October) 

6. AQW = Change i n  winter  water use i n  m3 x 10 6 

7 .  r = Annual r a t e  of  change , i n  water  use  

8.  C = N u m b e r  of  connections o r  c l i e n t s .  

Notes: ( f o r  Table 4.2) 

1. Planned system investments a r e  only  those  components 

::that a r e  s t r i c t l y  a funct ion of  water  use  as r e f l e c t e d  

i n  Table 4.1. These include: source works, t runk  and 

transmission mains, t reatment p l a n t s  and service reser- 

voirs .  
6 

A l l  c o s t s  a r e  i n  1976 p r i c e s  X 10 . 
=A 

= Total  investment to m e e t  growth i n  annual  

use ( includes a l l  investments noted i n  1) .  

Is = T o t a l  investment , t o  meet growth i n  summer water 

use ( includes trunk mains, t rea tment  p l a n t s  and 

se rv i ce  r e se rvo i r s )  . 
IW = Tota l  investment r e q u i r e d ' t o  m e e t  growth i n  

win te r  and base watch use  (average day r a t e ) .  

 his includes source works (reservoirs, w e l l  

f i e l d s  and transmission mains. 



Note tha t  only those investments whose capacity and timing are  determined 

s t r i c t l y  by changes i n  water use are  included in  Table 4.2. I t  is  only 

these investments tha t  a re  relevant for  our analysis, s ince the  marginal 

cost concept is  based on the  measurement of the  opportunity cost  of using 

more (or less) water. 

For Per th ts  system, these investments include the  construction of 

source works (both reservoirs and wells), transmission mains, treatment 

f a c i l i t i e s  and associated service reservoirs. Until t he  l a t t e r  par t  of 

the  1980ts, water resources of a quality s imilar  t o  those currently being 

exploited w i l l  be developed, then ground water of a r e l a t ive ly  low qual i ty  

i s  scheduled f o r  development. Although other investments a re  planned -- 
t h e  expansion of the dis tr ibut ion system, expenditures f o r  routine replacement 

and the upgrading of cer tain par ts  of the  system -- we do not  include them 

i n  Table 4.2. They do not represent an,opportunity cost  of water use and 

are  not relevant f o r  the  determination of the  marginal cost  of water, 

The scheduled investments tha t  are  relevant f o r  marginal cost  

analyses can be c lass i f ied  i n  several ways. F i r s t ,  i f  we wish t o  campute 

a marginal capi tal  cost fo r  water use on an annual basis,  w e  must 

aggregate a l l  relevant investments scheduled f o r  each year (see second 

column of Table 4.2). In t h i s  case, I provides the  basis  f o r  computing A 

the marginal capi tal  cost  f o r  water use, a cost tha t  i s  uniform throughout 

the year. Second, i f  we wish t o  compute two marginal cap i t a l  costs  f o r  

water use, which are different iated by season (summer and winter), we 

must disaggregate the relevant investments scheduled f o r  each year (I ) A 

in to  summer investments, IS (see th i rd  column of Table 4.2). and winter 

and base investments, IW (see fourth column of Table 4.2). 



In the case of Perth, I consists of a l l  investments which were A 

mentioned previously as  being a function of water use. The summer investments, 

IS' include those tha t  a r e  designed t o  meet maximum day and week use, which 

occurs i n  the summer period. Trunk mains, treatment p lan ts  and associated 

service reservoirs a re  included i n  I The winter and base investments, I ~ ,  S ' 

include a l l  source works and associated transmission mains, s ince these  

components a r e  designed t o  generate annual yield f o r  t h e  system. 

Calculated Marginal Costs - Given our projected water use, planned 

investments and a r ea l  ( inf lat ion free)  r a t e  of i n t e r e s t  of 10 percent, we 

a r e  ready t o  calculate  marginal costs for  1976. We begin by computing t h e  

t o t a l  annual marginal cost (see Table 4.3). This marginal cos t  is uniform 

throughout the  year. I t  contains two components: (1) the t o t a l  annual 

3 marginal capi ta l  cost of 1976 use, which is equal t o  $0.4711~ and (2) t h e  

3 expected marginal running cost of 1976 use, which is equal t o  $0 .04/~  . 
3 Hence, t he  t o t a l  annual marginal cost is $0.51/m . This marginal cost  can be 

interpreted as  the  average marginal cost of 1976 use, since we have al located 

a l l  investments (IA) over the annual permanent increment in  1976 use (AQ ). 
A 

Note tha t  we have used a ten-year horizon f o r  purposes of computing 

marginal cost. -Given our a b i l i t y  t o  forecast water use and re la ted  invest-  

ments, we believe tha t  a ten-year horizon is the  most appropriate one f o r  

our computations. For purposes of computing marginal cost, therefore,  we 

recommend t h a t  a ten-year ro l l ing  plan f o r  water use and investments be 

formulated i n  each year. For computations in 1976, this would r e s u l t  in a 

forecast from 1976-L985, and f o r  1977, w e  would revise  our forecas ts  t o  

include the period 1977-1986. The values f o r  t h e  period 1977-1986 may not 

necessarily,  therefore,  be the  same as  those presented in Tables 4.1 and 4.2 

s ince we w i l l  have had one more year 's  experience and an opportunity t o  

reformulate our forecasts.  



Table  4.3 T o t a l  Annual Marginal  Cos t  C a l c u l a t i o n s  

1976 P r e s e n t  Worth 
o f  IA w i t h o u t  Per-  

manent Increment  
i n  U s e  

Year ' Change i n  
P r e s e n t  
Worth 

1976 P r e s e n t  Worth 
o f  IA w i t h  Permanent 

Increment  i n  U s e  

I T o t a l  42.23 
. . . . .  

(1 ) T o t a l  Change i n  1976 P r e s e n t  Worth = $ 3.86 x l o 6  

(2)  Permanent Increment  i n  U s e  (AQA) = 8.2 m3 x l o 6  

(3 )  T o t a l  Annual Marg ina l  C a p i t a l  C o s t  o f  
1976 U s e  = ( 1 ) / ( 2 )  = 

$ 0.47/m3 

(4)  Marginal  Running C o s t  o f  1976 U s e  = $ 0.04/m3 

(5)  T o t a l  Annual Marginal  Cos t  o f  1976 U s e  = (3)+(4)  = 

- .- 

Notes: 1. P r e s e n t  wor th  i s  computed by u s i n g  a real  ( i n f l a t i o n  

a p a r t )  d i s c o u n t  ra te  of  10%. For  e s t i m a t e s  of real 

rates, see: (Hanke and Anwyll, 1980) . 
2. The marg ina l  running  c o s t  is c a l c u l a t e d  by d i v i d i n g  

t h e  annua l  p u r i f i c a t i o n  power and pumping costs by 
t h e  t o t a l  water use .  



For some purposes t he  t o t a l  annual marginal cost  calculat ions  may 

be too  "crude" a measure (Hanke, 1975). Our next s e t  of marginal cost  

calculat ions  avoids some of t h i s  by focusing i n  more d e t a i l  

on t h e  nature of marginal costs  within t h e  year 1976. Instead of averaging 

t h e  marginal costs  over t h e  e n t i r e  year, we break the  year i n t o  two 

seasons: t he  winter season (May-October) and the  summer season (November- 

April) .  The purpose of t h i s  division i s  t o  iden t i fy  forward-looking o r  

marginal cos t s  with more precision. 

We know t h a t  i n  Perth, summer water use requires  r e l a t i v e l y  more 

investments i n  supply than does winter water use. Seasonally d i f f e r en t i a t ed  

marginal cost  colculations allow us t o  r e f l e c t  these cos t  d i f f e r en t i a l s .  

We begin by computing what a r e  defined a s  winter and base marginal costs 

(see Table 4.4). To do t h i s ,  we a l loca t e  IN investments, which a r e  t h e  

investments required o r  designed at r a t e s  not  t o  exceed t h e  average day use, 

over t he  annual increment i n  use f o r  1976. This y ie lds  a winter and base 

3 marginal cap i ta l  cos t  of 1976 use of $0.31/m . To obtain t h e  t o t a l  winter 

3 and base marginal cost  of 1976 use, we must add t o  t h e  $0.31/m figure the 

3 3 marginal running cost  of $0.04/m . This yie lds  a t o t a l  of $0,3S/m . 
'Re next s t e p  i s  t o  compute t he  summer marginal cos t  (see  Table 4.5). 

To do t h i s  we a l loca t e  I investments, which are t h e  investments required or 
S 

designed a t  r a t e s  t h a t  exceed the  average day use  ( fo r  example, maximum day and 

hour rates) over t h e  increment i n  1976 summer use. This y i e lds  a summer marginal 

3 cap i t a l  cost  of $0,22/m . To obtain t he  t o t a l  s-er marginal c a p i t a l  cost ,  we 

add t h e  base marginal cap i t a l  cost  of $0.31/m3, which represents  t h e  marginal 

cost  of serving average day demands. This y ie lds  a t o t a l  summer marginal 

3 
cap i t a l  cos t  of $0.53/m . By adding t h e  marginal m i n g  cos t  o f  $O.Ol/m 3 

3 
t o  t h i s  f igure,  we obtain a summer marginal cost  of 1976 use of $0.57/m . 



Table 4 . 4  Winter and Base Marginal Cost  C a l c u l a t i o n s  
. . 

( 1 )  Tota l  Change i n  1976 P r e s e n t  Worth = $ 2 .57  x 10 6  

( 2 )  Permanent Increment i n  U s e  (AQA) = 8 . 2 m 3 x l o 6  

( 3 )  Winter and Base Marginal C a p i t a l  Cos ts  - ( 1 ) / ( 2 )  ; 
o f  1976 U s e  $ 0.31/rn 

Change i n  
P r e s e n t  
Worth 

$ + 5 .75  

- 0 . 5 3  

- 2 .76  

+ 2.26 

+ 0 .10  

- 2 .37  

+ 1 .13  

+ 0 .76  

+ 0 . 0 7  

- 0 . 0 3  

- 1.81 

2 .57 

( 4 )  Marginal Running Cost  o f  1976 U s e  - $ 0 .  04/m3 

1976 P r e s e n t  Worth 
of  IW without  Per- 
ment Increment i n  

U s e  

$ 

5 .22  

4 .27  

1 .37 

3 .30 

3.09 

0 .65  

1-61 

2 .15  

2 .02  

1 .81 

25.49 

Year 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

( 5 )  T o t a l  Winter and Base Marginal Cost  P ( 3 ) + ( 4 )  = 
o f .  1976 U s e  

. . . . . .  
$ 0.35/m3 

. . . . . . . . , 

1976 P r e s e n t  Worth of  
I wi th  Permanent In- 

crement i n  U s e  

$ 5 .75  

4 .69  

1.51 

3 . 6 3  

3 .40  

0 .72  

1.78 

2 .37  

2 .22  

1 -99  

T o t a l  28.06 

Notes: 1 .  P r e s e n t  worth is computed by us ing  a real ( i n f l a t i o n  
a p a r t )  d i s c o u n t  rate o f  10%. For estimates of real 
r a t e s ,  see: (Hanke and Anwyll, 1980) .  

2 .  The marginal running c o s t  i s  c a l c u l a t e d  by d i v i d i n g  
t h e  annual p u r i f i c a t i o n ,  power and pumping c o s t s  
by t o t a l  water  use.  

3 .  Note t h a t  I r e p r e s e n t s  t h e  c a p i t a l  r e q u i r e d  to m e e t  
growth i n  average d a i l y  demands (QA/365) ; t h e r e f o r e ,  
t h e  permanent increment i n  use f o r  o u r  c a l c u l a t i o n s  
i n  t h i s  t a b l e  i s  t h e  annual f i g u r e  AQA, and t h e  
marginal  c o s t  i s  f o r  a l l  w in te r  use  and t h e  non- 
peaking o r  base  p a r t  o f  t h e  summer use.  



Table 4.5 Summer Marginal Cost C a l c u l a t i o n s  

(1) T o t a l  Change i n  1976 P r e s e n t  Worth = $1.29 x 10 6 
- 

(2)  Permanent Increment i n  Use (AQS) = 6 . 0 ~ ~ ~ 1 0 ~  

(3) T o t a l  Summer Marginal C a p i t a l  Cost  = (1) / (2)  = $ 0.22/m 3 
of 1976 U s e  + (3) from Table  4.4 

($ 0.31/m3) = $ 0.53/m3 

(4) Marginal Running Cos t  o f  1976 U s e  = $ O.OS/m 3 

Year 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

- 

(5 )  T o t a l  Summer Marginal Cos t  o f  = (3)+(4)  = $ 0.57/m3 
1976 U s e  

1976 p r e s e n t  Worth 
o f  IS w i t h  Permanent 
Increment i n  U s e  

. . . . . . . . .  . . 

$ 1.47 

0.71 

2.23 

2.62 

1.74 

1.70 

1.26 

1.04 

0.81 

0.59 

T o t a l  14.17 
. . 

1976 P r e s e n t  Worth 
o f  IS wi thou t  Per- 
manent Increment 

. . . . . . . .  
i n  U s e  

$ 

1.34 

0.65 

2.03 

2.38 

'1.58 

1.54 

1.15 

0.94 

0.73 

. . . . . . . . . . . . . . . . . . .  
0.54 - 

. . . . . . . . . . . . . . . . . . . . . . . . .  
12.88 

Notes: 1. P r e s e n t  worth is cxmputed by us ing  a real ( i n f l a t i o n  
a p a r t )  d i s c o u n t  r a t e  o f  10%. For  estimates of real 
rates, see: (Hanke and Anwyll, 1980). 

Change i n  
P r e s e n t  
Worth 

8 + 1.47 

- 0.63 

+ 1.58 

+ 0.59 

- 0.64 

+ 0.12 

- 0.28 

- 0.11 

- 0.13 

- 0.14 

. . . . . . .  
- 0.54' 

. . .  
1.29. 

i 

2. The marginal  running. cost i s  c a l c u a l t e d  by d i v i d i n g  
t h e  annual  p u r i f i c a t i o n ,  power and pumping costs by 
to ta l  w a t e r  use. 

The margina l  w i n t e r  and b a s e  c a p i t a l  mst, w i t h o u t  IS, 
h a s  been computed on an  annual  basis (see Table  4 .4) .  
To o b t a i n  t h e  t o t a l  summer margina l  c a p i t a l  cost, w e  
must a d d  t h e  marginal base  c a p i t a l  cost ($  0.31/m3) 
to t h e  marginal  c a p i t a l  c o s t  o f  summer margina l  
c a p i t a l  c o s t  ( $  0.22 (m3) , which is computed on t h e  
basis of IS a l o n e ,  to o b t a i n  t h e  to ta l  summer margina l  
c o s t  of 1976 use o f  $ 0.53/m3. For a m o r e  complete 
t r e a t m e n t  of  t h i s  t o p i c ,  see: (Hanke, February 1981). - 



The Relevant Marginal Costs - In 1976 the price which balances demands 

3 with system capacity is $0.106/m . This price is charged f o r  a l l  water 

used during the  year, and i s  much lower than the  marginal costs which we 

have.calculated fo r  1976 use. Since t h i s  pr ice balances demands with 

supplies, it i s  the relevant marginal cost fo r  1976 use. The reason tha t  

it i s  lower than the calculated marginal costs i s  because Perth has used 

the  t radi t ional  approach t o  water supply planning. That is, they have 

forecast requirements and have bu i l t  capacity t o  meet them. A5.a resul t ,  

the existing capacity i s  too large, when viewed from an economic perspective. 

We estimate the price e las t i c i ty  coefficients f o r  water 'use t o  be 

-0.24, -0.29 and -0.10 f o r  annual, summer and winter periods, respectively. 

Therefore, i f  we charge prices equal t o  our calculated marginal costs (on 

3 e i ther  a uniform annual basis of $0.51/m or  a s-er-winter basis of $0.57/m 3 

5 f o r  summer water and $0.35/m f o r  winter water), water use would be l e s s  

than the 1976 levels,  and i d l e  capacity would result .  To compute the 

relevant marginal cost under these conditions, we must simulate the 

prices which would balance demands with 1976 use levels  (our target).  These 

simulated prices are  equal t o  the  relevant marginal costs f o r  each year, 

u n t i l  they reach the  level of our calculated marginal cost. A t  t h i s  point, 

new investment i n  supply capacity is f ina l ly  just i f ied,  and the  calculated 

marginal cost becomes the relevant marginal cost. 

We have computed the relevant marginal costs fo r  annual and the summer- 

winter season. These are  presented i n  Tables 4.6, 4.7 and 4.8. These 

computations are of part icular  importance fo r  our analyses of  water conservation 

i n  Perth, since our benefit-cost model always requires t h a t  we use relevant 

marginal costs, when making benefit  calculations. It  is of in te res t  t o  note 
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Table 4.6 Simulated 'Relevant Annual Marginal Costs 

6 Notes: 1. % in m3 x 10 

2. Relevantr Marginal Cost in $/m 3 

I 

3. Growth in yearly use is based on values for r in 
Table 4.1. 

4. Elasticity for QA = e = 0.24 

Year 

. . . .  

1976 

1977 

1978 

1979 

1980 
. . . .  

I 

5. The values r and e are used in the model for 
integrating demand and supply which is presented 
in Chapter 5. 

*A 
. . 

193.0 

193.3 

193.5 

193.7 

193.9 
. . . . . .  

Relevant' Marginal 

. . . . .  
Cost 

. . 

$ 0.106 

0.125 

0.150 

0.178 

0.213 
. . .  



Table 4.7 Simulated Relevant Summer Marginal C o s t s  

3 Notes: 1. QS i n  m x 10 6 

2. .Relevant  Marginal Cost i n  $/XI 
3 

Year 

1976 

1977 

1978 

1979 

1980 

3. Growth i n  yea r ly  use i s  based on va lue s  f o r  
r i n  Table 4.1 

4. E l a s t i c i t y  f o r  QS = e = - 0.29 

Qs 

140.9 

141.0 

141.1 

141.1 

141.3 

5. The values  of  r and e a r e  used in t h e  model for  
i n t e g r a t i n g  demand and supply which is presen ted  
i n  Chapter 5 

" ~ e l e v a n t "  Marginal C o s t  

$ 0.106 

0.122 

0,142 

0.164 

0.190 
. . 
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Table 4.8 Simulated Relevant Winter Marginal Costs  

Notes: 1. QW i n  m3 x 10 6 

2. Relevant . Marginal Cost i n  $/m 3 

i 

Y e a r  

1976 

1977 

1978 

1979 

1980 

3. Growth i n  year ly  use i s  based on values  for r i n  
Table 4.1 

4. E l a s t i c i t y  f o r  Qw = e = . 0.1 

Qw 

52.1 

52.1 

52.1 

52.5 

54.9 

5. The values  f o  r and e are used i n  t h e  model for 
i n t e g r a t i n g  demand and supply which is presented 
i n  Chapter 5 

"Relevant" t larginal  Cost 

$ 0,106 

0.159 

0,247 

0,350 

0.350 



t h a t  from 1976-1980 t h e  relevant marginal costs,  when computed on an annual 

basis,  a r e  l e s s  than the  calculated marginal costs.  This indicates  t h a t  no 

increment i n  investment is jus t i f ied  during t h i s  period. By reviewing 

Tables 4.7 and 4.8, we a l s o  observe a divergence between calculated and 

relevant marginal costs,  when we divide water use and cos ts  i n t o  summer- 

winter seasons. However, if we use the summer-winter division, investments a r e  

ju s t i f i ed  f o r  t he  winter and base period i n  1979 (see Table 4.8). The 

r e l a t i v e  rapid r i s e  i n  relevant marginal cos ts  i n  the  winter results from 

the  f a c t  t h a t  water use i n  t h i s  period is r e l a t ive ly  in sens i t i ve  t o  price 

changes. Hence, pr ices  must be raised more rapidly in  t h e  winter than  i n  

t h e  summer t o  hold water use t o  the  1976 t a rge t  levels. 



Chapter 5 

ON DEMAND-SUPPLY INTEGRATION 

For purposes of calcul t ing water use without and with conservation, 

Q i n  our benefit-cost model, simulating the relevant marginal cos ts  

(Tables 4.6-4.8) and predicting the  level of any conservation policy which 

w i l l  balance demands with supplies, it is convenient t o  develop a demand- 

supply model. 

The Demand-Supply Model 
1 

As we have shown i n  Chapter 3, there a r e  numerous determinants of the  

demand fo r  water which can be controlled by water u t i l i t i e s .  We sha l l  

c a l l  these determinants policy parameters. As we increase t h e  level  of any 

of these policy parameters, the  level of water use o r  production w i l l  be 

reduced. 

The sens i t iv i ty  of water use t o  changes i n  t h e  r e a l  leve l  of a policy 

.parameter is i t s  e l a s t i c i ty .  One relat ionship between water use and the 

policy parameter can be expressed as  follows: 

where Q = the  quantity of water use, P = the  r ea l  value of  t h e  policy 

parameter, a = a constant, and e = the  policy parametersv e l a s t i c i t y ,  which 

is always negative. 

'A program t h a t  allows us t o  implement, on a pmgramable calculator,  t h e  
concepts presented i n  t h i s  chapter is  presented in Appendix 1. The policy 
parameter which allows us t o  integrate  demand and supply is price.  



Equation 5.1, the policy-water use equation, i s  t h e  basic equation 

fo r  integrating demand and supply. To predict water use over time, however, 

we need t o  know how variables, other than the  policy parameter, a f fec t  water 

use. In our model we can accommodate t h i s  by the  use of the following equation: 

(5 2) Q2 = r Qls 

where Q2 = water use i n  period two, when the rea l  value of the policy p m e t e r  

i n  period two is equal t o  tha t  i n  periodone; r = the growth r a t e  in  water use 

from period one t o  two plus 1.0, when t h e  rea l  value of the  policy parameter 

i n  period two i s  equal t o  tha t  i n  period one; and.Q = water use i n  period 1 

one. ~f the rea l  value of the policy parameter changes from period one t o  

period two, Equation 5.3 is  required t o  determine the  f ina l  equilibrium water 

use i n  period two: 

where Q; = water use i n  period two, when the real value of P2 + P1; P2 = 
the rea l  value of the policy parameter i n  period two; PI = the  r e a l  value 

of the policy parameter i n  period one; and e = the policy parametersu e las t i c i ty .  

The operation of Equations 5.2 and 5.3 can be seen by reference t o  

Figure 5.3. The i n i t i a l  level fo r  our policy parameter i s  PI. With t h i s  

policy and the demand function fo r  period one (Demandl), we observe tha t  

the quantity of water demanded in year m e  is Q1. To predict  water w e  

i n  year two, with no change in the real  value of the  policy.parameter, we 

use Equation 5.2. By multiplying Q1 by r, we obtain Q2. This value. Q2, 

i s  read off the demand function tha t  ex i s t s  in period two (Demand2). To 



Figure 5.1 Predicting Water Use 

Policy 
Variable/m 3 

I 



predict the  impact of an increase in  the  value of t h e  r ea l  policy parameter 

i n  period two, we apply Equation 5.3. This operation causes us t o  move 

leftward along the  demand curve (Demand2) i n  period two (from A t o  B),  and 

re su l t s  i n  a f i n a l  prediction of water use i n  period two of Q* This f ina l  2 ' 

prediction takes in to  account both the ttnatural't growth, r, and the e l a s t i c i t y  

impact of increasing the  r ea l  value of the policy from P t o  P2. 1 

For any level  of supply, therefore, we can use our model t o  change 

the value of a policy parameter t o  balance demand and supply. To i l l u s t r a t e  

t h i s  point, the  reader is referred t o  Figure 5.6. of the  last chapter. If 

we wish t o  constrain water use (demand) t o  the  level OQ we must set the A' 

prices so t h a t  they are  equal t o  the simulated marginal cos t  f o r  each year. 

We w i l l  i l l u s t r a t e  fur ther  applications of t h i s  model i n  Chapters 6 and 7, 

where we discuss pr ice and nonprice rationing methods f o r  water conservation. 



Chapter 6 

RATIONING BY PRICE 

Water can be rationed and demands balanced with supplies by using two 

different types of policy parameters: price and nonprice policies. In 

t h i s  chapter we discuss the use of price as a conservation device (see 

also: Hanke, 1972; Hanke,!1978; and Hanke, February 1981). 

Prices and Benefit-Cost Analysis 

Our benefit-cost model allows us t o  evaluate whether increases in  

prices are  an economic conservation policy. We recall  that  our benefit- 

cost model (Equation 2.3) is 

where Q = reduction in use resulting from a conservation policy, MC = 

relevant marginal cost, U = resource cost t o  the u t i l i t y  of adopting a 

conservation policy, E = resource cost t o  the consumers of adopting a 

conservation policy and F = the value of %seful" consumption foregone. 

Moreover, recal l  that  the left-hand side of th i s  equation equals the 

benefits from conservation and the right-hand side equals the costs. 

Hence, t o  achieve maximum net benefits, we should apply a conservation 

policy as long as Q MC - > U + E + F. 

If we are  using price t o  balance demands and supplies, we know that a 

price s e t  equal t o  the marginal cost w i l l  lead t o  an eff icient  allocation 

of resources and a maximization of net benefits i n  the context of benefit- 

cost analysis.l We demonstrate th i s  fac t  by the use of our benefit-cost 

' F O ~  th i s  demonstration t o  be always flue, we must assume that  E and U 
equal zero, which i s  a reasonable assumption for  price increases f o r  metered 
customers. 



model. Annual marginal costs fo r  any year are constant, given our approach 

t o  marginal cost analysis.  Marginal benefits, a s  represented by the  demand 

function, are  always negatively related t o  water use. We a l so  know t h a t  

marginal benefits equal the  marginal cost where the  two functions in te r sec t  

(see Figure 6.1). Therefore, we know tha t  the incremental benefi ts  generated 

by increasing price from a level below the  marginal cost t o  the  marginal cost 

level  must exceed the costs of such a change. In Figure 6.1, i f  p r i ce  i s  P 
1 

and use is Q1, a small pr ice  increase w i l l  generate benefits of QID and costs  of 

3 pic per m . The benefi ts  of conservation w i l l  continue t o  exceed costs  u n t i l  

we reach a pr ice  of P and use of $ A t  this level,  pr ice  w i l l  equal t h e  

marginal cost, and the  pr ice  increase from P1 t o  Y w i l l  have increased ne t  

benefits by the area BDC. Net benefits from increasing pr ice  w i l l  be at a 

maxi- a t  t h i s  pr ice  (Y) . Further increases wi l l  add t o  the  costs  of 

conservation, represented by "usefulw consumption foregone, by more than 
- 

they add t o  the benefits. For example, a pr ice  change from P t o  P2 w i l l  

generate net  costs equal t o  the  area AEB. Hence, i n  a l l  cases a p r i ce  s e t  

equal t o  the  marginal cost w i l l  maximize net  benefits, and any deviation 

i n  pr ice from the  marginal cost w i l l  be wasteful. 

On the Benefits and Costs of Marginal Cost Pricing i n  Perth 

Uniform Annual Price - We apply by using data from Perth, Western 

Australia f o r  the  year 1977, the economic principles of pricing outlined in 

the  preceding section. Our purpose i s  t o  perform a benefit-cost analysis 

fo r  marginal cost  pricing as  a conservation device. We wish t o  evaluate 

the  economic consequences of increasing the  level of pr ices  t o  t h e  marginal 

cost  (with conservation), ra ther  than leaving the  prices  at t h e i r  exis t ing 

rea l  level (without conservation). We begin our analysis by evaluating 

uniform marginal cost pricing, with the marginal cost and prices  being detenained 

on an annual basis.  In t h i s  case, the same pr ice  is changed fo r  a l l  water 

used throughout the year. 



Figure 6.1 Pricing Pol ic ies  and Benefits and Costs 

- - - - - -  - c - - -  - -  Relevgnt Marginal Cost 



The first s tep  t o  evaluate the  benefits and costs  of marginal cost 

pricing f o r  Perth is  t o  determine the  marginal cost i n  1977. This computation 

has been made by simulating the  relevant marginal costs.  The r e su l t s  a r e  

3 displayed i n  Table 4.6. For 1977, the  marginal cost is  $0.125/m (see t h e  

second column of Table 6.1). Recall t h a t  since the  exis t ing system capacity 

3 i s  too large,  the  relevant marginal cost of $0.125/m is l e s s  than the  

calculated marginal cost of $0.51/m3. Also, note tha t  t he  relevant marginal 

cost  is  t h e  one t h a t  is necessary, so t h a t  a pr ice  s e t  equal t o  it w i l l  

3 6 approximately balance demand with the  t a r g e t  capacity of 193.0 m X 10 . 
The next s t ep  i s  t o  compute the  change i n  water use resu l t ing  from 

3 the  conservation increasing the  pr ice  from $0.106/m t o  a pr ice  s e t  at t h e  

3 marginal cost of $0.125/m . We must obtain a value f o r  Q. In t h i s  case, 

3 6 water use without a pr ice  increase would equal 201.2 m X 10 , and would 

exceed our t a rge t  capacity. While with a pr ice  increase t o  the  relevant 

3 6 marginal cost,  water use would be reduced t o  193.3 m X 10 . Hence,'Q i s  

3 6 3 3 6 equal t o  7.9 m X 10 (201.2 m X lo6 - 193.3 m X 10 ). 

To compute the  change i n  benefits 'which r e su l t  from increasing the  

pr ice  t o  the  relevant marginal cost, we must multiply Q times MC. In this 

case, t he  change i n  benefi ts  a re  equal t o  $987,500 (see t h e  f i r s t  three 

columns of Table 6.1) . 
We now turn t o  the  computation of the  costs  of t h i s  conservation program. 

We assume t h a t  both U and E w i l l  be equal t o  zero f o r  pr ice  increases. 

Therefore, the  value of wusefulv consumption foregone, F, becomes the  only 

cost  associated with increasing the  price. To compute F, we compute 

3 6 
t h e  value of the  area under the  demand function between 193.3 m X 10 and 

3 6 201.2 m X 10 by using the  techniques presented i n  the  last section of 

Chapter 3. This calculation yields  a f igure f o r  *'usefulM foregone consumption 

of $912,450. 
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As our theoret ical  demonstration showed, a pr ice increase t o  the  

marginal cost level  w i l l  always generate net benefits,  In the  case of 

Perth f o r  1977, these benefi ts  a re  $75,050. 

Swnmer-Winter Prices - I t  can be demonstrated tha t ,  when marginal 

costs  a r e  d i f fe rent  i n  the  summer season than i n  the  winter season, 

seasonally d i f fe rent ia ted  prices s e t  separately at the  summer and winter marginal 

cos ts  yield ne t  benefits, when compared with a policy of se t t ing  pr ices  on an 

annual basis  a t  the  annual marginal cost (Hanke, 1971). However, t h i s  

demonstration is one of the  general principle. I t  does not take in to  

account the  increased administrative costs  associated with switching from 

uniform annual prices t o  summer-winter prices. Therefore, it is necessary 

t o  use benefit-cost analysis t o  determine whether an annual uniform o r  seasons1 

pricing s t ruc ture  is the  most desirable.  

For Perth i n  1977, it is important t o  remember tha t  t h e  system is  not 

i n  economic equilibrium; capacity is too large. Hence, i f  pr ices  q s e t  

at t h e  level  of t h e  calculated marginal costs,  water use would be reduced 

t o  a level well below exis t ing system capacity. This would r e s u l t  i n  unused 

capacity and economic waste. Therefore, we simulated demands and supplies, 

t o  determine the  relevant marginal cost,s (Tables 4.6, 4.7 and 4.8). These 

were lower than the  calculated marginal costs. Moreover, given t h e  

f a c t  t ha t  t he  absolute value of the  pr ice  e l a s t i c i t y  is l e s s  i n  the  

winter (-0.1) than i n  the  summer (-0,29), smaller summer p r i c e  increases 

a r e  required t o  constrain spmer  use t o  its original  t a rge t  level  than is 

the  case f o r  winter pr ices  and use. The resu l t ,  i n  t h i s  ease, is a s i tua t ion  

i n  which t h e  relevant marginal costs  f o r  the  winter (the off-peak) season 

are  higher than during t h e  summer (peak) season. This s i tua t ion  reverses 



i t s e l f  a f t e r  the  system comes in to  an economic equilbrium and capacity i s  

adjusted t o  i ts  proper level. A s  we would normally expect, when the  

system is i n  an economic equilibrium, the  calculated marginal costs  a r e  

equal t o  the  relevant costs, and they are  higher i n  the summer (peak) 

season than i n  the winter (off-peak) season. 

With t h i s  background information, we now evaluate t h e  benefi ts  and 

costs  of switching f r o m  the current uniform pricing system t o  a summer- 

winter system i n  which the  summer and winter pr ices  a re  s e t  a t  t h e i r  

respective relevant marginal costs  f o r  1977. Using the  same approach as 

we employed f o r  uniform prices, we generate benefit-cost data. These a r e  

presented i n  Table 6.2. The re su l t  of using seasonal pr ices  is a net  

l o s o f  $394,500 f o r  1977. Losses r e su l t  because the  seasonal pricing 

s tructure would require the  u t i l i t y  t o  read meters quarterly, instead of 

annually, so tha t  the u t i l i t y  could render seasonal b i l l s .  This additional 

meter reading re su l t s  i n  an increase i n  the u t i l i t y l s  cos ts  of $500,000. 

We should a lso  mentijon tha t  a switch t o  summer-winter pr ices  would 

require the winter pr ices  t o  exceed those f o r  the  summer, during t he  

period when the  system was out of economic equilibrium. Since the  summer- 

winter marginal cost relationship would change when the  system came in to  

equilibriun, the  m e r - w i n t e r  pr ice relationship would also change. These 

changes, would no doubt, be d i f f i c u l t  t o  jus t i fy  t o  consumers. Hence, they 

would require yet more expenditures f o r  public education, and would increase U 

above the value which we have estimated. 

Concluding Observations on Pricing 

Our analysis allows us to make the following observations: (1) In 

cases where meter reading and b i l l ing  expenses remain constant, we know 
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t h a t  a switch from uniform annual p r ices  set below marginal cos t  t o  a 

uniform annual p r ice  s e t  equal t o  t h e  marginal cost  will always generate 

net  benefits .  (Note t h a t  t h i s  is  a l so  t r u e  f o r  a switch f r o m  uniform 

annual p r icesse t  above t h e  marginal cost  t o  a uniform annual p r i c e  s e t  

equal t o  t h e  marginal cost.) This means t h a t  formal benefit-cost  analysis  

i s  not required i n  t h i s  case. However, the analysis  may be des i rab le  t o  

demonstrate t o  regulators  t he  gains associated with t h i s  change i n  pr ic ing  

policy. If t h e  u t i l i t y  cos t s  a r e  increased by making t h e  switch t o  

uniform annual p r i c e s  s e t  a t  t he  marginal cost ,  we do not  know if t h e  

switch w i l l  bedesirable a prio2.i. Hence a formal benefit-cost  calculat ion 

must be performed t o  determine t h e  des i r ab i l i t y  of the change in policy,  

(2) Since addi t ional  meter reading and b i l l i n g  expenses> as well as- 

expenditures f o r  publ ic  education, w i l l  usually be required when switching 

f r o m  uniform annual p r i ce s  t o  summer-winter p r i ce s  set at marginal costs,  

a formal benef i t -cos t  analysis  of t h e  po l icy  change w i l l  aiways be re@m&. 



Chapter 7 

RATIONING WITH AND WITHOUT NON-PRICE 
CONSERVATION POLICIES 

In Chapter 3 we reviewed several  nonprice methods of water conservation, 

These included: leak detection and control, water meters and water u se  

r e s t r i c t i ons .  Since these po l i c i e s  a r e  not necessari ly associated with marginal 

cost  pricing,  we must evaluate t he  benef i ts  and cos t s  of each t o  determine 

its des i r ab i l i t y .  This chapter is devoted t o  t h i s  task. Again, we use  

Perth, Western Austral ia  f o r  bur analysis. 

Leak Detection and Cbntrol 

Our benefit-cost model can be used f o r  t h e  purpose of evaluating 

waste control  programs (Hanke, April  30, 1981). Those pmgr- 

reduce leakage i n  water system. They, therefore,  reduce the quant i ty  of 

water t h a t  a water company must produce, without reducing t h e  quant i ty  

of water t h a t  consumers use. Since t h i s  type of conservation program does 

not d i r e c t l y  a f fec t  consumers, two variables,  E and F, can be eliminated 

from our model. The appropriate decision r u l e  f o r  evaluating t h e  d e s i r a b i l i t y  

o f  waste control  programs, therefore,  becomes: 

(7.1) Q e M C > U  - 
Equation 7.1 shows us  t h a t  waste control  is economic if t h e  change 

i n  benefits ,  which is the  product of t he  quant i ty  of water saved by 

repair ing system leaks (Q) and t h e  marginal cos t  of water (MC), exceeds 

o r  is equal t o  the  change i n  the  cos t s  of detect ing and repa i r ing  leaks  (U). 



For Perth, leakage i s  15 percent of t o t a l  production, and is equal 

3 6 t o  30.2 m X 10 i n  1977. We evaluate the benefits and costs  of two waste 

control policies,  The first policy (Option I )  would reduce system leakage 

6 t o  7.5 percent of the t o t a l  production or  15.1 d X 10 , and the  second 

policy (Option 11) would reduce leakage t o  5 percent of the  t o t a l  production 

3 6 or  10.1 m X 10 . 
To compute the benefits of these two  options, we evaluate the  left- 

hand side of Equation 7.1. Reduced water production ( Q ) ' i s  t h e  first 

variable i n  7,l. Option I would yield a t o t a l  reduction in production 

3 6 3 of 15.1 m X 10 , while Option I1 would yield a reduction of 23.1 m X 10 6 

(see Table 7.1 f o r  a display of our resul ts) ,  

By mu1 t iplying the reduced water production (Q' s )  by the appropriate 

marginal cost (see Chapter 4, Table 4.6), we compute t h e  values f o r  

change i n  benefits from each leakage control option, Thk values fo r  

the change i n  benefi ts  i s  given i n  the fourth column of Table 7.1. Option I ~ 
would yield $1,887,500 and Option I1 would y ie ld  $2,887,500 i n  1977. 

Next, we compute the change in the costs of detecting and 

repairing system leaks f o r  both options or  the  right-hand s ide  of Equation 7,l. 

These costs a r e  .given i n  the f i f t h  column of Table 7.1, The cost of Option I 

would be -$280,000 and of Option I1 would be $382,500. These estimates a r e  

based on the  following assumptions:' (1) u n d e ~  both options a specialized 

waste control team would be established; (2) 80 percent of i ts costs  would 

be fo r  labor and the remainder capital  equipment; (3) Option I would require 

one waste prevention worker per 10,000 dwellings; and (4) Option I1 would 

require one worker per  7,500 dwellings, It  is important t o  r e a l i z e  t h a t  

'These assumptions are ref lected i n  Figure 3.1, which is the  production 
function f o r  leak detection and control i n  Perth, 



Table 7 . 1  B e n e f i t s  and C o s t s  of Waste Contro l  

Marginal 
C o s t  

. . .  

MC ( $ 1  
. . . .  . 

0.  125/rn3 
. . . . . . . . .  

0. 125/m3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Change i n  
B e n e f i t s  

. 

Q*MC ($1 

1 ,887 ,500  

2 ,887,500 

Z 

Waste 
Reduction 
Option 

I 
7 . 5 %  of 
T o t a l  
Produc- 
t i o n  

I1 
5 4 -  of 
T o t a l  
Produc- 
t i o n  

Reduced 
Leakage 

6  3  Q ( l 0 m )  
. . . 

15.1  
. . . . . . .  

23.1  

Change i n  
C o s t s  

. . . .  

. . . . .  u ($1 
. . 

280.000 
. . . . . . . . . . . . . . . . . . . . .  

382,500 
. -  . 

N e t  
B e n e f i t s  

Q*K u ($1 

1,607.500 

2 ,505,000 
. . .  . 



Perth's projected leakage detection costs a re  lower than would be expected 

f o r  many other  water systems. Routine capi tal  replacement occurs now 

without the a id  of a specialized waste control program. The primary 

purpose of Perth's waste control program would be t o  redi rec t  capi ta l  

replacement expenditures t o  those areas where leakage i s  greatest.  Hence, 

neither Option I nor Option I1 would increase the level of Perth's capi tal  

replacement expenditures. Both options, however, would grea t ly  increase 

the productivity of these expenditures. 

By subtracting the change i n  costs from the  change i n  benefits, we 

obtain the net benefits from waste contro2 f o r  both options (see column six 

of Table 7-1). Given our objective of maximizing net  benefi ts  and our 

decision ru le  , Option I1 is clearly superior t o  Option I, Furthermore, 

we.should consider increasing our waste control e f fo r t s  beyand those of 

Option 11, since the incremental benefits of moving from Option I t o  Option I1 

are  $897,500, while the incremental costs a re  only $102,500, This indicates 

tha t  additional net benefits could be generated by applying detection and 

control e f f o r t  beyond Option 11. 

Water Meters 

The ins ta l l a t ion  of water meters is often considered as a water 

conservation policy (Hanke, February, 1982)- This option does exis t  

in  Perth, since i n  1977, 17,968 of its customers were not metered. This 

group consisted of small residential  users and ccmmercial establishments, 

Unmetered water use is estimated t o  be 14 percent of the  t o t a l  production 

We evaluate the  conservation policy of universal metering, which would 

require the ins ta l la t ion  of 17,968 water meters. To oompute the  benefits 

of t h i s  policy, we first evaluate the resul t ing reduction i n  water use, We 



predict  tha t  the metering of m e t e r e d  users w i l l  reduce t h e i r  use by 

3 6 9.9 m X 10 o r  by 35 percent. (We estimate t h i s  f igure  by applying a 

water use rat io ,  which i s  based on data presented i n  Chapter 3, Table 3.6). 

If we multiply t h i s  reduction by the  marginal cost, we obtain the  change 

i n  benefits (see Table 7.2). 

To evaluate the  change i n  costs associated with universal metering, 

we first compute the  change i n  the  water company's resource costs. 

These costs include the  annualized costs  of 17,968 new water meters and 

t h e i r  in s t a l l a t ion  a s  well as  the increased costs  of xeading these meters 

one time per  year. This annual cost is equal t o  $241, 342. It is displayed 

i n  the  f i f t h  column of Table 7.2. 

The next cost term i n  our model is  E. It represents t h e  r e s o q c e  

costs t o  consumers of metering. These costs  a re  represented primarily 

by increased e f f o r t  t o  repai r  leaks inside commercial and re s iden t i a l  

buildllngs and a lso  increased time devoted t o  monitoring water use 

ac t iv i t ies .  We do not make an estimate of these costs  because of a lack 

of data. However, it is important t o  r ea l i ze  t h a t  these cos t s  a r e  

probably qui te  small (Hanke, 1970(b)). 

The l a s t  cost  term i n  our model is F, o r  the value of wusefullt 

consumption which i s  foregone because water use is reduced by t h e  

ins ta l la t ion  of wtermeters. We use the  techniques presented i n  t h e  

last section of Chapter 3 t o  evaluate t h i s  tenn. The numerical 

values a r e  displayed i n  the  seventh colunm of  Table 7.2. 

Now we a re  ready t o  compute the change in costs, U + E + P. The 

values f o r  the  change i n  costs a re  given i n  the  eighth co lmn o f  Table 7.2. 

The t o t a l  change i n  costs f o r  the  period under study is  $766,042. 
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BY subtracting the change i n  costs from the  change i n  benefits, we 

obtain the net benefits from metering. Given our objective of maximizing 

net benefits and our decision rule, universal-metering f o r  Perth would be 

an economic conservation policy, since it would generate net benefits of 

Water Use Restrictions 

Water use res t r ic t ions  are  yet another conservation policy tha t  can 

be evaluated by use of our benefit-cost model (Hanke, 1980(a) and Hanke, 

1980Cb)). In Perth, water use res t r ic t ions  have only been used i n  the 

dry summer months of December, January and February. We l i m i t  our analysis 

of r e s t r i c t ions  t o  these months. We begin by estimating the  impact of 

r e s t r i c t ions  on water use. To accomplish t h i s  task we use water use r a t i o s  

of 86.2, 85,7 and 89.4 f o r  the months of December, Januazy and February, 

~ e s p e c t l v e l y  (see Table 3.3). These ra t ios  indicate the  water use with 

restr ict ions,  a s  a percent of water use without restr ict ions.  By applying 

these water use r a t i o s  t o  water use without r e s t r i c t ions  of 29.6, 28.0 and 

3 6 27.8 m X 10 f o r  December, January and February, respectively, we obtain 

use with restr ict ions.  If we subtract these l a t t e r  values f r o m  the  

former, we obtain valuesfir  Q i n  our benefit-cost model. These values are.  

displayed i n  the second column of Table 7.3. 

3 With a marginal cost of $0.125/m .for each month, we can compute 

the monthly change in  benefits by multiplying the values f o r  reduced water 

use by the marginal costs. The zksults are displayed i n  c o l m l  four  of 

Table 7.3. 

We now move to*. cost s ide  of our benefit-cost model. We assume tha t  

the costs t o  the u t i l i t y m e  equal t o  zero. This w i l l  lead t o  an understatement 
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of the t o t a l  costs of restr ict ions,  since the u t i l i t y  w i l l  have t o  administer 

the res t r ic t ion  program, However, we have no re l iable  information on t h i s  

cost component. Furthermore, these costs w i l l  probably be re la t ive ly  small 

when res t r ic t ions  are  imposed f o r  short durations. They w i l l  increase with 

the length of time tha t  res t r ic t ions  are  used, since the  prolonged use of 

res t r ic t ions  w i l l  require some type of semi-permanent administrative staff 

f o r  policy-making and compliance purposes, 

We also assume tha t  the  customer costs (E) w i l l  be zero, Again t h i s  

assumption is based on a lack of re l iable  data.' It does not imply t h a t  

these costs do not exis t ,  since customers w i l l  have t o  spend more time 

tending t o  t h e i r  lawn sprinkling with res t r ic t ions  than without them, 

The only cost element associated with res t r i c t ions  tha t  we estimate 

is the value of "usefulw consumption foregone. To estimate the  value of 

'hsefulW consumption foregone, we use the techniques presented i n  Chapter 3. 

The resu l t s  of our analysis are presented i n  col~mm seven of Table 7.3. I t  

is important t o  rea l ize  tha t  our estimate of F might be somewhat lower than the 

actual value. Our estimate of F is based on the assumption t h a t  the  lowest 

valued uses of water.kill  be thc ones eliminated by res t r i c t ions  first. Even 

though this is the objective of most water system planners, in  r e a l i t y  some 

"high-valued" use is probably included with wlow-valuedll use t h a t  is res t r i c t ed  

fram the market ( f o r a  discussion, see Chapter 2). As a resul t ,  our estimate 

of the F values is probably too low (Hanke, 1980Cb)), 

Our analysis indicates tha t  under lvnormalw .(mean) conditions, water 

use res t r ic t ions  would not be economic in  Perth, The type of r e s t r i c t ions  tha t  

have been and i n  Perth are  too strong t o  be economic, under wnormalw 

conditions, and conservation a t  the  levels  analyzed is wasteful. 



Let us turn from "normal" supply conditions t o  t h e  s i tua t ion  of drought 

conditions. In this case, wnonnallt capacity and cost figures (the ones we have 

used to  t h i s  point) a re  not the relevant figures, During drought, effective 

capacity o r  supply is reduced, and therefore, t h e  relevant marginal cost -- 
the marginal cost level a t  the p i n t  where demands equal t o  new effective 

1 capacity -- is higher than nonnal.. . %  Therefore, the  marginal value of the  

l a s t  uni t  of water available i n  droughts is higher, and res t r i c t ions  might 

be economic under same drought cases. .We now analyze those cases, 2 

We begin with the  wnormalw conditions which are  represented i n  Table 7,3, 

This means t h a t  under wnormalw conditions supply and demand are balanced a t  

3 6 29.6, 28.0 and 27.8 m X 10 f o r  December, January and February, respectively, 

3 This balance occurs a t  a r ea l  pr ice i n  1976 of $0,106/m , Although prater 

use res t r i c t ions  ofthe type used i n  Perth, are not economic a s  a long-term 

policy. We wish t o  analyze how serious drought must w e  before 

res t r i c t ions  would be just i f ied.  

By using the"norma1" conditions as  a baseline o r  s t a r t i n g  point, we 

simulate, by using our demand-supply integration model developed in Chapter 5, 

the relevant marginal costs  tha t  would be associated w i t h  "effective" 

capacity levels  under drought conditions, We determine t h e  "effective" 

capacity level,  so tha t  marginal costs - those where deaand is equated 

'Plots tha t  the relevant marginal costs under drought conditions are 
simulated by using the  demand-supply integration model presented i n  Chapter 5, 

%ate we have not analyzed price, leak detection and control o r  water 
meters i n  the "abnormal" case, since each of them, i n  a prac t ica l  sense is 
designed a s  a long-term policy t o  respond t o  wnonnalv* conditions. 



t o  t he  new "effectivem capacity -- are  j u s t  high enough t o  generate changes 

i n  benefits  (Q MC) which equal t h e  change i n  cost  f igures .  These 

simulated "effectiven capac i t ies  and marginal cos t s  a r e  displayed in Table 7.4. 

Our analysis  ind ica tes  t h a t  r e s t r i c t i ons  can be ju s t i f i ed  under drought 

conditions, when "effectivew capaci t ies  i n  December f a l l  from t h e  nnormal" 

3 6 leve l  of 29.6 t o  an l leffectivell  level  of 27.3 m X 10 , i n  January fnrm - 
3 6 3 6 28.0 t o  25.7 m X 10 and February f r o m  27.8 t o  24.9 m X 10 . Therefore, 

r e s t r i c t i ons ,  which a r e  designed t o  meet short-term emergencies, are indeed 

ju s t i f i ed  under ce r t a in  drought conditions, even though they are not  j u s t i f i e d  

under flnsrmalfl conditions. 
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Chapter 8 

CONCLUDING OBSERVATIONS 

Water conservation is the  major policy that is currently being 

debated by water u t i l i t i e s  throughout the world, These pol ic ies  a r e  

seen by many water supply planners as a solution t o  t h e i r  f inancial  

problems. W e  have used an economic approach t o  analyze these policies,  

. and have concludedthat water conservation (the balancing of  demands with 

supplies at  1oweF~~~Ievels of use) can only be jus t i f ied  wKen its incremental 

benefits exceed itsmcremental costs. To demonstrate t h i s  fac t ,  we 

have presented the  principles and tools  required t o  analyze the  problem. 

We have also applied them t o  a water u t i l i t y  i n  Perth,. Western 

Australia. In  the case of Perth, we reached some useful conclusions 

about the  economics of conservation (see Table 8.1). 

The m i x  of pol ic ies  thst would allow Perth t o  solve its problems of 

revenue insufficiency, avoid economic waste and improve economic efficiency 

would include: 

(1) the adoption of a unifonn marginal cost tariff schedule, 

with the same price per m3 being charged throughout t h e  year and being s e t  a t  

the relevant marginal cost i n  each year. This w i l l  mean t h a t  the  rea l  pr ices 

of water Fn Perth should be increased each year t o  balance demands with 

existing capacity(see Table 4.6). I t  a lso  implies that fu ture  capacity 

expansion, that would be required if the  t radi t ional  planning approach 

was retained, can be deferred. No new capacity will be required u n t i l  the  

3 
price (the relevant marginal cost) reaches $O.Sl/m (see Table 4.3). This 

deferral w i l l  r e su l t  i n  a significant reduction i n  Perth's f inancial  

requirements. 



Table 8.1 Desirability of Conservation Parameters (Perth 

Policy Parameter Desirability of Desirability of 
Conservation Conservation 
("Normal") (Drought) 

Uniform Marginal 
Cost Prices Yes Not analyzed 

Summer-Winter Mar- 
ginal Prices No H o t  analyzed 

Leak Detection and 
Control Yes Hot .analyzed 

Meters Yes Mot analyzed 

Restrictions 
. . 

Yes . . . . . . . . 



(2) the adoption of a systematic leak detection program. 

Again, the use of tb economic approach will allow Perth's water system 

planners t o  demonstrate, i n  a systematic way, tha t  economic waste could be 

eliminated by a leak detection program. 

(3) the adoption of universal water metering. The economic 

approach demonstrates the  advantages of universal metering f o r  Perth. 

Before concluding, it is important t o  rea l ize  that,  t o  determine the 

des i rabi l i ty  of water conservation, we must have data t o  operationalize our 

benefit-cost model. In  particular,  we need data on the  determinants of water 

use and the e l a s t i c i t i e s  of each. In addition, data on the  relevant marginal 

costs should be calculated and/or simulated. A t  present, these data a r e  not 

generally available f o r  most water u t i l i t i e s .  Therefore, t o  evaluate water 

conservation policies,  water u t i l i t i e s  must first begin t o  col lec t  and 

analyze data tha t  have economic significance. If this is done, then 

debates on the des i rabi l i ty  of balancing demands with supplies a t  lower 

levels  of use can be framed i n  a more useful context. Moreover, water 

supply planners w i l l  be able t o  jus t i fy  t h e i r  proposed po l i c i e s  before 

regulatory bodies and the public i n  a more systematic and rigorous way. 



Appendix 

A PROGRAM FOR INTEGRATING DEMAND .QJD SUPPLY 

The model f o r  i n t e g r a t i n g  demand and supply, which w e  

p resen ted  i n  chapte r  5,  can be made ope ra t iona l  wi th  t h e  use of 

a computer o r  a programmable c a l c u l a t o r .  For most purposes,  

however, a programmable c a l c u l a t o r  provides t h e  most f l e x i b l e  

and e f f i c i e n t  means o f  o p e r a t i o n a l i z i n g  o u r  model. 

I n  t h i s  appendix, w e  p resen t  a program f o r  use  on a program- 
. . 

mable c a l c u l a t o r ,  t h e  Texas Instruments model 58c. This  cal- 

c u l a t o r  an'd program w e r e  used t o  make t h e  c a l c u l a t i o n s  f o r  

demand-supply i n t e g r a t i o n  which appear i n  t h e  text .  

A s  noted i n  chapte r  5, two equat ions  a r e  needed t o  i n t e g r a t e  

demand and supply: 

where Q2 . = w a t e r  use  i n  per iod  two, when t h e  real p r i c e  of  

water  i n  per iod  two i s  equal  t o  t h a t  i n  per iod  one; r = thegrowth  

r a t e  i n  t h e  w a t e r  use  from per iod one t o  per iod  twop lus  1.0, when t h e r e a l  

p r i c e  o f  water  i n  per iod  two is equal  t o  t h a t  i n  pe r iod  one; and Q, = t h e  

water  use  i n  per iod  one. I f  t h e  r e a l  p r i c e  of  wa te r  changes 

from per iod  one t o  per iod  two, equat ion ( 2 )  is r e q u i r e d  to  

determine t h e  f i n a l  equ i l ib r ium water use i n  per iod  two: 

* 
where Q2 = water  use  i n  per iod  two, when t h e  r e a l  p r i c e  of wate r  

i n  per iod  two i s  d i f f e r e n t  from t h a t  i n  per iod one; P2 .= t h e  

r e a l  p r i c e  i n  per iod  two; P1 .= the r e a l  p r i c e  i n  p e r i o d  one; 

and e i s  t h e  p r i c e  e l a s t i c i t y  of  demand c o e f f i c i e n t ;  which is  always 

nega t ive .  



TO program these  equations on the Texas Instrument 58c, 

w e  key i n  the fol lowing information: 

Step Number Key Entry Press  

RCL 

01 

05 

RCL 

rn - 
RCL 

Y 
RCL 

X 

RCL 

ST0 

0 6  

RCL 

0 1  

x,>t 
RCL 

0 6  

X > t  - 
E' 

a R  



Step  Number 

35 

36 

37 

3 8 

39 

40 

4 1 

42  

4 3 

44 

45 

46 

47 

48 

49 

50 

5 1  

5 2  

5 3  

54 

55 

56 

57 

58 

59 

60 

6 1 

6 2  

63 

64 

65 

66 

67 

68 

69 

70 

71 

Key Entry 

08 

08 

08 

08 

08 

08 

08 

08 

08 

08 

9 1 

42  

10 

43 

02 

75 

43 

10 

95 

42 

02 

55 

43 

03  

95 

45 

43 

04 

95 

65 

43 

05 

95 

42 

06 

77 

10 

P r e s s  

8 

RCL 

0 2  - 
RCL 

10 



Step Number 

72 

73 

74 

75 

76 

77 

78. 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

Key Entry 

61 

00 

47 

9 1 

76 

12 

42 

00 

9 1 

76 

13 

42 

01 ' 

9 1 

76 

14 

42 

02 

91 

76 

15 

42 

. 03 

9 1 

76 

16 

42 

04 

9 1 

76 

10 

9 1. 

76 

17 

43 

02 

9 1 

00 

Press 

GTO 

00 

47 

R/s 
Lb 1 

B 

ST0 

00 

ws 
Lbl 

C 

sTO; 

0 1 

R/s 
Lb1 

D 
ST0 

02 

R/s 
Lb1 

E 

ST0 

03 

R/s 
Lb1 

A' 

ST0 

04 

R/s 
Lbl 

E' 

ws 
Lb 1 

B' 

RCL 

02 

ws 



Now, w e  are ready t o  use our demand-supply integrat ion 

program: 

Step Number Key Entry Press Display 

7 If 8 8 8 8 8 8 8 8 8 8 ( ~ 1  < p l )  CLR 

8. Decrease i n  .'P2 R/s Q : 
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