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A B S T R A C T   

We attribute variations in key energy sector indicators across global climate mitigation scenarios to climate 
ambition, assumptions in background socioeconomic scenarios, differences between models and an unattributed 
portion that depends on the interaction between these. The scenarios assessed have been generated by Integrated 
Assessment Models (IAMs) as part of a model intercomparison project exploring the Shared Socio-economic 
Pathways (SSPs) used by the climate science community. Climate ambition plays the most significant role in 
explaining many energy-related indicators, particularly those relevant to overall energy supply, the use of fossil 
fuels, final energy carriers and emissions. The role of socioeconomic background scenarios is more prominent for 
indicators influenced by population and GDP growth, such as those relating to final energy demand and nuclear 
energy. Variations across some indicators, including hydro, solar and wind generation, are largely attributable to 
inter-model differences. Our Shapley–Owen decomposition gives an unexplained residual not due to the average 
effects of the other factors, highlighting some indicators (such as the use of carbon capture and storage (CCS) for 
fossil fuels, or adopting hydrogen as an energy carrier) with outlier results for particular ambition-scenario- 
model combinations. This suggests guidance to policymakers on these indicators is the least robust.   

1. Introduction 

Integrated assessment models (IAMs) play an increasingly critical 
bridging role linking the development of energy and other systems with 
that of the climate system [1]. IAMs differ in their approaches; “myopic” 
decision-making versus optimisation (with perfect foresight) over a time 
horizon, general equilibrium versus partial equilibrium, in addition to 
other aspects ([2] Annex III). But a key common characteristic is that 
they select technologies and practices with the aim of achieving a 
climate goal, either by minimising aggregate costs or by following de
cision rules assigned to the agents represented in the model. Almost 
exclusively, the climate goal used to guide the selection has been a level 
of cumulative carbon dioxide (CO2) emissions (known as a carbon 
budget) over a time horizon either until the CO2 net zero date (so called 
net zero carbon budget) or till 2100 (end-of-century budget) [3]. The use 

of the carbon budget is a practice adopted by the IAM modelling com
munity; it derives from findings in physical climate science that identify 
a quasi- linear relationship between cumulative CO2 emissions and 
global warming, but other objectives could be pursued ([2], Annex III). 

Given the diversity of IAMs’ underlying structures and conceptual 
frameworks, it is unsurprising that results vary in terms of technology 
adoption and utilisation. The practice has emerged, notably within the 
Intergovernmental Panel on Climate Change (IPCC), of categorising 
multiple published IAM-generated scenarios1 according to the warming 
outcome in the year 2100 for a given likelihood of limiting warming to 
that level (e.g. scenarios that limit peak warming to 2◦C with a likeli
hood greater than 67%). The range of results for specific indicators, such 
as global natural gas use, within a given scenario category are then 
assessed using standard descriptive statistics [4,5]. For example, in 
IAM-generated scenarios that limit peak warming to 2◦C, the 
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interquartile range for natural gas use in 2050 compared to 2019 lies 
between a 40 % decrease and a 10 % increase, with a considerably wider 
p5-p95 range. In other words, at the top end of the range, significant 
further exploration and field development is warranted; at the lower end 
there is less scope. Meanwhile, the global CO2 emissions levels for the 
p5–p95 range are projected to decrease by 36–69 % from the 2019 
levels, respectively. This means that the emissions could fall anywhere 
from one- to over two-thirds, roughly. What is a policymaker to make of 
this? These wide ranges allow decision-makers to “pick and choose” 
from the wide range of results available. 

IAMs have been widely criticised as “black boxes”. To be useful to 
policymakers, it is essential that there is clarity as to what conclusions 
are robust across models, and why and in what respect model results 
differ [6,7]. This paper does explicitly treat IAMs as black boxes but is 
intended to provide direction and focus for deeper dives into model 
performance and characteristics. It asks the questions: which energy 
system and energy indicators are robust, and which show wide variation 
across model runs; what are the high-level explanatory factors for these 
variations; and which energy indicators merit priority attention for 
conducting deep dives? 

Our broad approach is a statistical analysis of a set of IAM runs 
conducted as part of a single model intercomparison project the results 
of which are reported in the Shared Socioeconomic Pathways (SSPs) 
database [8]. The database covers five SSPs that describe plausible and 
internally consistent futures of the global economy, population and 
energy service demand that result in different challenges to mitigation 
and adaptation. These futures revolve around five different narratives 
(e.g. sustainability under SSP1), which are quantified using IAMs in 
terms of GDP and population trajectories reflecting such narratives. 

We look at a range of indicators relevant to the energy sector 
including primary energy supply by source, final energy demand by 
sector and carrier, emissions from the energy sectors, and economic 
indicators. We assess how much of the variance in results can be 
attributed to the average effect of three factors: climate ambition; 
background scenario assumptions (e.g. economy, demographics); and 
differences between the models. We also explore the unattributed por
tions that depend on the interaction between these. Dekker et al. [9] 
have also examined the sources of variation between model runs, but our 
paper differs in two respects. First, our regression-based analysis is 
explicit about the remaining variation that is not explained by these 
average effects. We believe that both of the following statements are 
conceptually useful: a) the decline in energy use as climate ambition 
rises and the differences in energy service demands between SSPs each 
contribute a similar amount to explaining the variation in primary en
ergy across model runs; b) while predictions for nuclear power do not 
systematically change very much with ambition (differences between 
models and SSPs are much more important), some models do increase 
nuclear power in some (not all) SSPs as climate ambition increases. For 
indicators like this, there is a sizeable amount of variation that is not 
straightforward to link to differences in a single factor, and we explicitly 
report this, as it complicates the picture for nuclear energy as a miti
gation option. 

Second, we rely on runs conducted as part of a single model 

intercomparison project exploring the five SSPs widely used by the 
climate science community, which gives us a reasonably balanced panel 
across SSPs. Dekker et al. [9] have used the more recent IPCC AR6 
Scenario Database [10] which is an unstructured database that com
bines runs from multiple model intercomparison projects and individual 
studies conducted at different points in time, often to answer different 
questions [4].2 Over 90 % of those model runs are based on a single 
middle-of-the-road narrative; SSP2, and the vast majority of these runs 
are based on 5 models families leading to over-representation and hence 
biases in the ensemble. As we show in Fig. B1 in Appendix B, the SSPs 
database offers a wider and an almost-equal representation across SSPs 
and models, albeit not across all model-SSP combinations. The AR6 
dataset is well-suited to answering questions about the variation be
tween the wide range of results in the literature, while the SSPs database 
is a more balanced panel that may well be a better reflection of the 
variations that could come in the answer to a specific question. 

We find that climate ambition has the largest impact on most energy 
indicators, specifically in results related to CO2 emissions. The scenario 
factor plays a significant role in explaining the variability of final energy 
demand variables influenced by population, as well as the amounts of 
aggregate fossil fuels and coal coupled with CCS. Differences between 
models take a dominant role in explaining the variability of some energy 
indicators that are related to non-biomass renewables such as wind, 
geothermal and hydro. However, some indicators like hydrogen use, 
nuclear energy and geothermal, the level of carbon price, and most 
notably the use of CCS in all fossil fuels suffer from high variability 
across and/or within the models’ runs, with large variation that is not 
straightforward to link to differences in a single factor in our analysis. 
This merits careful attention to the underlying scenario assumptions and 
model differences for informed policymaking. 

The remainder of the paper is organised as follows. Section 2 de
scribes the data and methodology. In Section 3, the empirical results are 
presented and discussed. Section 4 concludes by summarising the main 
findings, their policy implications, and providing recommendations for 
future research. 

2. Methodology 

2.1. Overview 

In this paper we apply the Shapley–Owen decomposition analysis 
[11] in order to evaluate three drivers behind key energy indicators in 
long-term mitigation pathways: climate ambition, background scenario 
assumptions (e.g. economy, demographics) for which we use the 
shorthand ‘scenario’, and differences between the models, alongside the 
unattributed portions emerge from their interactions. These factors 
collectively shape the future evolution of the chosen key energy in
dicators, or any other indicator for that matter, in the IAMs’ runs. 

Based on the Shapley–Owen decomposition method, linear multiple 
regression analysis is used to attribute the respective contribution of 
each of these three factors to the variance of a chosen energy indicator 

2 In the AR6 Scenarios database, there are individual model runs that attempt 
to address specific questions. For instance, one of the model runs in Category 1 
(limiting warming to 1.5C (>50 %) no or low overshoot) by model “C-ROADS- 
5.005”, scenario “Ratchet-1.5-limCDR-noOS”, focuses on the implications of 
applying high constraints on the scale and type of carbon dioxide removal 
measures available. This model run results in a very stringent CO2 and non- CO2 
emission reductions trajectory, as well as the earliest net zero CO2 date (2037) 
within the 90th percentile range. Including such a scenario in the summary 
statistics of, for instance, the role of biofuels is bound to result into biases in 
these estimates when analysed side-by-side with structured model intercom
parison studies and other individual studies. 
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(the dependent variable) across all model runs as represented by its R2 

value.3 The Shapley–Owen method attributes the contribution from 
each factor to be the increase in R2 that comes from adding that factor to 
a regression. The results are averaged over all possible permutations in 
which the regression can be assembled. This contribution of each factor 
is known as the Shapley–Owen value. It has several attractive properties, 
not least that the R2 from the overall regression is exactly decomposed 
into the contributions from the three factors [12]. Another important 
property of our approach is that we do not expect to capture all the 
variation between model runs via the average effects of choosing (e.g.) a 
particular model embodied in regression coefficients: 1 − R2 is the pro
portion of the variation in the dependent variable that is not explained 
by the regression (see Appendix A.1 for detailed discussion). 

Other approaches in the literature on variance decomposition anal
ysis identify the relative importance of regressors in explaining the 
dependent variables including sequential sums of squares and propor
tional marginal variance decomposition [12], and the Sobol decompo
sition based on functional variance analysis ([13] in the [9] paper we 
refer to above). The Shapley–Owen method adopted in our paper is the 
most appropriate in our case for 2 reasons, a) it facilitates the exogenous 
grouping of regressors, which, as we explain in the next section, allows 
us to capture nonlinear effect of climate ambition, b) studies show that 
Shapley value holds a comparative advantage over Sobol indices, 
particularly when dealing with statistically dependent or correlated 
input variables within sensitivity analysis. Shapley values allocate 
mutual contributions (be it due to correlation or interactions) of input 
variables individually to each variable, which might lead to more ac
curate and reliable sensitivity analysis results [14–16]. 

Similar decomposition work using the Sobol method is done by [17], 
where the authors attempt to disentangle the driving forces beyond 
mitigation scenarios such as socio-economic developments, climate 
system uncertainty, damage estimates, mitigation costs and discount 
rates. Meanwhile, [18] use decomposition analysis adapted from Index 
Decomposition Analysis (IDA) to identify the sensitivity factors that 
derive future CO2 emissions based on SSPs characteristics. In both 
contributions, the authors had access to the data generating process (i.e., 
new IAM runs were part of the exercise), tailored to clearly reveal the 
role of drivers they consider, while our method does not require such 
access. 

2.2. Data selection and pre-processing 

We apply our analysis to the SSP Database [8], which contains the 
results of model runs based on the five SSPs developed in order to enable 
integrated analysis among the climate physical modelling, impact 
modelling and the mitigation modelling communities. The SSPs describe 
plausible and internally consistent futures that lead to different chal
lenges to mitigation and adaptation. These futures evolve around the 
narratives of sustainability (SSP1), middle of the road (SSP2), regional 
rivalry (SSP3), inequality (SSP4) and fossil-fuelled development (SSP5). 
The physical climate dimension, and hence implicitly climate policy 
ambition, of these futures is captured by an earlier scenarios framework 
called Representative Concentration Pathways (RCPs) [19] which 
covers seven levels of radiative forcing by the end of the century 
(measured in W/m2). These different radiative forcing levels are com
bined with the SSPs in a matrix structure. The SSPs model intercom
parison project has six participating models and includes 126 model 
runs altogether. We focus on decadal years only, starting from 2020. 

In terms of treating missing data due to lack of some model-SSP 
combinations, we adopt the approach of likewise deletion (aka 

Complete Case analysis) where we exclude model runs that did not 
report results for specific dependent variables from certain segments of 
our analysis and the analysis is conducted with the remaining complete 
cases. This efficient approach does not necessitate additional modelling 
or imputation given that missingness in model-SSP combinations may be 
deemed as Missing Completely at Random (MCAR), where the miss
ingness is independent of both observed and unobserved data. This 
characteristic renders listwise deletion a less biased approach compared 
to scenarios where missingness might be systematically related to other 
factors [20]. For the same reason, we do not correct for the fact that 
some models have more entries for certain scenarios than others, where 
sampling method may induce different types of bias. Similarly, where 
models do not have any entries for certain scenarios (e.g. 
MESSAGE-GLOBIOM has no entries for SSP4 and SSP5) rather than 
introducing bias due to imputation they simply don’t feature in the 
relevant analysis and hence the sample is not perfect. In explaining our 
findings throughout the Results and Discussion section we highlight, 
where needed, such cases (e.g. not all models report Primary Energy 
Geothermal) and how they influence the Shapley–Owen decomposition 
results. Appendix B.1 includes general descriptive statistics of the 
database, followed by a table on missing data by variable in Appendix 
B.3. The detailed plots in Appendix C (e.g. Fig. C4 for Primary Energy 
Geothermal) clearly flag models that failed to report specific variables. 

In order to conduct the Shapley–Owen decomposition analysis, we 
perform multiple linear regression analyses where the dependent vari
ables are the chosen key energy indicators (e.g. final energy demand for 
electricity), while the explanatory variables capture the three factors 
mentioned above. Appendix B.2 includes the full list of the energy in
dicators which are our dependent variables. As for the explanatory 
variables, we represent the model factor by a set of dummy variables 
that captures the modelling families, while another set of dummy vari
ables captures the SSP families and hence the scenario factor. One model 
and one SSP are used as the numeraire in constructing the dummy 
variables. In contrast, the climate ambition factor is represented by a 
quadratic function of total cumulative CO2 emissions between 2010 and 
2100 and its square, computed from the variable “Emissions|CO2” in the 
SSPs database. Using a quadratic function in the regressions allows for a 
non-linear response to stricter emissions targets. 

We intentionally did not use RCP dummy variables to represent 
climate ambition as the baseline emissions vary so much across models 
even for a given RCP-SSP combination. While this could be seen as an 
additional source of inter-model variation, cumulative CO2 emissions 
drive the climate, and the level of mitigation observed should be linked 
to reductions in these. At the suggestion of an anonymous referee, we 
undertook further diagnostic analysis by using the RCPs as dummy 
variables instead of quadratic cumulative CO2 emissions as presented in 
Appendix E below. For most indicators, both measures yield very similar 
results. 

The continuous variable is more effective in explaining variations in 
unabated fossil fuel use, as it captures differences across baseline results. 
RCP dummy variables are better at explaining the role of certain miti
gation technologies, such as hydrogen as a final energy carrier, which 
rise more rapidly for the highest levels of ambition than a quadratic 
relationship with emissions can capture. This may suggest that neither 
measure is completely satisfactory, something that we reflect on in 
future research avenues. 

2.3. Applying Shapley–Owen decomposition to mitigation scenarios 

For each dependent variable (energy sector indicator), we ran seven 
ordinary least squares (OLS) regressions. These regressions cover all 

3 The R2 value (aka the coefficient of determination or goodness of fit) is a 
measure of how well the linear regression model fits the data. It ranges from 
0 to 1, with the value 1 indicating a perfect fit and the value 0 indicating no 
correlation whatsoever. 
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possible combinations of factors.4 The first regression model, referred to 
as ‘full model’, includes all explanatory variables (three factors) as 
illustrated in Eq. (1) below. The subsequent regressions include all 
possible combinations of one or two factor(s), as presented in detail in 
Appendix A.2. The full model is: 

MitInd(Amb, Scen,Mod)i = β0 + β1CuEmi + β2CuEm2
i +

∑

s
γs1SSP

s
i

+
∑

m
γm2 Modm

i + ui (1)  

where MitInd(.) is the dependent variable of an energy indicator. Amb,
Scen,Mod stand for the ambition, scenario and model factors respec
tively, indicating the regressors included in each regression. β0 is the 
intercept term. β1 and β2 are the coefficients of cumulative emissions 
(CuEm) and their squared value (CuEm2), which together capture the 
ambition factor. The Shapley–Owen decomposition method, an exten
sion of the Shapley decomposition approach [11], allows some explan
atory variables to be grouped exogenously based on prior knowledge. 
Cumulative emissions and their square form one group, four dummy 
variables for SSPs5 the second, and five for models the third. 

γ1 and γ2 in eq. (1) are the sets of coefficients of the dummy variables 
for SSP (scenario factor) and Mod (model factor) respectively. The error 
term is denoted by ui. The R2 resulting from each regression is denoted 
by listing the factors included in brackets: the R2 corresponding to Eq. 
(1) is R2(Amb, Scen,Mod), while for a regression that includes the sce
nario (γ1SSPs) and model (γ2Mod) factors only it is R2(Scen,Mod). 

The Shapley–Owen value for each factor, denoted R2
factor, is computed 

by subtracting the R2 for each possible regression that does not include 
that factor from the R2 of a corresponding regression to which the factor 
has been added, then weighting the results. For example, subtracting the 
R2(Scen,Mod) from the full model’s R2(Amb, Scen,Mod) gives the mar
ginal impact of adding Amb given the other two factors have already 
been taken into account. This has a weight of 1/3 as it represents two of 
the six possible permutations of the full model.6 Following all possible 
combinations of two or one factor(s), the Shapley–Owen value for 
Ambition can be computed as follows: 

R2
Amb =

R2(Amb)
3

+
R2(Amb, Scen) − R2(Scen)

6
+

R2(Amb, Mod) − R2(Mod)
6

+
R2(Amb, Scen,Mod) − R2(Scen,Mod)

3
(2) 

The sum of all decomposed Shapley–Owen values for all three factors 
is given by: 

R2
Amb + R2

Scen + R2
Mod = R2

Amb,Scen,Mod (3) 

It can be shown algebraically that this sum equals the R2 of the full 
regression in Eq. (1), that is R2

Amb,Scen,Mod = R2(Amb, Scen,Mod)
Unless Eq. (1) is a perfect fit to the data, there will be a residual 

variation (the unattributed portions in our decomposition) that cannot 
be explained by the three factors collectively, given by: 

R2
Resid = 1 − R2(Amb, Scen,Mod) (4)  

3. Results and discussion 

3.1. Overview 

We begin by analysing primary energy supply variables to under
stand how their use varies across models, scenarios and levels of climate 
ambition. Following this, we delve into final energy demand variables, 
segmented by sectors and by carriers, to shed light on consumption 
patterns. Subsequently, we explore key emissions variables. Lastly, we 
assess economic indicators such as GDP and carbon prices to discuss 
their interactions with our indicators. 

3.2. Non-fossil energy supply 

Each panel of the decomposition diagrams below follows the same 
design. Fig. 1 illustrates the decomposition for the variations in selected 
primary energy supply variables: in total and for various low-carbon 
sources. The solid black line with markers in the top panel shows the 
mean across model runs for the total primary energy supply variable. 
The dashed dark red line shows the median. For many of the variables 
we study, the median is below the mean, suggesting a tail of model runs 
with high values. The coloured bars run from one standard deviation 
below the mean value to one standard deviation above. Each bar is 
divided in proportion to the three Shapley–Owen values for our factors 
and the unexplained R2

Resid. The lower end of the stacked bars may reach 
below the x-axis which is shown as a solid red horizontal line for y = 0 
where relevant. While negative values are possible for a few variables, 
(e.g. emissions from land use and land use change), the negative values 
in our graphs usually just signal that the standard deviation is larger 
than the mean. This happens when the models’ runs are sufficiently 
skewed and dispersed (so that means and medians diverge). The largest 
contribution to variations in the trajectory of aggregate primary energy 
supply across model runs comes from the scenarios, especially towards 
the end of the century, followed by climate ambition. In other words, 
aggregate energy levels are related to input activity level assumptions in 
the SSPs coupled with climate ambition. Systematic differences between 
models are relatively unimportant, while the relatively narrow top bar 
that captures residuals confirms that the average effects of the three 
factors explain a high proportion of the variation.7 

When it comes to biomass (second row, left panel) the level of 
climate ambition plays a significant role in determining the trajectory of 
biomass use in, for instance, power generation and liquid fuel produc
tion, both of which are come under increasing focus when stringent 
targets are considered [21]. Meanwhile, bioenergy potentials differ 
across SSPs due to constraints related to competition over land which is 
determined by global demand for food consumption [22], as well as 
access to clean fuels in developing countries, which is largely influenced 
by the levels of population and GDP growth [23]. Both effects are 
captured by the small but increasing proportion of the scenario factor in 
the figure. In Fig. C1 in Appendix C below we illustrate how some 
models (specifically GCAM and AIM) deploy different levels of biomass 
under different scenarios for the same ambition level. This leads to 
increasing residual effects where results diverge based on model- and 
scenario-specific choices. 

The second row, right panel in Fig. 1 focuses on primary energy 
generation from nuclear. It shows that the explained variations in the 

4 A regression model that includes no explanatory variables is one of the 
theoretical combinations considered. However, by definition, its R2 value 
would be zero, hence there’s no need to actually run this particular model.  

5 There are five SSPs, but one must always be chosen as the base case and is 
not given a dummy variable – the values of the other SSP dummies show how 
indicators vary relative to that base case.  

6 If one factor (say Amb) is chosen first, there are two that might be chosen 
second, giving two permutations. Similarly, if Amb is added last, either Scen or 
Mod could have been chosen first, but the marginal contribution of Amb is the 
same in each case, and so we have another two permutations with the same 
marginal contribution. While there are also two permutations in which Amb is 
added second, its marginal contribution must be separately calculated for each 
of the two possible first-choice variables, giving the two terms in the middle of 
Eq. (2), each with half the weight of the outer terms. 

7 Of course, all of the variation ultimately comes from the interaction of the 
three factors, but we want to identify variation that only comes from particular 
combinations, as opposed to the expected effect of switching between models. 
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first half of the trajectory are primarily driven by the scenario factor 
coupled with equal contributions from the model and climate ambition 
factors. However, as we move towards the second half of the century, 
differences between models become increasingly important in explain
ing the variability, alongside the scenario factor. The impact of climate 
ambition, on the other hand, remains relatively limited throughout the 
century. The large and increasing proportions of residuals in the 
decomposition are because some models increase nuclear energy supply 
for high ambition levels, but only in some scenarios, as we further 
illustrate in Fig. C2 in Appendix C below for the year 2100. For instance, 
models may well disagree on future trajectories of nuclear due to 
varying technological assumptions about learning rates or the possibility 
of future cost increases Rogner et al. [24,25]. 

The third row in Fig. 1 shows the decomposition for energy supply 
from wind (left panel) and solar (right panel). In both cases, differences 
between models are found to play a significant role in explaining the 
variability in their trajectories, more so in the case of wind. This suggests 
that the underlying assumptions in models on costs, technical progress, 
regional potential and maximum penetration as well as other related 
technologies such as batteries are what is driving the projections of these 
technologies [6,22]. This result aligns with Dekker et al. [9], who also 
find the model factor to be the dominant one in explaining the variation 

Fig. 1. Shapley–Owen decomposition – primary energy variables – total and low-carbon sources. Top panel in row 1 shows the aggregate primary energy supply, the 
panels in rows 2 show biomass energy supply and nuclear energy supply, the two panels in row 3 show wind energy supply and solar energy supply, while the panels 
in row 4 show hydro energy supply and geothermal energy supply, with the final row showing the aggregations of non-biomass renewable energy. Notice that the y- 
axis scale differs between panels. 
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in wind and solar power.8 Climate ambition is generally more important 
than the choice of scenario, but the residuals are equal to or larger than 
its effect for most decades. As ambition rises, some models, in some 
scenarios, deploy noticeably more wind or solar power than average. We 
present more data for wind in Fig. C3 in Appendix C. 

The left panel in the fourth row of Fig. 1 on hydro also shows a 
similar decomposition pattern to energy supply from wind, also aligned 
with the findings from Dekker et al. [9] Meanwhile, the right panel 
shows that while the dominant factor in driving the variation in 
geothermal energy is the model, it also increasingly driven by climate 
ambition towards the end of the century, coupled with very large and 
increasing residuals. Models vary in how they represent geothermal 
energy [26] as we further illustrate in Fig. C4 in Appendix C below for 
the year 2080; two of the models in the SSPs database do not report any 
results for this variable and we excluded them from this part of our 
analysis (as in all similar cases), as discussed in Section 2.2 above. The 
final row in Fig. 1 below shows the aggregations of non-biomass 
renewable energy supply, which collectively are driven by the level of 
ambition with an increasing role for differences between models to
wards the end of the century. A possible implication is that there is more 
of a consensus that high levels of ambition require more renewable 
energy than there is on the type of renewable energy required. 

In addition to the decomposition diagram above, we can demon
strate the same results with adapted ternary plots. Fig. 2 gives an 
example, for nuclear energy in 2060. The underlying design will be 
repeated in ensemble diagrams below. To provide a graphical repre
sentation of variability across the model runs for a year, each side of the 
main outer triangle is equal to the variable’s coefficient of variation (as 
in Fig. 1),9 and can be compared to the thick line of unit length below it. 
Values below 0.5 (30 % of the sample) and above 1.5 (13 % of the 
sample) are truncated for legibility. The length of each edge of the outer 
triangle represents 100 % of the variation; the length of the edges of the 
inner triangle represents the proportion of the variation explained by 
our three factors, the R2 of the regression. The higher the R2, the larger 
the inner triangle relative to the outer. The inner triangle is a conven
tional ternary diagram, in which the proximity of the point to each 
vertex represents the corresponding factor’s contribution to the 
explained variation in model runs. In this case, the chosen scenario does 

the most to explain the variation in results, and so the point is closer to 
the bottom right vertex of the triangle. The length of the yellow arrow 
from the inner triangle’s axis for “scenario = 0 %”, parallel to the axis of 
model = 0 % (or, equivalently, a line parallel to the axis of ambition =
0 %), gives its contribution. Its length can be compared either to the 
inner triangle (giving its relative contribution to the explained variation) 
or (equivalently to Fig. 1) to the outer triangle as its contribution to
wards explaining the overall variation across model runs. The blue and 
grey arrows show the contributions of the ambition and model factors, 
measured from their respective axes; as their contributions are similar, 
the point is close to the line that bisects the bottom-right vertex and the 
“scenario = 0 %” axis. The combined length of the three green arrows 
gives the share of variation that is unexplained. The inner triangle is 
positioned so that if the three factors each have the same contribution, 
their point will be at the intersection of the three lines bisecting each 
vertex, whatever the level of unexplained variation. 

Fig. 3 below shows a set of adapted ternary plots for the year 2060 
used to summarise some of the results in Fig. 1 above. The figures 
illustrate both the variability in the estimates of each indicator (e.g. 
Geothermal has the largest relative variability) and the level of residuals 
(e.g. lowest for Primary energy). 

3.3. Energy supply from fossil fuels 

In Fig. 4 we show the Shapley–Owen decompositions for the energy 
supplied from fossil fuels with and without carbon capture and storage 
(CCS). Looking at the top panel which shows the aggregate fossil fuels 
(with and without CCS) and all panels on the left in the following rows 
which show aggregate and individual unabated fossil fuels (i.e. without 
CCS), the variation of their trajectories is very dependent on the level of 
ambition. Given that fossil fuels account for the majority of CO2 emis
sions this is unsurprising. For the unabated use of gas and of oil, ambi
tion is slightly less important, though still capable of explaining around 
half of the end-century variation between model runs. Systematic dif
ferences between models are more important for these two technologies 
than for coal or the total of fossil fuel use, perhaps suggesting different 
views about the ease of switching between fuels [27]. The share of 
variation left to the residuals is also higher for oil and gas than for coal, 
which we illustrate in Figs. C5–C7 in Appendix C. 

The panels on the right show the use of fossil fuels with CCS. In the 
cases of aggregate fossil fuels use, gas and coal, the choice of scenario 
has more pronounced impact than in the cases without CCS, while dif
ferences between models are small. This is driven by the impact of 
different levels of population and GDP on energy demand. The majority 
of model runs show fossil fuel use declining by the end of the century, 
but a few have continued increases. The level of climate ambition is 
surprisingly unimportant as an across-the-board driver of CCS with fossil 
energy, either for the individual fuels or overall. Generally, ambition 
plays a bigger role mid-century than it does late in the 21st century. 
Since oil is mostly used for transport and CCS is better suited for sta
tionary uses, the amount of oil burned with CCS, which is only reported 
by three models, is relatively small and quite dependent on the model 
used. Across the fossil fuel with CCS results, however, a much higher 
proportion of the variation across model runs remains unexplained, 
implying that some models choose high levels of CCS, but only for high 
levels of ambition or energy demand. We further illustrate the differ
ences across scenarios and models in Figs. C8–C10 in Appendix C below. 

Fig. 5 below shows individual ternary plots for the year 2060 for the 
indicators above, as well as combined fossil fuel use with and without 
CCS, in aggregate and individually. In these latter cases our findings are 
aligned with those of [9]. 

3.4. BECCS and CCS 

Fig. 6 covers the decomposition for three variables related to the use 
of carbon capture and storage. For primary energy use with BECCS (top 

Fig. 2. Example ternary plot – summary of Shapley–Owen decomposition 2060 
– nuclear energy. 

8 Note that in discussing our results we draw similarities, where possible, 
with findings in Dekker et al. [9]. We believe this has the added value of 
illustrating how despite the different methods (namely Shapley–Owen decom
position, and Sobol decomposition) and different databases and approach to the 
analysis, some trends persist. However, this exercise is only feasible for a small 
set of indicators assessed by both papers, and in a few cases the different ap
proaches to capturing the scenario factor affect the results.  

9 The coefficient of variation (CV) is a standardised measure of dispersion 
defined as the ratio of the standard deviation to the mean. 
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panel), the level of climate ambition is the most significant factor in 
explaining variability throughout the century. This is in line with the 
depiction of bioenergy use with CCS as a crucial option for mitigation in 
the underlying literature, particularly in the energy sector [6,28]. The 
scenario and model factors have increasing and equal contributions to 
the variability, albeit to a limited extent. The overall decomposition here 
is, not surprisingly, aligned with the decomposition of the overall 
biomass energy supply in Fig. 1 above, hence follows the same rationale 
for these model and scenario factors, as well as the residuals. As would 
be expected, this overall pattern is mirrored to a large extent for CO2 
emissions from BECCS (middle panel). The main difference is that there 
is little consistent variation between models in the amount of carbon to 
be captured for a given scenario and level of ambition.10 

As for the overall CO2 through CCS (bottom panel), climate ambition 
continues to play an important role in explaining the variability of CCS 
throughout the century. However, the scenario factor, particularly to
wards the second half of the century, becomes the largest contributor to 
the overall decomposition. CCS is needed in high ambition model runs 
and in scenarios with higher underlying energy demand (e.g. SSP5) 
where the amount of carbon stored tends to rise [27], as we show in 
Fig. C11 in Appendix C below. Given the small number of indicators 
discussed in this section, we do not provide a ternary plot here. 

3.5. Final energy 

Fig. 7 below shows the decomposition of final energy variables in 
total and for selected energy carriers, specifically electricity and 
hydrogen. Starting with total final energy use (top panel), the figure 
shows that by the end of the century, the largest proportion of the 
variation across model runs is explained by the assumptions embedded 
in the scenarios; scenarios with higher population and GDP would sys
tematically require more energy. Climate ambition is also important: 
higher levels of ambition imply lower energy use. Systematic differences 
between models are relatively unimportant, while the relatively narrow 
residual confirms that the three factors explain a high proportion of the 
variation. 

Looking at the absolute level of electricity consumption (second 
row), the decomposition shows that model runs are influenced by the 
chosen scenario, particularly towards the end of the 21st century. This is 

driven by the effect of different levels of population and GDP growth on 
overall energy demand. Additionally, the differences across models 
become increasingly prominent, as we further show in Fig. C12 in Ap
pendix C. When it comes to climate ambition, its influence results in 
more electricity overall in many high-ambition model runs but also more 
efficient use of electricity (in the sense of a smaller amount per dollar of 
GDP). These forces tend to cancel out yielding a seemingly unimportant 
effect of climate ambition on the absolute amount of electricity used. 
These forces are also coupled with a few relatively high levels of elec
tricity use in model runs with high emissions (Fig. C12 in Appendix C) 
which explains why the residual here is higher than in the case of total 
final energy use (top panel). 

For electrification (the share of electricity in final energy use – third 
row), climate ambition is explicitly more important, explaining over half 
of its variation. Mechanistically, this is because the denominator (final 
energy) is heavily influenced by ambition while the numerator (elec
tricity) is seemingly not, as discussed above. This effect is reinforced by 
the fact that it is generally more efficient to provide energy services via 
electricity, resulting in a fall in final energy as a by-product of electri
fication. Differences between models remain important, while the so
cioeconomic scenario is less so, as we further show in Fig. C13 in 
Appendix C below. 

When it comes to hydrogen consumption by final energy users 
(bottom row), during the first half of the century, the level of climate 
ambition plays the most significant role. However, as we move towards 
the end of the century, differences across models become increasingly 
important. The socioeconomic background scenarios also play an 
increasingly important role in determining the trajectory of hydrogen in 
the final energy mix. These trends are consistently accompanied by 
increasingly large residuals, as hydrogen only reaches a large scale in a 
few model-scenario combinations, and in these cases the relationship 
between ambition and hydrogen use is too non-linear to be captured by 
our quadratic approach, as discussed in Appendix E. We further illus
trate the differences between models in Fig. C14 in Appendix C below, 
noting the large number of outliers and that not all models reported 
hydrogen in the SSPs database. Additional results on other final energy 
carriers such as liquids, solids, gases, and heat can be found in Appendix 
D. The ternary plot for all final energy variables (both carriers and 
sectors) is provided in the next Section. 

3.6. Final energy by sector 

At the level of end-use sectors, our three factors capture most of the 

Fig. 3. Ternary plot – summary of Shapley–Owen decomposition 2060: primary energy, overall and from low-carbon sources.  

10 A side calculation revealed that the amount of biomass primary energy 
burned per tonne of CO2 captured differs between (and usually within) models. 
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variation in the results (Fig. 8). Starting with the industry sector (top 
panel), the largest proportion of variations is explained by differences 
between the four models that report this output, as further illustrated in 
Fig. C15 in Appendix C. The dominance of non-electric fuels in this 
sector, such as oil, gas or feedstocks, makes decarbonisation challenging 
and results depend on underlying assumptions in the models, such as the 
role of indirect electrification via hydrogen or the constraints on elec
trifying the chemical industry due to the dominance of feedstock in its 
processes [29]. This is further confirmed by [9], where the model factor 
plays the most significant role in all fuels used in this sector. The 
background scenario and climate ambition factors play a moderate role 
in explaining the variability throughout the century, given the influence 
of population and GDP assumptions on the demand for industrial pro
duction, while since industry is a "hard-to-decarbonise" sector, there is 
relatively little reduction in emissions, even with high levels of 

ambition. 
As for final energy demand in the combined residential and com

mercial sector (second panel) the largest proportion of variations in this 
sector’s trajectory is consistently explained by the scenario factor. The 
different projections of population and GDP directly affect the under
lying demands. Cooling demand and the use of appliances, especially in 
developing countries, are expected to rise to levels that will compensate 
for the reduction in heating demand due to electrification, efficiency 
improvements, or climate change impacts [30]. The model factor be
comes increasingly more important towards the end of the century as 
different calibrations in the four models reporting the variable affect 
their attempts to meet space and water heating and cooking demand via 
electrification or the use of biofuels [22], see Fig. C16 in Appendix C 
below. 

The variations in the trajectory of final energy demand in the 

Fig. 4. Shapley–Owen decomposition – primary energy variables – fossil fuels with and without CCS. Top panel shows aggregate fossil fuel use with and without CCS. 
All panels on the left show the different sources of unabated fossil fuels, while all panels on the right are the corresponding duels with CCS. Notice that the y-axis scale 
differs between panels. 
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Fig. 5. Ternary plot – summary of Shapley–Owen decomposition 2060: primary energy from fossil fuels, overall, unabated and with CCS.  

Fig. 6. Shapley–Owen decomposition – CCS and BECCS. Top panel shows primary energy use with BECCS, middle panel shows CO2 emissions resulting from BECCS 
use, and the bottom panel shows CO2 emissions through CCS. Notice that the y-axis scales and units differ between panels. 
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transportation sector (final panel), are mostly explained by the model 
factor in the first half of the century, while in the second half the sce
nario factor followed by climate ambition increasingly explains the 
variation; see Fig. C17 in Appendix C below for more details. This is not 
surprising, as the level of demand drives the evolution of the sector, 
coupled with how the sector will evolve in terms of electrified mobility 
directly or indirectly via hydrogen and adoption of different transport 
modes such as public transport [29,31]. Perhaps unsurprisingly, in both 
cases of buildings and transport, we find the scenario is more important 
than in [9], given that we have a much more even spread across SSPs 
(something they suggest would be a good topic for further research). 

Fig. 9 below shows individual ternary plots for the year 2060 for each 
sector and carrier discussed in the results above, as well as the four 
carriers reported in Appendix D. 

3.7. Emissions 

Fig. 10 below illustrates the decomposition for CO2 and non-CO2 
GHG emission variables. The overall trend, illustrated by the mean 
curves, for all emission variables decreases through the 21st century at 
varying reduction rates. The median curves slightly deviate from the 
means for all variables implying a slightly left-skewed distributions 
across model runs. The climate ambition factor explains almost all the 
variability of overall CO2 emissions (top panel), those from fossil fuels 

and industry specifically (second row, left panel) and emissions of the 
Kyoto gases11 (third row). This is hardly surprising, given that our 
definition of climate ambition is so closely aligned with the levels of CO2 
emissions and that CO2 emissions dominates the Kyoto Gases. When it 
comes to CO2 emissions from land use (second row, right panel), the role 
of the factors in explaining the variability changes dramatically and 
varies throughout the century. The significance of land use in our 
analysis is due to the use of reforestation (for instance) to allow burning 
more fossil fuels while still meeting climate goals. The model factor is 
the most important at first but declines later, while there are large re
siduals. As discussed in Fig. 1 above some models differ across scenarios 
in the rate at which biomass deployment increases with ambition 
leading to increasing residuals. We further illustrate the large un
certainties across models in Fig. C18 in Appendix C below. 

Emissions of methane (CH4, last row, left panel) and nitrogen (N2O, 
last row, right panel) come from the energy sector (e.g., fugitive emis
sions of methane from natural gas production) and from agriculture. 
Climate ambition remains the largest factor in explaining their 

Fig. 7. Shapley–Owen decomposition - final energy. Top panel shows aggregate final energy, second row shows electricity, third row shows electrification (share of 
electricity in aggregate final energy), and bottom row shows hydrogen. Notice that the y-axis scale differs between panels. 

11 A basket of 7 greenhouse gases which includes Carbon dioxide (CO2), 
Methane (CH4), Nitrous oxide (N2O), Hydrofluorocarbons (HFCs), Per
fluorocarbons (PFCs), Sulphur hexafluoride (SF6), and Nitrogen trifluoride 
(NF3). 
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Fig. 8. Shapley–Owen decomposition – sectoral final energy. Top panel shows final energy demand in the industry sector, middle panel in the combined residential 
and commercial sector, and the bottom panel in transportation. Notice that the y-axis scale differs between panels. 

Fig. 9. Ternary plot – summary of Shapley–Owen decomposition 2060: final energy, overall, by sector and by carrier.  
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variability, slightly less so in the case of N2O. This is given their sig
nificant contribution to the Kyoto gases basket as well as high warming 
potential [32]. In both cases, the role of the scenario factor is more 
pronounced than in the other panels, as population growth and food 
demand are strong drivers for these emissions [8]. Residuals are rela
tively smaller for CH4 than for land use CO2 emissions, while those for 
N2O are greater, particularly by the end of the century. Nonetheless, 
they are also largely driven by the same underlying uncertainties [33]. 
Our findings here are aligned with those of [9]. 

Just like the decomposition plot above, the individual ternary plots 
in Fig. 11 below show the dominant contribution of climate ambition to 
2060 results for CO2 emissions and the Kyoto gases. 

3.8. Economic variables 

Our data include two economic variables, the price of carbon and the 
level of GDP. The price of carbon (Fig. 12 below, top panel) is endoge
nous, and very non-linear in the level of ambition: some model runs 
produce 2100 carbon prices of over $2000 per tonne of CO2 for high 
levels of ambition, and in two cases, the values are an order of magni
tude higher (see Fig. C19 in Appendix C below). This means that over 
half the variation in the results for 2100 is unexplained by our approach. 
The explained variation is split approximately evenly between model 
and ambition. Across the model runs as a group, no scenario has a sys
tematically higher or lower carbon price than any other. The distribu
tion of results is highly skewed, with many runs having very low carbon 
prices and, for some models, those with a high level of ambition having 
very high prices. Consequently, the median of results is close to zero, 

Fig. 10. Shapley–Owen decomposition – emissions. Top panel shows CO2 emissions, panels in the second row show disaggregated CO2 emissions into fossil fuel and 
industry (FFI) and land use, the panel in the third row shows Kyoto gases, while the bottom row panels show CH4 and N2O. Notice that the y-axis scale differs 
between panels. 
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while the mean is approaching $2000/tCO2 by 2100. 
GDP rises over the century in all scenarios, but at rates that depend 

on the scenario: this factor accounts for over 90 % of the variation in the 
data from 2040 onwards. Unlike carbon prices, two of the six models 
treat GDP as an exogenous input, while for the others, it is an output that 
depends on the level of ambition. For these models, action to curb 
emissions results in very slightly lower GDP and explains the very small 
variability attributable to model and ambition.12 Costs of climate change 
impacts are not accounted for, given that these models’ runs are based 
on cost-effectiveness IAMs. We further show the variability across sce
narios in Fig. C20 in Appendix C. 

3.9. Cross-sector comparisons 

We complement our earlier discussion by grouping together those 
indicators that are most affected by each of the three factors in turn or 
have particularly high residuals. Climate ambition plays the largest role 
in explaining many energy-related indicators, illustrated in Fig. 13 
below. It explains almost all the variability in most emissions results. On 
one level, this is not surprising given that we measure ambition in terms 
of the cumulative CO2 emissions that dominate the Kyoto gases, but a 
given cumulative target still allows some variation between scenarios 
(though not, we find, models) in the middle of the century. When it 
comes to the primary energy mix, climate ambition has a role in 
determining the trajectory of biomass (with and without CCS) and some 
non-biomass renewable use (solar), while its impact on nuclear energy is 
very limited. This is also true for the use of unabated fossil fuels which 
needs to be phased out for achieving the climate goals. Final energy 
variables, particularly those that will take a prominent role in the 
decarbonisation of the energy system (e.g., hydrogen, electrification), 
are also mostly influenced by the level of climate ambition. 

Fig. 11. Ternary plot – summary of Shapley–Owen decomposition 2060: emissions.  

Fig. 12. Shapley–Owen decomposition – economic variables. Top panel shows carbon prices, while the bottom panel shows GDPPPP. Notice that the y-axis scale 
differs between panels. 

12 The elasticity of GDP with respect to emissions is less than 0.1 in most cases 
where we compare “adjacent” model runs (e.g. SSP1-19 and SSP1-26) for the 
same model, with exceptions for some of the low-GDP SSP3 model runs and for 
the WITCH-GLOBIOM 3.1 model. 
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The impact of differences between scenarios (Fig. 14 below) is likely 
to be most pronounced for energy indicators that are influenced by 
population and GDP growth, such as final energy use. This is the case for 
final energy use in transport and (residential and commercial) buildings, 
although not in industry, where the choice of model has a greater effect 
on its outputs. The use of nuclear and coal with CCS are also driven by 
the choice of scenario, adopted as a means of meeting emissions targets 
when energy demands are high, but also have high residuals, showing 

that the interaction between these factors is more important than any 
single one of them. 

Finally, differences between models (Fig. 15 below) take a dominant 
role in explaining the variability of some of the energy indicators that 
may depend on modellers’ assessment of their future potential, such as 
the non-biomass primary energy renewables of geothermal, wind and 
hydro. There are also significant inter-model differences in predictions 
for CO2 emissions from land use, as well as final energy use in the 

Fig. 13. Ternary plot – focus on the climate ambition factor effects 2060.  

Fig. 14. Ternary plot – focus on the scenario factor effects 2060.  
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industry sector and heat. 
CO2 emissions from land use is one of the indicators with a high 

residual share, showing that we cannot explain their variability well 
from the average effect of climate ambition or the chosen model or 
scenario. While actions such as reforestation can be used to create large 
amounts of negative emissions, this is only for some combinations of 
ambition, model and scenario. The same is true of the (potentially 
expensive) application of CCS to fossil fuels, nuclear energy and use of 
hydrogen. The varying use of such expensive technologies feeds through 
into the carbon price,13 and this is the mitigation indicator with the 
highest average proportion of unexplained residuals. 

4. Conclusions and policy implications 

In this paper we conduct a decomposition analysis to evaluate the 
drivers behind key energy indicators in long-term mitigation scenarios 
that are generated using integrated assessment models (IAMs). We 
identify three key drivers: climate ambition, model, and socioeconomic 
background scenario, which collectively shape the future evolution of 
the chosen key energy indicators in these scenarios. The Shapley–Owen 
decomposition method based on the proportion of variation explained in 
a set of multiple regressions attributes the contribution of each factor to 
the variation in a chosen energy indicator, while explicitly calculating 
the proportion of variation that is not so easily explained. We apply this 
analysis to a set of IAMs’ runs conducted as part of a single model 
intercomparison project, the results of which are reported in the SSPs 
database. The paper asks: which energy system indicators are robust, 
and which show wide variation; and what are the high-level explanatory 
factors for the variance in results across model runs; which energy in
dicators merit priority attention for conducting deep dives? 

Our paper contributes to a new and growing body of literature on 

understanding the driving forces behind key finding from climate 
mitigation scenarios ensemble. Such analyses include various elements: 
the structure of the ensemble itself, data availability, as well as the 
representation of models and scenarios (SSPs in our case). Each of these 
elements could represent a challenge in undertaking an ex-post analysis 
like ours here. Methodologies to undertake decomposition analyses may 
provide consistent insights even when they differ, as we demonstrated 
above in a few cases when comparing our results to those of Dekker 
et al., [9]. Most of our results are robust to the choice between the use of 
cumulative CO2 emissions or RCP dummy variables as a measure of 
climate ambition, but some results do change, explaining a mix of 
increased and decreased proportions of the variations in our energy 
indicators. One avenue for future research is adopting a hybrid 
approach, or a more complex functional form, that incorporates both 
measures. An anonymous referee suggested that the Shared Climate 
Policy Assumptions approach of Kriegler et al. [34] might also be used in 
this way. Other approaches involve creating a structured scenarios 
ensemble to create a more systematic dataset on which a decomposition 
analysis can be run (e.g. [18]). Ultimately, our work underscores the 
imperative for both methodological advances and community consensus 
in debiasing scenario ensembles and decomposition analyses, as argued 
for by recent contributions like [4,5], to support policymakers in un
derstand the underlying driving forces, biases and uncertainties behind 
these results. 

Our analysis highlights the importance for policymakers not to solely 
rely on the usual results of mitigation scenario indicators or stop at 
considering uncertainties, but also seek to understand the underlying 
driving forces behind these results. This is critical for informed policy 
decisions that take into account the factors that shape the outcomes of 
these model runs and the level of robustness and confidence in those 
outcomes. 

Our analysis has indicated that robust energy system messages can be 
derived from integrated assessment modelling. It is clear, perhaps un
surprisingly, that high levels of climate ambition as measured by cu
mulative CO2 emissions over the 21st century are associated with high 
levels of emissions reductions in the energy sector for every decade 

Fig. 15. Ternary plot – focus on the model factor effects 2060.  

13 The models calculate the carbon price as a shadow cost of mitigation, the 
marginal cost (over a business-as-usual alternative) per tonne of carbon of the 
most expensive mitigation method used in a given scenario. 
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throughout the century. Climate ambition also drives total fossil fuel 
energy use and the unabated use of coal, gas and oil. The use of coal or 
gas with CCS, however, depends on a mix of climate ambition and sce
nario (affecting the overall energy service demand to be met), with large 
residuals showing that some models are much more aggressive than 
others in adopting them as the demand for clean energy rises. Pre
dictions for the use of oil with CCS are generally low and depend on the 
model chosen, with large residuals. The overall use of gas is most 
affected by ambition (particularly at the end of the century), but the 
scenario and (earlier in the century) model are also important, with a 
residual element of around one-fifth. In other words, the picture is much 
less clear than for coal and oil. 

The overall use of non-biological renewables is, unsurprisingly, very 
strongly driven by climate ambition as, to a lesser extent, is biomass for 
energy. But the use of specific forms of renewable energy is much more 
model-driven. This is especially the case for wind and hydro, whereas 
ambition has more influence on solar in the middle of the century, 
alongside a sizeable residual. Nuclear energy is higher (on average) for 
greater ambition, scenarios with greater energy service demand and in 
some models; their relative influence varies over the century but re
siduals of around one-third show that particular combinations can have 
outsized effects. Climate ambition appears responsible for half the 
variation in the use of BECCS in the second half of the 21st century, with 
residuals gradually falling to one-fifth. 

The pattern for final energy demand is very sector specific. Resi
dential and commercial energy demand, and transport energy demand 
are highly scenario-dependent whereas industrial energy is much more 
affected by model differences. Hydrogen use has some of the highest 
residuals, with ambition driving a quarter to a third of the variation mid- 
century, replaced by model differences by 2100. Electricity demand 
needs careful interpretation. Total electricity demand is largely driven 
by background scenario and model. But electrification, as measured by 
the share in final energy demand, is heavily linked to climate ambition, 
which requires both an increasing share of energy services to be met 
through electricity, and the efficiency with which they are provided to 
increase. 

Policymakers can take three broad messages from this analysis:  

a) The broad direction of energy system change, reduced use of fossil 
fuels, especially coal and oil, and the rise of renewables is a robust 
feature of ambitious climate scenarios.  

b) For final energy demand, the key is to look at the social and economic 
change implied by background scenarios - this is as important as the 
level of climate ambition.  

c) For the use of specific forms of renewable energy such as wind, solar 
and hydro, and for nuclear, there are no clear messages from the 
analysis. Here, non-scenario-based assessment is needed, along with 
a much more in-depth, rigorous analysis of model differences. 

Some models produce “outlier” results in some scenarios for some 

levels of climate ambition; our analysis shows where this happens, and 
where that rigorous analysis should be focused. 
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Appendices 

Appendix A 

A.1 The Shapley decomposition and Shapley–Owen decomposition methods 
The Shapley decomposition method, or Shapley value method, is grounded in cooperative game theory but used here to decompose the relative 

importance of different regressors in explaining the variation of a dependent variable. The underlying premise of the Shapley method is to think about 
the regressors of a model as players and the quality of a model fit as a total value to maximise under various coalitions. In cooperative game theory 
terms, the Shapley value measures the worth of a player as the marginal increase in the value of an objective when they join a group of players (a 
coalition), averaged over all possible orderings in which the final coalition could be formed. Applied to regression analysis, the Shapley value averages 
the increase in R2 from adding another regressor over all possible subsets of predictors in a model. This is advantageous in the case of multicollinearity 
as it includes the possibility of competitive influence among predictors in any subset [35,36]. 
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In some cases, explanatory variables are exogenously organised into groups, whose composition is known a priori to the researchers, or into dummy 
variables to capture categorical variables. Both cases apply in our paper, where for instance the ambition factor is a group of two explanatory variables 
(the cumulative emissions variable and its squared value). In such cases, a generalisation of the of the Shapley decomposition approach, known as the 
Shapley–Owen decomposition or Shapley–Owen value is used in order to adjust the processing of the information about decomposed R2, such that the 
resulting values of groups can be interpreted as assigned to the group directly rather than the variables [11]. The solution assigned to each group is 
calculated comparatively on average over all possible combinations of predictors in the regression. It produces a unique solution satisfying general 
requirements of Nash equilibrium [35]. 

To demonstrate the Shapley–Owen decomposition concept applied to a simple regression analysis, consider a regression model given by: 

yi = β0 +
∑p

j=1
βjxji + εi (A.1)  

where yi is the dependent variable, β0 is the intercept term, βj is the coefficient of an explanatory variable xji, and εi is the error term. Working first with 
individual regressors, the Shapley value of a particular regressor j is based on the computation of all 2p possible models for each possible combination 
of models with up to k regressors. Hence the Shapley value is the marginal contribution of adding regressor xj to the model weighted by the number of 
permutations of this sub-model, given by: 

R2
Shapley =

∑

T⊆Z{xj}

k! . (p − k − 1)!
p!

[
R2( T ∪

{
xj
})

− R2(T)
]

(A.2)  

where T is a model with k regressors excluding xj, and Z is the set containing all possible models with different combinations of regressors. Without loss 
of generality, the above simple case can be extended to a regression model where explanatory variables are exogenously grouped. This gives the 
Shapley–Owen value, where only combinations of regressors containing either all or none of the members of each group are included in the 
permissible set Z, and T ∪ {xj} must be replaced with T ∪ {g(xj)}, where g(xj) denotes the regressors in the same group as xj, in Eq. (A2). 

Following Grömping [12] we verify in our results that our analysis satisfied the proposed Desirability Criteria for decomposition of R2. These are 
(a) Proper decomposition where the model variance is decomposed into shares, with the sum of all shares equal to the model variance, (b) 
non-negativity where all shares assigned to regressors must be non-negative and (c) ensuring non-zero shares of all regressors with a non-zero 
coefficients.14 

A.2 Regressions used to apply the Shapley–Owen decomposition method to mitigation scenarios 
Following up on Section 2.3 above we present here all seven regression models included in the analysis. For each dependent variable (energy 

indicator), a Shapley–Owen decomposition analysis is conducted by running seven linear ordinary least squares (OLS) regressions. These regressions 
cover all possible combinations of factors.15 The first regression model, referred to as ‘full model’, includes all explanatory variables (three factors) as 
illustrated in Eq. (A3) below. The subsequent three regression models Eqs. (A.4)–(A.6) include all possible combinations of two factors, i.e. eliminating 
one factor in each model. The last three regression models Eqs. (A.7)–(A.9) include one factor each, eliminating two factors in each model. These 
regression models are as follows: 

MitInd(Amb, Scen,Mod)i = β0 + β1CuEmi + β2CuEm2
i +

∑

s
γs1SSP

s
i +

∑

m
γm2 Modm

i + ui (A.3)  

MitInd(Amb, Scen)i = β0 + β1CuEmi + β2CuEm2
i +

∑

s
γs1SSP

s
i + ui (A.4)  

MitInd(Amb,Mod)i = β0 + β1CuEmi + β2CuEm2
i +

∑

m
γm2 Modm

i + ui (A.5)  

MitInd(Scen,Mod)i = β0 +
∑

s
γs1SSP

s
i +

∑

m
γm2 Modm

i + ui (A.6)  

MitInd(Amb)i = β0 + β1CuEmi + β2CuEm2
i + ui (A.7)  

MitInd(Scen)i = β0 +
∑

s
γs1SSP

s
i + ui (A.8)  

MitInd(Mod)i = β0 +
∑

m
γm2 Modm

i + ui (A.9)  

where MitInd(.) is the dependent variable of a energy indicator. Amb, Scen,Mod stand for the ambition, scenario and model factors respectively, 
indicating the regressors included in each regression. β0 is the intercept term. β1 and β2 are the coefficients of cumulative emissions (CuEm) and their 
squared value (CuEm2), which together capture the ambition factor. The Shapley–Owen decomposition method allows explanatory variables to be 

14 Note that there is an additional criterion in the literature “Exclusion: the share allocated to a regressor with a coefficient = 0 should be 0”. However, Grömping 
[12] argues that such a condition is not reasonable due to the fact that a regressor has a coefficient equal to zero does not imply that this regressor has no direct 
influence on other regressors. We note that none of our regressors has a coefficient of zero in any regression.  
15 A regression model that includes no explanatory variables is one of the theoretical combinations considered. However, by definition, its R2 value would be zero, 

hence there’s no need to actually run this particular model. 
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sometimes grouped exogenously based on prior knowledge, an example is capturing the non-linear effects of the ambition factor here, for which we 
provide rational at the end of Section 2.2. above as well as Appendix E. Exogenously grouping variables under Shapley–Owen methodology is an 
extension of the Shapley decomposition approach [11]. γ1 and γ2 are the sets of coefficients of the dummy variables for SSP (scenario factor) and Mod 
(model factor) respectively. Each coefficient represents the estimated effect of the corresponding explanatory variable on the dependent variable, 
holding all other variables constant. The error term is denoted by ui. The R2 resulting from each regression is denoted by listing the factors included in 
brackets: the R2 corresponding to Eq. (1) is R2(Amb,Scen,Mod), while for Eq. (A.6) it is R2(Scen,Mod). 

Appendix B 

B.1: The SSPs database descriptive statistics 
In this section we present general descriptive statistics of the SSPs Database [8]. 
See Fig. B1

Fig. B1. The distribution of the scenarios and models in the SSPs database. Panel a) Distribution of scenarios in the SSPs database, Panel b) Distribution of models in 
the SSPs database, and Panel c) Distribution of scenarios by models in the SSPs database. Note that in the SSPs database each model usually runs a subset of a selected 
SSP. For instance, a model run labelled SSP1-19 (in line with the nomenclature of the SSPs-RCPs matrix) indicates that run represents the combination of the socio- 
economic assumptions captured by SSP1 quantifications, and the radiative forcing illustrated by the radiative forcing scenario RCP1.9 [37]. We aggregate such SSPs 
subsets and focus on the SSPs component (i.e. SSP1-19 becomes SSP1), given the rationale mentioned in the methodology Section 2.2 above for not using RCPs as a 
proxy for climate ambition. 
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B.2: List of energy-relevant indicators   
List of energy-relevant indicators and their description  

Variable name Database variable label Description 

Non-fossil primary energy supply variables 
Primary energy supply Primary Energy Total primary energy supply 
Biomass energy supply Primary Energy|Biomass Total primary energy supply from biomass sources 
Nuclear energy supply Primary Energy|Nuclear Total primary energy supply from nuclear sources 
Wind energy supply Primary Energy|Wind Total primary energy supply from wind sources 
Solar energy supply Primary Energy|Solar Total primary energy supply from solar sources 
Hydro energy supply Primary Energy|Hydro Total primary energy supply from hydro sources 
Geothermal energy supply Primary Energy|Geothermal Total primary energy supply from geothermal sources 
Non-Biomass Renewables energy 
supply 

Primary Energy – Non-Biomass Renewables 
(computed for this analysis) 

Total primary energy supply from non-biomass renewable sources. This is computed as 
the aggregate of nuclear, wind, solar, hydro and geothermal 

Energy supply from fossil fuel variables 
Fossil energy supply Primary Energy|Fossil Total primary energy supply from fossil fuel sources 
Fossil energy supply with CCS Primary Energy|Fossil w/CCS Total primary energy supply from fossil fuel sources with carbon capture and storage 
Unabated fossil energy supply Primary Energy|Fossil wo/CCS Total primary energy supply from fossil fuel sources without carbon capture and 

storage 
Coal energy supply Primary Energy|Coal Total primary energy supply from coal sources 
Coal energy supply with CCS Primary Energy|Coal|w/CCS Total primary energy supply from coal sources with carbon capture and storage 

Unabated coal energy supply Primary Energy|Coal wo/CCS Total primary energy supply from coal sources without carbon capture and storage 
Gas energy supply Primary Energy|Gas Total primary energy supply from gas sources 
Gas energy supply with CCS Primary Energy|Gas w/CCS Total primary energy supply from gas sources with carbon capture and storage 

Unbated gas energy supply Primary Energy|Gas wo/CCS Total primary energy supply from gas sources without carbon capture and storage 
Oil energy supply Primary Energy|Oil Total primary energy supply from oil sources 
Oil energy supply with CCS Primary Energy|Oil w/CCS Total primary energy supply from oil sources with carbon capture and storage 
Unabated oil energy supply Primary Energy|Oil wo/CCS Total primary energy supply from oil sources without carbon capture and storage 

CCS and BECCS variables 
Biomass energy supply with CCS Primary Energy|Biomass w/CCS Total primary energy supply from biomass sources with carbon capture and storage 
CO2 emissions from biomass with CCS Emissions|CO2|Carbon Capture and Storage 

Biomass 
CO2 from biomass sources with carbon capture and storage 

CO2 emissions with CCS Emissions|CO2|Carbon Capture and Storage CO2 emissions from all sources with carbon capture and storage 
Final energy variables 

Total final energy Final Energy Total final energy use 
Electricity consumption Final Energy|Electricity Total final energy consumption from electricity 
Electrification Final Energy - Electrification (computed for 

this analysis) 
The share of electricity in final energy use (computed variable) 

Hydrogen consumption in final energy Final Energy|Hydrogen Total final energy consumption from hydrogen 
Gases consumption in final energy Final Energy|Gases Total final energy consumption from gases 
Heat consumption in final energy Final Energy|Heat Total final energy consumption from heat sources 
Liquids consumption in final energy Final Energy|Liquids Total final energy consumption from liquids 
Solids consumption in final energy Final Energy|Solids Total final energy consumption from solids 

Final energy variables by sector 
Industry sector final energy 
consumption 

Final Energy|Industry Final energy consumption by the industrial sector 

Residential and Commercial sector final 
energy consumption 

Final Energy|Residential and Commercial Final energy consumption by the residential and commercial (buildings) sectors 

Transportation sector final energy 
consumption 

Final Energy|Transportation Final energy consumption by the transportation sector 

Energy sector emissions 
CO2 emissions Emissions|CO2 Total CO2 emissions 
CO2 emissions from fossil fuels and 
industry 

Emissions|CO2|Fossil Fuels and Industry CO2 emissions from fossil fuel sources and industrial processes 

CO2 emissions from land use Emissions|CO2|Land Use CO2 from land use changes 
Kyoto gases emissions Emissions|Kyoto Gases Total emissions of Kyoto gases 
CH4 emissions Emissions|CH4 Total emissions of CH4 
N2O emissions Emissions|N2O Total emissions of N2O 

Economic variables 
Carbon Price Price|Carbon Price of carbon 
GDPPPP GDP PPP Gross Domestic Product at Purchasing Power Parity  
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B.3 List of variables with missing data runs   
List of variables with missing data runs  

Variable name Missing data runs 

Emissions CO2 Carbon Capture and Storage 6 
Emissions CO2 Carbon Capture and Storage Biomass 7 
Final Energy Heat 25 
Final Energy Hydrogen 49 
Final Energy Solar 64 
Final Energy Industry 42 
Final Energy Residential and Commercial 42 
Primary Energy Biomass with CCS 7 
Primary Energy Fossil with CCS 6 
Primary Energy Coal with CCS 6 
Primary Energy Gas with CCS 7 
Primary Energy Oil with CCS 64 
Primary Energy Geothermal 48 
Price of Carbon 12 

Note that number of maximum observations for reported variables in all runs is 126. 

Appendix C 

See the Figs. C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20

Fig. C1. The variability of primary energy supply from biomass across models and scenarios in the SSPs database, year 2100. In these plots, Panel a shows the spread 
of the energy indicator in question for different levels of cumulative CO2 emissions, across different models (indicated by the colours in the legends) and across 
different (indicated by symbols in the legends). Panel b shows a box plot of the energy indicator across scenarios. Panel c shows a box plot of the energy indicator 
across models, where the colours follow the models’ colours in the legends. As the figure illustrates, the spread across the models is large due to model-specific 
choices in biomass deployment, as discussed in Section 3.2 above in relation to Fig. 1.  
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Fig. C2. The variability of primary energy generation from nuclear across models and scenarios in the SSPs database, year 2100. As the figure illustrates, the spread 
across model runs for some model is large, as discussed in Section 3.2 above in relation to Fig. 1. The spread across scenarios is also large. 

Fig. C3. The variability of primary energy supply from wind across models and scenarios in the SSPs database, year 2100. As the figure illustrates, the spread across 
models is large, as discussed in Section 3.2 above in relation to Fig. 1.  
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Fig. C4. The variability of primary energy supply from geothermal across models and scenarios in the SSPs database, year 2080. As the figure illustrates, the spread 
across models is large and not all models provide results for geothermal energy, as discussed in Section 3.2 above in relation to Fig. 1. 

Fig. C5. The variability of primary energy supply from gas without CCS across models and scenarios in the SSPs database, year 2080. As the figure illustrates, the 
spread within some models (notably GCAM and REMIND) is somewhat large, as discussed in Section 3.3 above in relation to Fig. 4.  
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Fig. C6. The variability of primary energy supply from coal without CCS across models and scenarios in the SSPs database, year 2080. As the figure illustrates, the 
spread across models is limited with a not insignificant number of outliers, as discussed in Section 3.3 above in relation to Fig. 4. 

Fig. C7. The variability of primary energy supply from oil without CCS across models and scenarios in the SSPs database, year 2080. As the figure illustrates, the 
spread across models is somewhat large, as discussed in Section 3.3 above in relation to Fig. 4.  
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Fig. C8. The variability of primary energy supply from gas with CCS across scenarios and models in the SSPs database, year 2080. As the figure illustrates, the spread 
across scenarios is large, as discussed in Section 3.3 above in relation to Fig. 4. 

Fig. C9. The variability of primary energy supply from coal with CCS across scenarios and models in the SSPs database, year 2080. As the figure illustrates, the 
spread across scenarios is large, as discussed in Section 3.3 above in relation to Fig. 4.  
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Fig. C10. The variability of primary energy supply from oil with CCS across scenarios and models in the SSPs database, year 2080. As the figure illustrates, the spread 
scenarios is large, and only three models report values for this variable where each differs from the next by an order of magnitude, as discussed in Section 3.3 above in 
relation to Fig. 4. 

Fig. C11. The variability of CCS across scenarios and models in the SSPs database, year 2100. Related to the discussion in Section 3.4 above, Fig. 6.   
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Fig. C12. The variability of the absolute level of electricity consumption in final energy, across models and scenarios in the SSPs database, year 2100. Related to the 
discussion in Section 3.5 above, Fig. 7. 

Fig. C13. The variability of electrification across models and scenarios in the SSPs database, year 2100. Related to the discussion in Section 3.5 above, Fig. 7.   
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Fig. C14. The variability of hydrogen consumption across models and scenarios in the SSPs database, year 2060. Related to Section 3.5 above, Fig. 7.  

Fig. C15. The variability of final energy demand in the industry sector, across models and scenarios in the SSPs database, year 2060. Related to Section 3.6 
above, Fig. 8.  
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Fig. C16. The variability of final energy demand in the combined residential and commercial sector, across models and scenarios in the SSPs database, year 2060. 
Related to Section 3.6 above, Fig. 8. 

Fig. C17. The variability of final energy demand in the transportation sector, across models and scenarios in the SSPs database, year 2060. Related to Section 3.6 
above, Fig. 8.  
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Fig. C18. The variability of land use CO2 emissions across models and scenarios in the SSPs database, year 2060. As the figure here illustrates, the spread across 
(Panel c) and within the models is large due to the high uncertainties in measuring land use CO2 emissions, as discussed in Section 3.7 above in relation to Fig. 10. 

Fig. C19. The variability of carbon price across models and scenarios in the SSPs database, year 2060. Related to Section 3.8 above, Fig. 12.   
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Fig. C20. The variability of GDPPPP across scenarios and models in the SSPs database, year 2060. Related to Section 3.8 above, Fig. 12.  

Appendix D Additional results on final energy 
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Fig. D1. Shapley–Owen decomposition - final energy for additional carriers. Top left panel shows gases, top right panel shows heat, and bottom left panel shows 
liquids, and bottom right panel shows solids. Notice that the y-axis differs between panels. 

The discussion here relates to the main final energy carriers and variables discussed in Section 3.5 and Fig. 7 above, but also to the discussion on 
energy supply from fossil fuels in Section 3.3 and Fig. 4. As Fig. D1 above demonstrates variations in gases (top left panel) and liquids (bottom left 
panel) are largely driven by climate ambition, with some role for the model and background scenario factors. As discussed in the earlier sections, the 
role of climate ambition is not surprising given the importance of fuel switching in decarbonisation, coupled with models’ assumptions and demand 
due to population and GDP [27]. The decomposition for solids (bottom right panel) is not dissimilar but with a more prominent role for the back
ground scenario factor largely motivated by access to clean fuels in developing countries, which, as discussed in Section 3.6 above, is influenced by the 
levels of population and GDP growth [23]. 

Heat use (top, right panel) is almost entirely explained by difference between models, something that we verify in Fig. D2 below, due to the 
inconsistent and highly uncertain characterisation of the heating (and cooling) sector (e.g. residential vs. commercial) across models [38]. 
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Fig. D2. The variability of heat use across models and scenarios in the SSPs Database, year 2060.  

Appendix E Comparative diagnostics of climate ambition representation in Shapley–Owen decomposition: quadratic emissions function versus RCP dummy 
variables 

In our analysis, the climate ambition factor is represented by a quadratic function of total cumulative CO2 emissions over the 21st century and its 
square. An anonymous referee asked us to consider using the RCPs as dummy variables instead, and this appendix reports the results of doing so for our 
2060 data. For most indicators, the choice makes little difference, as can be seen comparing the paired columns in Figs. E1, E2, E3, E4, E5, E6 below. 
However, when we use RCP dummy variables, the climate ambition factor explains less of the variation in unabated fossil fuels or final energy demand 
than when we use a continuous variable. For hydrogen as a final energy carrier, or primary solar energy production, however, the RCP dummy 
variables increase the proportion that is explained by the average effect of climate ambition. 

Table E1 gives summary statistics for three of our indicators, split by RCP pathway: the number of runs we have, the mean value and the standard 
deviation.  
Table E1 
Summary statistics for selected climate indicators.   

Climate scenario 
RCP1.9 RCP2.5 RCP3.4 RCP4.5 RCP6.0 Baseline 

Cumulative emissions, 2010–2100, Gt CO2 Number 13 19 25 25 18 26 
Mean 452 1169 1988 2847 4155 5379 
S.D. 147 191 183 231 249 1445 

Unabated fossil primary energy, 2060, EJ/yr Number 13 19 25 25 18 26 
Mean 107.7 220.7 347.7 482.2 688.9 816.3 
S.D. 94.2 80.8 95.5 76.6 102.8 225.4 

Hydrogen (Final energy), 2060, EJ/yr Number 9 12 15 15 11 16 
Mean 23.3 9.5 8.1 4.9 4.4 4.4 
S.D. 17.0 4.4 7.5 1.8 1.9 1.6  

Note that within each RCP, there is some variation in cumulative CO2 emissions between model runs, but this is dwarfed by the variation across the 
baseline runs, in which the (shadow) CO2 price is zero. Using RCP dummy variables, this inter-baseline variation is ignored, while it is captured with 
the quadratic measure of climate ambition that we use. The underlying cause of the variation in CO2 emissions, of course, is variation in such in
dicators as the unabated use of fossil fuels, and the second part of the table confirms that for this indicator, there is more variation within the baseline 
runs than within any RCP. This is why the continuous measure of climate ambition is better at explaining the variation in unabated fossil fuel use than 
the RCP dummy variables, which implicitly suggest each baseline run is equally far from a sustainable climate. On the other hand, some low-carbon 
technologies need a strong carbon price before they rise in importance. The bottom block of the table shows that the use of hydrogen as a final energy 
carrier is predicted to be similar (in terms of mean and standard deviation) across the baseline runs, RCP 6.0 and RCP4.5 – it takes the higher carbon 
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prices associated with (some) runs under RCP3.4 to increase its average use by an important amount. It would take a much more complex function of 
cumulative emissions to capture this relationship as well as the dummy variable that can treat all model runs with a carbon price of zero as similar, 
whatever their cumulative emissions. 

While we expected that any decrease in the explanatory power of climate ambition would be reflected by an increase in the model factor (since it is 
differences between models that give the different emissions within an RCP-SSP combination), the figures below show that it mainly results in an 
increase in the variation that is not explained by the average effect of our factors.

Fig. E1. The effects of using quadrative emissions versus RCPs to capture the climate ambition factor in Shapley–Owen decomposition – final energy variables, 2060.  

Fig. E2. The effects of using quadrative emissions versus RCPs to capture the climate ambition factor in Shapley–Owen decomposition – final energy sectors, 2060.   
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Fig. E3. The effects of using quadrative emissions versus RCPs to capture the climate ambition factor in Shapley–Owen decomposition – renewable sources for 
primary energy, 2060. 

Fig. E4. The effects of using quadrative emissions versus RCPs to capture the climate ambition factor in Shapley–Owen decomposition – fossil fuel sources for 
primary energy, 2060.  
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Fig. E5. The effects of using quadrative emissions versus RCPs to capture the climate ambition factor in Shapley–Owen decomposition – CCS and BECCS, 2060.  

Fig. E6. The effects of using quadrative emissions versus RCPs to capture the climate ambition factor in Shapley–Owen decomposition – emissions variables, 2060.  

Appendix F Code, data and visualisation availability 

The code, output data for the decomposition analysis, decomposition and ternary plots and appendices plots are available on GitHub: https://gith 
ub.com/AlKhourdajie/SSPs_decomposition. 
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