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Abstract Pressures on water resources are fueling conflicts between sectors. This trend will likely worsen
under future climate‐induced water stress, jeopardizing food, energy and human water security in most arid and
semi‐arid regions. Probabilistic analysis using stochastic optimization modeling can characterize multi‐sector
vulnerabilities and risks associated with future water stress. This study identifies the probabilistic trade‐offs
between agricultural, urban and energy sectors in the Ebro Basin (Spain). Two intervention policies have been
examined and compared: (a) agricultural priority, and (b) energy priority, for two planning horizons 2040–2070
and 2070–2100. Results show that the human water security goal is achieved under both intervention policies.
However, the achievement of the food and energy security goals depends on the policy objectives and on the
spatial location of irrigation schemes and hydropower plants, which result in different stream flows across the
basin. The policy choice results in substantially different benefit gains and losses by sector and therefore by
location. None of the sectoral production priority policy provides an equitable sharing of benefits among all
sectors and locations under climate change, which is an important issue, because the success or failure of policy
interventions would depend on the distribution of the gains and losses of benefits across the basin. Policy uptake
by stakeholders would depend on reaching win‐win outcomes where losers are compensated, while delivering
acceptable levels of food, energy and human water security in large river basins. Information on the probabilistic
trade‐offs contributes to the design of water management strategies capable of addressing the multi‐sector
vulnerability.

1. Introduction
Water resources are essential for food, energy and human water security (Cheng et al., 2019). The sharp rise of
water withdrawals during the last century has created massive pressures on water resources and led to severe
environmental degradation and major management challenges in many river basins worldwide (Greve
et al., 2018). These challenges are expected to become more critical in the coming decades, driven by imminent
socioeconomic and climate changes. In the period 1980–2010, drought damages and economic losses in Europe
are estimated at € 9 billion per year, mostly affecting Spain (1.5 b.), Italy (1.4 b.) and France (1.2 b.), with
damages concentrating in the agriculture (50%) and energy (35%) sectors. These estimates capture the overall
economic losses recorded in each country for each drought event across multiple sectors (agriculture, urban water
supply and energy sectors), but excluding impacts on ecosystems. Future damages could increase up to five times
for a +3°C scenario (Cammalleri et al., 2020; Feyen et al., 2020). Management policies in arid and vulnerable
river basins must thus be adapted to address the future water challenges. The development of adaptation policies
including water allocation requires the analysis of trade‐offs across sectors, such as urban water supply, agri-
cultural production, energy generation, and ecosystem health, as well as across space and time (Cai et al., 2018). A
critical policy task is to understand and identify the tradeoffs between competing uses, by finding the gains and
losses for alternative water allocation policies under climate change. Then, the scope of policymaking negotiation
can go beyond outdated water allocation rules, and seek efficient, equitable and sustainable policies (Tilmant
et al., 2020).

Addressing future climate vulnerability in water sectors is a growing topic that is critical for drought risk research
and for the design and implementation of adaptation strategies (Vargas & Paneque, 2017). Vulnerabilities in
water resources are defined as the degree to which a system, subsystem, or system component is likely to
experience harm due to exposure to a hazard, either a perturbation or stress/stressor (Turner et al., 2003). Zhang
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et al. (2023) emphasize the need to assess water resources vulnerability and identify spatio‐temporal patterns for
policymaking. The rising interest in vulnerability assessment is predominantly driven by climate change, and
more particularly how to exploit climate information to inform and enhance decision‐making processes. This
research develops a bottom‐up approach based on stress tests in order to identify conditions under which water
systems require adaptation policies (Brown et al., 2012). The bottom‐up approach emphasizes an in‐depth ex-
amination of context‐specific data. It involves local stakeholders in assessing and developing a shared vision of
the system's vulnerability and performance and defining critical thresholds to identify system failure. This
approach enables a more nuanced assessment of climate change impacts and priority policies and engages
stakeholders in climate‐related decision‐making (Kuang & Liao, 2020; Poff et al., 2016). In contrast, the top‐
down approach evaluates the performance of water resource systems based on a set of global climate pro-
jections, typically downscaled to represent local conditions, making it unsuitable for identifying thresholds of
performance with respect to changes in climate exposure (Sant'Anna et al., 2022). In our study, the bottom‐up
approach depends on a locally relevant integrated hydro‐economic model to characterize and assess the sys-
tem performance with regard to future climate projections.

Water system models can be used to identify trade‐offs in complex water resource systems, involving multiple
and interdependent water uses. More specifically, optimization modeling is an efficient tool for optimal water
allocation and for identifying trade‐offs between sectors and spatial locations (Wu et al., 2022). Our literature
review reveals that only a limited number of solutions available can handle system and hydrologic complex-
ities. One of them is the Direct Policy Search (DPS), initially proposed by Rosenstein and Barto (2001) and
commonly known in the water resources literature as parameterization‐simulation‐optimization by Kout-
soyiannis and Economou (2003). This approach is used in reinforcement learning (Busoniu et al., 2011) and
control systems, where the objective is to maximize specified performance measures by directly exploring
policy parameters. The policy is represented with adjustable parameters and iterative refinement by optimi-
zation techniques such as gradient‐based methods (Peters & Schaal, 2008; Sehnke et al., 2010) or evolutionary
algorithms (Busoniu et al., 2011; Whiteson & Stone, 2006; Whitley et al., 1993). The DPS allows broadening
the number and complexity of objectives that can be resolved (Giuliani et al., 2014; Libisch‐Lehner
et al., 2019), addressing reservoirs operation in complex multi‐objective contexts (Giuliani et al., 2021), and
exploring multisectoral trade‐offs (Giuliani & Castelletti, 2016; Quinn et al., 2017). However, as pointed out by
Castelletti et al. (2013), those simulation‐based optimization methods may become computationally demanding
when the number of objectives increases, and difficult to parametrize when the water resources system is large
and its network is complex. Another challenge is that it overfits the policy parameters to the specific stochastic
realizations encountered during simulation‐based optimization, potentially leading to impressive calibration
results that degrade considerably when tested on out‐of‐sample observations (Brodeur et al., 2020). Nonlinear
optimization models offer another alternative, capable of representing complex interactions and in-
terdependencies between different sectors and providing a more realistic representation of real‐world systems.
However, these models often require extensive and high‐quality data to accurately parameterize complex re-
lationships. Several nonlinear optimization models have been applied to identify the interaction between sectors
and to inform policy debates (Baccour et al., 2021, 2024; Cai et al., 2018; Crespo et al., 2019; Jalilov
et al., 2016, 2018). Stochastic Dual Dynamic Programming (SDDP) presents yet another approach (Pereira &
Pinto, 1991) relying on iterative procedure to approximate the benefit‐to‐go function through sampling and
Benders' decomposition (Pereira & Pinto, 1983). The benefit‐to‐go function represents the aggregated future
benefit over the state‐space domain. In SDDP, it is iteratively constructed as the model progresses through
forward simulation and backward optimization passes, refining the estimation of future benefits at each stage
(Goor et al., 2011; Tilmant & Kelman, 2007). The procedure evaluates the long‐term value of actions, enabling
algorithms to identify optimal policies that maximize total rewards, crucial for multi‐stage decision‐making.
The SDDP has been successfully employed to solve optimization problems with stochastic inflows. Several
studies used the SDDP to assess the economic value of coordination in a multi‐user and multi‐reservoir system,
to determine the costs and benefits related to the multi‐reservoir operation (Goor et al., 2010; Marques &
Tilmant, 2013).

The study addresses the complex challenge of managing water resources in large river basins under climate
variability. One of the critical issues in water management is the competition for limited water resources among
various sectors and spatial locations, particularly with increasing water withdrawals over the past century, which
have placed considerable pressure on water resources. Besides, sectoral vulnerabilities lead to substantial
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economic losses during droughts. This study contributes to a growing body of work on handling the complex
interactions and interdependencies among sectors (agriculture, energy, urban), agricultural intra‐sectors (field
crops, vegetables, and fruit trees), and spatial locations (upstream, downstream), offering insights into the
geographic distribution of water demands and vulnerabilities, and pinpointing which areas are most at risk under
future climate scenarios. This helps prioritize areas in the basin for policy intervention and resource allocation. It
also discovers coalitions of objectives, revealing how different sectors can cooperate or conflict, determining the
extent of gain and losses of benefits and aiding in the development of more integrated and cohesive water
management strategies.

The Stochastic Dual Dynamic Programming (SDDP) is an optimization method designed for solving multistage
stochastic decision‐making problems. It was first proposed by Pereira and Pinto (1991) to solve the hydro‐thermal
scheduling problem in Brazil. Like any Dynamic Programming algorithm, SDDP converts the original sequential
decision‐making problem into a sequence of one‐stage problems that are solved recursively (Sant'Anna
et al., 2022). In this study, we extend the application of the SDDP approach beyond its traditional use for the
operation of single or few reservoirs, in order to assess the probabilistic trade‐offs between multiple sectors and
agricultural intra‐sectors across their spatial locations in a large river basin spanning multiple jurisdictions under
future climate conditions. The probabilistic trade‐off is an approach used to understand the relationship between
objective values and their associated reliability, which is quantified through probability distributions (Smith
et al., 2013). The probabilistic trade‐off analysis helps identify the best allocation strategy, considering both
potential future benefits and risks. While previous work, such as Tilmant et al. (2020), explored the trade‐offs in
sectors like agriculture, floodplain, hydropower, navigation, and fisheries within the Senegal River basin in a
simplified manner (27 nodes, 5 reservoirs, 6 hydropower plants and 10 irrigation districts), this research in-
troduces a comprehensive assessment of how these sectors interact spatially in a complex large‐scale river basins
under varying climate scenarios. and focus on the economics of water use including detailed crop representation.
The analysis emphasizes the economics of water use by sectors, with a detailed representation of crop cultivation.
Our monthly and dynamic hydroeconomic model includes 52 water supply and demand nodes, 13 reservoirs, 16
hydropower plants, 8 urban centers, and 12 irrigation districts growing 27 crops under different irrigation
technologies (flood, sprinkler, drip). This detailed basin's representation, along with the explicit inclusion of crops
and spatial locations in the assessment is a crucial advancement as it addresses a gap in understanding the sectoral
and intra‐sectoral dynamics and interactions in each spatial location in the basin under increasing water stress and
climate pressures. This is relevant for Spain, where this study is the first application of SDDP to analyze prob-
abilistic trade‐offs, highlight sectoral vulnerabilities and assess economic losses associated with water use under
climate uncertainty. The approach taken in this paper not only improves the assessment methods of water system
vulnerabilities, but also supports the development of more robust and adaptive strategies for managing water
resources in large, stressed river basins.

To illustrate these concepts, the Ebro River basin in northeast Spain serves as a key case study. This Mediter-
ranean basin faces significant challenges, including seasonal water scarcity, competing demands from agriculture,
hydropower, and domestic uses, where the growing impacts of climate change will intensify water stress and
variability. The study enables a nuanced examination of how different water allocation policies affect each sector
under baseline and future climate conditions. This approach addresses the basin's challenges by revealing
probabilistic trade‐offs, identifying vulnerable objectives, and enhancing cross‐sectoral planning. An objective is
vulnerable when its performance gets “significantly” degraded for a given change affecting one external stressor.
The extent to which objectives are affected by a stressor is not necessarily the same; the relative performance of
the different objectives is most of the time not identical once the water resource system is under stress. For
instance, the hydro‐economic model optimizes the distribution of the stress so that the basin‐wide net benefits are
maximized, but some objectives could lose more than others.

To characterize those elements, we first find out the optimal water allocation that may be adopted to share water
resources in an increasingly complex system in the baseline scenario. Then, priority policies are used in simu-
lation and the economic and hydrologic effects are evaluated in each sector's spatial location for the baseline and
future climate conditions. From this assessment, probabilistic trade‐offs are revealed, coalitions of objectives are
discovered, and vulnerable objectives are identified for user groups. A coalition of objectives occurs when the
corresponding desired policies are fully aligned; that is, when the corresponding policies are not conflicting. A
well‐known example is hydropower generation and navigation: hydropower generation tends to augment low
flows, which in turn supports river shipping. In addition, probabilistic trade‐offs could inform a nexus dialog
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between the different sectors and their spatial distribution, improving cross‐sectoral planning and achieving
equitable trade‐offs. Equitable trade‐offs seek to balance the benefits and vulnerabilities of different sectors and
spatial locations in the resource allocations decisions. For instance, under limited water availability, equitable
trade‐offs could involve prioritizing urban water use while balancing agricultural and hydropower needs through
adaptive policies.

This paper addresses the water challenges and sectoral vulnerabilities under future climate uncertainty and water
stress by providing information on the hydrologic and economic risks associated with different water allocation
policies. The spatial distribution of benefit gains and losses from water stress scenarios are important aspects in
the debate on sustainable basin management, which requires stakeholder participation and equitable benefit
sharing in strategic planning (Wilson, 2019). More specifically, the analysis helps characterize crucial elements
that ensure greater equity (fairness in allocation planning) when designing water and benefit‐sharing arrange-
ments (Grey & Sadoff, 2007): Who wins (loses) and where? How sensitive are those losses to natural stressors?
Equity is critical when considering the unequal distribution of reducing water resources and increasing water
demand impacts (Valipour et al., 2024). As indicated by Dinar et al. (2015), benefit‐sharing arrangements are
relevant for ensuring resilient and adaptive communities.

This paper is organized as follows: Section 2 starts with a presentation of the Ebro River basin, which is followed
by a description of the development of the model and management scenarios and policies. Section 3 provides the
hydrologic and economic impacts of climate risks with a focus on the trade‐offs and economic losses. Section 4
discusses the simulation results and policy implications. Finally, concluding remarks are given in Section 5.

2. Materials and Methods
2.1. Case Study: The Ebro River Basin

The Ebro River Basin is one of the main European Mediterranean basins located in the north‐east of the Iberian
Peninsula. The Ebro is the longest river in Spain (930 km), covering 85,600 km2 and being home to 3.2 million
inhabitants (Figure 1). Renewable water resources amount to 15,500 million cubic meters (Mm3) per year, with
8,830 Mm3 of water withdrawals of which 8,140 for irrigation, 480 for urban networks and 210for direct industry
abstractions. The use of groundwater is limited (5% of withdrawals) so there are few local aquifer exploitation
problems, which only affect the Gallocanta, Campo de Cariñena or Alfamén aquifers, with no large‐scale impact
on the Ebro River. An intense development of water infrastructures took place during the twentieth century due to
the large expansion of irrigation and a surge in economic development and industrialization. The consequence has
been the growing pressure on water resources and the ensuing problems of water scarcity that have been
aggravated by periodic droughts, especially in the middle basin.

In the Ebro basin, there are 353 hydroelectric plants in service (4,229.45 MW of installed power), but the 15 most
productive usually account for around 50% of the hydroelectric production of the entire basin annually. The
average annual hydroelectric production in the last 13 years (2006–2018), stands at 8,029 GWh. This hydro-
electric production is characterized by its great variability related to hydrological regimes. In dry years, hydro-
power production could decrease well below the average (5,950 GWh in 2017), while in wet years hydropower
production could increase substantially, close to 10,616 GWh in 2016 (CHE, 2022b). The hydroelectric capacity
in the Ebro basin is concentrated in the subbasins on the left bank, mainly in the Cinca‐Segre rivers (Cinca, Ésera,
Nogueras, Segre; nodes 36, 39, 41, and 43 in Figure 2) and in the lower Ebro reservoir system: Mequinenza,
Ribarroja, and Flix (nodes 32, 33, and 48 in Figure 2), which are the most productive plants in the basin.

Water resources in the Ebro are managed by the Ebro water authority (Confederación Hidrográfica del Ebro). A
special characteristic of the water authority is the crucial role played by user groups, which maintains the
traditional culture of stakeholders' cooperation. Users from every sector (irrigation, urban, industrial and hy-
dropower), central and state governments, municipalities, farmers' unions, environmental associations, business
associations and workers unions are represented in the water authority taking and enforcing decisions.

The pressures on water resources in the Ebro Basin are going to be aggravated by the impacts of climate change
with reductions and increased variability of water availability (CHE, 2022a). As indicated, severe droughts occur
about every 10 years in recent decades. The resulting damage costs for economic sectors in the Ebro basin are
considerable, reaching 400 million euros in 2005 (0.5% of GDP) (Hernández et al., 2013; Lines et al., 2017),
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although the average yearly drought damages could be estimated at below 0.1% of GDP (Feyen et al., 2020). The
damage costs originate mainly from agriculture (60%), followed by energy (30%) and domestic sectors (10%).

Interactions between climate and land use drivers, water availability and water withdrawals have led to an
increased level of conflicts among the Ebro basin sectors and locations, including farmers, cities, industries,
environmental flow protection, as well as between the federal water authority, states in the basin, and local ad-
ministrations (Crespo et al., 2019). The effects of water scarcity and droughts portend unprecedented levels of
water resources degradation in the absence of remediating water reforms. The worsening of future extreme hydro‐
climatic events further threatens sustainable outcomes, and calls for a reconsideration of the current water
management, institutions and policies not only in the Ebro but also in all Mediterranean basins.

Figure 1. The Ebro River basin in Spain.
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2.2. The SDDP Model for Economically Optimal Allocation

A stochastic hydro‐economic model of the Ebro basin is developed in order to assess cross‐sectoral probabilistic
trade‐offs, and hydrological and economic risks under climate change. The model is solved with the SDDP al-
gorithm that could deal with complex multi‐stage and stochastic problems, applying the Bellman's principle of
optimality (Bellman, 1957). The SDDPmodel is coded inMATLAB and relies on the Gurobi linear programming
solver. The model integrates the economic activities and the hydrologic system, and it is used to analyze different
policies of water allocation among water sectors. Figure 2 shows the schematic representation of the Ebro basin,
which includes 52 nodes, 13 reservoirs, 16 hydropower plants, 8 urban centers, and 12 irrigation districts growing
27 crops under different irrigation technologies (flood, sprinkler, drip) (see Table S10 in Supporting Informa-
tion S1). The optimal allocation decision is determined at monthly time steps over a period of 30 years. The Ebro
basin authority and CEDEX (CEDEX, 2016; CHE, 2016) provide monthly data on streamflow and reservoir
storage for the entire 30 year period (1986–2016). Several sources of data on crop yields, prices, production costs,
water requirements and land in production were secured from the Spanish Ministry of Agriculture and State
Governments (DGA, 2016; GC, 2016; GN, 2016; MAPAMA, 2021).

The multistage decision‐making problem of a multi‐reservoir system is to determine a sequence of allocation
decisions xt that maximize the expected net benefit from system operation over a given planning period T while
meeting hydrological and institutional constraints. The objective function of the optimization problem is written
as follows:

Z∗ = max
xt
{Eqt

[∑

T

t
αt. bt (St,xt) + αT+1. ν(St+1)]} (1)

where E[ ] is the expectation operator and Z∗ is the total benefit associated with the optimal solutions
(x∗

1,x∗
2,….,x∗

T). xt represents the vector of allocation (decision) variables, qt is the vector of stochastic inflows, St

represents the vector of state variables that is described by the volume of storage st. ν (.) is the terminal value

Figure 2. Schematic representation of the Ebro River basin (Reservoir and tributary names are presented in Table S10 of Supporting Information S1).
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function, αt is the discount factor at stage t. bt(.) is the one‐stage net benefits function at stage t (one‐stage
represents a single time period, with each time period set as a monthly timestep across a 30‐year planning
horizon).

Equation 2 is the sum of the net benefits from irrigated agriculture, hydropower, and urban settlements for the
upstream and downstream areas of the Ebro River basin minus penalties for not meeting target water demands.

bt(.) = HPt + IRt + URt − ξT
t zt (2)

where HPt is the benefits from hydropower production, IRt is the benefits from irrigation, URt is the benefits from
urban water use, zt is the vector of slack variables and ξT

t is the vector of penalties (€/unit of deficit or surplus).

The net benefits from hydropower generation at stage t is the sum of energy production for each hydropower plant
h and is estimated as follows:

HPt =∑
h

τt .P̂T
t .(πt − θt) (3)

where τt is the number of hours in period t, πh is the short‐run marginal cost (SRMC) of the hydropower pro-
duction [€/MWh], θh is the operational and maintenance costs of the different hydropower plants [€/MWh], and
P̂t is the vector of approximated hydropower generated during period t and is determined based on the convex hull
approximation (please see the explanation below).

SRMC is the short‐run marginal cost of the hydrothermal electrical system to which the hydropower plants are
connected. It is the variable cost of the hydropower plant at the margin, that is, the last power plant called by the
system operator in order to meet the electricity demand in the system.

The net benefit from irrigated agriculture IRt is the sum of the benefits ζ( p,d,k)t f
obtained for each crop p and

irrigation technology k at each irrigation demand site d at the harvest stage t f of the irrigation season. The benefits
from irrigated agriculture are calculated by:

IRt =
⎧⎨

⎩

∑
d
∑

k
∑
p

ζ( p,d,k)t f
if t = t f

0 if t≠t f

(4)

The net benefit function ζ( p,d,k)t f
associated with crop p, irrigation technology k at site d is given by:

ζ( p,d,k)t f
= [π( p,d,k) . c( p,d,k) − θ( p,d,k)]. A( p,d,k) (5)

where π( p,d,k) and θ( p,d,k) represent the price and production costs of crop p, irrigation technology k at site d,
respectively, c( p,d,k) is the actual yield and A( p,d,k) is the maximum area that can be cultivated for each crop (details
on crop water use are represented in Note S1, Figure S2 of Supporting Information S1, and observed irrigated land
in Table S1 of Supporting Information S1). The optimized irrigated land is determined based on the optimal water
allocated to crops.

The urban benefits URt are the sum of each city's consumer and producer surpluses, following (Baccour
et al., 2022).

The main constraints of the optimization problem are described as follows:

• Water balance (hydrological constraint)

st+1 − CR.(rt + lt) − CI .(it ) + et.(st , st+1 ) = st + qt.(qt− 1,ξt) (6)
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where, variables in bold represent the vector of nodes and t is the time step (monthly). st is the storage vector at
the beginning of the period t, rt i s the release vector at stage t, qt is the inflow vector during the time t, it is water
withdrawals vector. et and lt represent the vector of reservoirs evaporation and the vector of spillage and losses,
respectively. The topology of the system is represented using the connectivity matrices CR (for reservoir releases
between reservoirs) and CI (for return flows).

• Lower and upper bounds on storages

st+1 ≤ st+1 ≤ st+1 (7)

st+ 1 and st+ 1 are the lower and upper bound on storage level respectively, gathered from the historical monthly
storage level for each reservoir (CEDEX, 2016).

• Lower and upper bounds on reservoir releases

rt ≤ rt ≤ rt (8)

rt+ 1 and rt+ 1 are the lower and upper bound on reservoirs releases. Maximum release is set to account for the
river‘s maximum carrying capacity, depending on the capacity of the hydraulic structures, and minimum release
is set at zero.

• Lower and upper bounds on water withdrawals

it ≤ it ≤ it (9)

it and it are the lower and upper bound on water withdrawals. This constraint ensures that the allocation decisions
are consistent with the channel capacity (CHE, 2016).

The SDDP is used to solve the optimization problem (Equations 1–9) by breaking down it into a series of one‐
stage linear problems that are solved recursively (Equation 10). It is built through an iterative procedure to handle
the high dimensionality of the problem, aiming to create a locally accurate approximation of the objective
function using hyperplanes. The one‐stage SDDP optimization problem at stage t during the Lth iteration has the
following objective function:

Ft ( st,qt− 1) = max
xt
{bt ( st,qt,xt+1) + ∝t+1 . Ft+1} (10)

where Ft represents the benefit‐to‐go function from stage t to the end of the planning period T associated with
decision variables vector (release, spillage and losses, end of period storage, and water withdrawals).

The maximization occurs to the extent permitted by the constraints described in Equations 6–9 as well as by the
following constraints:

• The Convex hull approximation of the hydropower production

The convex hull is used to deal with the non‐linearity of the hydropower production function Pt. The parameters
ψ, ω, and δ are estimated using the procedure described by Goor et al. (2011) that eliminates the nonconvexity by
creating a piecewise linear approximation of the true hydropower production function through convex hulls
[Equation 11].

The hydropower production function is convex with respect to the release and storage, allowing it to be
approximated by a convex hull made of multiple planes. The piecewise linear approximation captures the non‐
linearity of the original production function, which can still be considered in the SDDP algorithm. Since the
convex hull inherently provides an upper bound on the original hydropower production function, a correction
factor is introduced to ensure that the amount of energy generated with the approximation is similar to the original
function.
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The procedure to calculate the convex hull parameters is described subsequently: Frist, the feasible domain of the
storage s and the release r of each hydropower station is discretized and the true hydropower function at each grid
point is estimated. Then, the upper bound of the hydropower function P̂(s, r) is determined based on the convex
hull approximation by the piecewise linear function of the storage and turbining. The parameters of hyperplanes
(h = 1,2,…,H) are adjusted in order to minimize the difference between the true non‐linear hydropower functions
and the piecewise linear approximation.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P̂t − ψ1T . st+1/2 − ω1T . rt ≤ δ1T + ψ1T . st/2

.

.

P̂t − ψHT . s/2 − ωHT . rt ≤ δHT + ψHT . st/2

(11)

• The outer approximation of the future benefits (cuts)

The expected benefit‐to‐go function Ft+ 1 bounded from above by the following inequalities (Equation 12) and
obtained by using piecewise linear segments lth (cuts) from sampled states that allows to solve the one stage
problem by linear programming.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ft+1 − φ1
t+1 . st+1 ≤ γ1t+1 . qt + β1t+1 (l = 1,2,…,L)

.

.

Ft+1 − φL
t+1. st+1 ≤ γL

t+1 . qt + βL
t+1

(12)

where L is the total number of cuts (hyperplanes), and φt+ 1,l and γt+ 1,l are the gradients of Ft+ 1 regarding the
state variables (st+ 1,qt), and βt+ 1,l is the intercept. These cuts parameters are calculated at stage t+1 based on the
primal and dual information available at the optimal solution of the one‐stage SDDP problem (Tilmant
et al., 2008), (Note S2 and Figure S3 in Supporting Information S1).

While the storage states st are experimented from the minimum and maximum storage capacity of each reservoir,
the hydrological states qt − 1 are experimented from historical flow records in the baseline conditions or from
inflows projections under the future climate scenarios. Stochastic inflows are generated at stage t using a multisite
periodic autoregressive model (MPAR), whose parameters are derived from known inflows values (historical and
projection inflows). The MPAR is capable of representing seasonality, serial, and spatial streamflow correlations
within a river basin, capturing hydrologic uncertainty and guaranteeing the convexity requirement of the SDDP
(Espanmanesh & Tilmant, 2022; Pina et al., 2017). At each site j, the hydrologic process can be derived from:

(
qt( j) − μqt

( j)
σqt( j)

) = ϕt( j) .(
qt− 1( j) − μqt− 1

( j)
σqt− 1( j)

) + ξt( j) (13)

where qt is the inflows at time t, with t = 1,2,…,12 months μqt
and σqt

are the periodic means and standard de-
viation of qt, respectively and the ϕt is the autoregressive parameter of the periodic model. ξt is a time
independent‐spatially correlated stochastic noise.

The simulation of optimal allocation policy decision is determined from the SDDP results based on the re‐
optimization procedure described by Tejada‐Guibert et al. (1993) with SDP and applied by Tilmant
et al. (2020) with the SDDP. The approach is based in using the 12 monthly piecewise linear functions determined
from the intermediate year in simulation over the entire streamflow record. The re‐optimization problem at time t
(year y and month m) is:
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Z = max
xt
{bm ( st ,qy,m,xt) + Fm+1} (14)

Subject to

st+1 − CR (rt + lt) − CI (it ) + et (st , st+1 ) = st + qy,m (15)

Fm+1 − φτ
m+1,l st+1 ≤ γτ

m+1,l qy,m + βm+1,l (l = 1,2,….,L − 1) (16)

Equations 2–6 stated in the one‐stage optimization problem are both applicable. Once the re‐optimization
problem is solved, the system moves to time t + 1 using the mass balance (Equation 11) and solving a new
re‐optimization problem. This process continues until the end of the simulation period is reached.

The simulated allocation decisions for each year and month (30 years × 12 months) obtained from the re‐
optimization procedure for each scenario (baseline; CC‐2070; CC‐2100) are processed to calculate the perfor-
mance indicators. The selected performance indicators are related to each management objective (economic
activity) to assess the probabilistic trade‐offs between economic sectors and spatial locations.

Indicators for assessing the trade‐offs between economic sectors: (Five performance indicators of which three are
related to the irrigated agriculture sector and one for each of the energy and urban sectors).

For irrigated agriculture: the three performance indicators are the effective irrigated area for field crops, vege-
tables, and fruits tree. The performance indicator for each group represents the number of irrigated hectares (ha)
effectively supplied during the simulation period. The effective irrigation area is assumed to be proportional to the
ratio between the volume of water effectively supplied to the crop during the irrigation season and the seasonal
crop water requirement.

For hydropower generation: the performance indicator is the annual energy production of all hydropower plants in
the system.

For the urban sector: the performance indicator is the volume of water supplied to cities.

Indicators for assessing the trade‐offs between spatial locations: (six performance indicators, one per manage-
ment objective for the upstream and downstream areas). The indicators include irrigated area for agriculture,
hydropower generation for energy, and urban water use, both for upstream and downstream areas.

In this study, the re‐optimization procedure is performed for both historical (baseline) and future climate
streamflows. This procedure is critical for assessing the performance of the system under historical and future
drought conditions in hydrologic sequences that show the effects of extreme drought events.

2.3. Procedure to Identify Trade‐Offs

The optimization‐re‐optimization process is applied for baseline and for future climate scenarios (CC‐2070; CC‐
2100) under two alternative water allocation policies: agricultural production priority or energy production
priority. The re‐optimization procedure for each climate scenario and each policy over 30 years delivers vectors
for each performance indicator (30 × 1). These vectors are used to identify trade‐offs between sectors and spatial
locations described above.

A variety of visualization techniques can be used to identify trade‐offs between multiple elements and di-
mensions, such as Parallel Coordinate Plots and Radar Charts. These interactive visualization frameworks
facilitate the identification of the Pareto optimal solution, especially in high dimensional systems that need so-
phisticated representations of properties such as color, shape, etc (Giuliani et al., 2015; Hurford et al., 2014;
Tilmant et al., 2020). In this study, Parallel Coordinate Plots (PCP) are used to represent and identify trade‐offs
between sectors and spatial locations for each climate scenario and policy. In the PCP, the different performance
indicators are displayed as equally spaced vertical lines (Y‐axis). The performance indicators are represented on
the X‐axis, while the increasing preferences are on the Y‐axis. The Y‐axis scale is determined based on the re‐
optimization results for each performance indicator over the simulation periods and corresponds to the mini-
mum (the bottom horizontal axis) and maximum (the top horizontal axis) values of that indicator across all
scenarios. The average of the performance indicator over the simulation period is represented by a dotted line. The
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distribution of the performance indicator is characterized by colored areas associated with quantiles. These areas
explain the response of performance indicators to changing water stress conditions under each policy. The orange
area represents the first quartile (25%), with the lowest values of performance preference. The green area is the
interquartile range between the 25th and 75th percentile; and the blue area includes the highest values, above the
75th percentile. The comparison of plots shows the change in trade‐offs between climate scenarios and policies,
showing the impacts of priority policies and hydrologic uncertainty (Figure S5 in Supporting Information S1).

2.4. Policies and Climate Scenarios

In terms of water resources allocation, priority policies are used to evaluate the consequences of different
priorities assigned to the main economic sectors: agriculture (food security) versus hydropower (energy se-
curity). In this study, the urban sector is given priority under both intervention policies based on the current
water management rules of the Ebro water authority that prioritizes water allocation for the urban sector in
drought conditions. We assume that the annual urban water consumption should be satisfied by at least 95%
under both priority policies. The agriculture priority implies the re‐operation of the reservoirs to release water
in the areas with large agriculture activities, maximizing the agricultural benefits, while the energy sector
maximizes its benefits to the extent possible. In the agriculture priority scenario, irrigation withdrawals are
additional constraints to the optimization problem. These constraints can be classified as either hard or flexible.
Hard constraints mean that water withdrawals will always be met as long as there is water available. Flexible
constraints mean that irrigation deficits are penalized in the objective function, that is, irrigation withdrawals
can be lower than expected (and thus there is a deficit) in case of reduced water availability. In the energy
priority scenario, the irrigation constraints mentioned above are relaxed and water is allocated primarily to
produce energy.

The selected priority policies affect three important objectives: human water security, food security, and
energy security. Human water security will remain under threat in the future because of the escalating trends
in human population, climate stress, water use, and development pressures (Vorosmarty et al., 2010). Access
to safe drinking water and sanitation are basic human rights and are prerequisite to achieving many di-
mensions of sustainable development including health and food security. The challenge of meeting future
water needs in a sustainable manner requires the implementation of integrated water resources management
and efficient water planning (UN, 2018). Food security and agricultural sustainability are particularly chal-
lenging during droughts, requiring urgent action in both developing and developed countries (Gil et al., 2019).
Ensuring food security is an important target of the sustainable development goals (SDG) for reducing hunger
and extreme poverty, and achieving good health and wellbeing. Energy security is a key issue in Europe for
adaptation and mitigation of climate change. In Spain, the Integrated National Plan of Energy and Climate
2021–2030 and the Energy Security Enhancement Plan regulate the measures and investments for the
development of renewable energies, including the target of 74% of renewable energies in electricity gener-
ation by 2030 (MITECO, 2020, 2022).

The model was first run and calibrated to reproduce observed hydrological and economic data in baseline con-
ditions (Table S1 in Supporting Information S1) and then used to assess three climate water stress scenarios for
each priority policy in the Ebro basin: Baseline, CC‐2070, and CC‐2100. The historical river discharge of the Ebro
has been affected by climate variability, resulting in moderate climate water stress, especially in the years 1989,
2005, and 2012. The future climate water stress scenarios are based on the projected future declines in streamflow
under climate change. The projected monthly streamflow in each headwater over the simulation periods for each
climate scenario CC‐2070 and CC‐2100 are determined by perturbing the historical series with the levels of water
stress. The levels of water stress are based on the climate change projections provided by CEDEX (2017) that are
built on the Integrated System of Modeling Precipitation‐Delivery (SIMPA) by downscaling the outputs from
Global Climate Models (GCM) at Spanish basin scale. The CEDEX results have a spatial resolution of 1 km for
the RCP4.5 and RCP8.5 emission scenarios and take account of changes in the frequency of droughts with
different intensity and duration. In this paper, the worst‐case scenario RCP8.5 is selected to demonstrate which
would be the optimized water allocations under future and extreme weather circumstances. The level of water
reduction would be 12% for CC‐2070 and 24% for CC‐2100 scenarios (Table S2 and Figure S1 in Supporting
Information S1).
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3. Results
3.1. Hydrologic and Economic Impacts of Climate Risks

The empirical cumulative distribution of annual outflow at the Ebro River mouth under climate water stress
scenarios (CC‐2070 and CC‐2100) and priority policies is shown in Figure 3. Based on the SDDP simulations
under historical climate conditions, the optimal annual outflow for 50% non‐exceedance probability is estimated
to be 8,080 and 9,910 Mm3 under the agriculture and energy priority policies, respectively. The energy priority
policy involves higher stream flows at the Ebro River mouth because of the reduced water consumption in
irrigation. Therefore, there are larger reservoir releases for optimal hydropower generation. The water use by
irrigated areas is done only by the extent permitted by the energy and urban sectors. The energy priority policy
could have the advantage of alleviating water scarcity in the downstream of the Ebro basin by satisfying agri-
cultural and urban demand, while rising energy production and water stream flows. Therefore, water and energy
security are enhanced. Overall, under future climate water stress scenarios, the annual outflow at Ebro River
mouth is projected to be smaller for both priority policies in comparison with the historical outflow.

For agricultural priority, water use by irrigated agriculture is reduced by around 8% (− 158 Mm3 for CC‐2070;
− 183 Mm3 for CC‐2100), water use for energy production decreases by up to 28% (− 2,430 Mm3 for CC‐2070;
− 5,292 Mm3 for CC‐2100), and urban water use is maintained, compared to historical conditions. The annual
outflow at the Ebro River mouth falls to 6,830 Mm3 under CC‐2070 climate scenario, and to only 5,450 Mm3

under CC‐2100 climate scenario. However, for the energy priority, the annual outflow will exceed 8,600 and
7,470 Mm3 for 2070 and 2100, respectively, with a 50% exceedance probability. The high outflow levels under
energy priority are due to the increased reservoir releases (+1,370 Mm3 for CC‐2070;+4,491 Mm3 for CC‐2100)
that maximize hydropower generation, compared to agriculture priority outflows at the Ebro mouth.

Projected annual hydropower production, irrigated cropland, and urban water use in the Ebro River basin for
baseline, CC‐2070 and CC‐2100 scenarios under the agriculture and energy priority policies are shown in
Figure 4. The urban sector takes priority over all other water uses and the annual urban water withdrawals are
maintained under both policies and future climate scenarios, promoting the human water security objective.
The annual hydropower production for current climate conditions and 50% non‐exceedance probability is
estimated at 4,030 GWh under agricultural priority, which is considerably smaller than under energy priority

Figure 3. Empirical cumulative probability distribution functions of the model‐projected annual outflows at the Ebro River mouth for baseline, CC‐2070, and CC‐2100
periods under energy and agricultural priority.
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(− 13%; 4,640 GWh). The hydropower production is expected to decrease under future climate water stress
scenarios because of the falling streamflow in the basin. Compared to the baseline, hydropower production
decreases by almost 30% (at 2,930 GWh) under agricultural priority, while decreasing only by 20%
(3,610 GWh) under energy priority for the CC‐2100 scenario. The reduction in hydropower generation is
substantial under agricultural priority compared to the energy priority policy. The projected irrigated land for
current climate conditions under agricultural priority is 538,000 ha for an exceedance probability of 50%,
while under the energy priority, the irrigated land with a 50% exceedance probability is only 311,000 ha. In
both future climate scenarios, the reduction in irrigated land is below 10% compared to the baseline
(538,000 ha) under agricultural priority. However, irrigated cropland falls by 20% (to 249,000 ha) and 34%
(to 206,000 ha) relative to the baseline (311,000 ha) under the energy priority for the CC‐2070 and CC‐2100
scenarios, respectively.

3.2. Probabilistic Trade‐Offs Between Competing Water Users and Spatial Locations

Figures 5 and 6 show the trade‐offs between economic activities and between spatial locations in the basin, by
priority policy and climate scenario. Assessing the probabilistic trade‐offs and performance of each sector
(agriculture, energy, and urban) under uncertainty using the SDDP algorithm requires stochastic inflows
generated by a multisite periodic autoregressive model. The SDDP model is an effective tool for optimizing
reservoir operations amidst uncertain inflows. This approach allows the model to account for multiple inflow
sequences, enabling the development of robust operational strategies across different hydrological conditions.
Espanmanesh and Tilmant (2022) indicate that SDDP could accommodate system and hydrologic complexity
including a large number of reservoirs and diverse hydrologic information. The stochasticity captured by hy-
drologic uncertainty could provide a hedging strategy against extreme hydrologic events and economic risks. The
probabilistic trade‐offs analysis accounts for the variability and randomness of hydrologic events and provides the
distribution of each performance indicator under priority policy and climate scenario (Tables S7 and S8 in
Supporting Information S1). The results show the trade‐offs among economic sectors, agricultural subsectors, and
upstream‐downstream spatial locations, delivering a nuanced understanding of sectors vulnerability and the

Figure 4. Empirical cumulative probability distribution functions of the model‐projected annual hydropower, irrigated land, and urban water use for baseline, CC‐2070
and CC‐2100 periods under energy and agricultural priority.
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associated hydrologic and economic risks under different policies and climate scenarios. The magnitude of trade‐
offs reveals their sensitivity to water stress from climate conditions.

Under future climate scenarios, the agricultural priority policy considerably reduces energy generation to
1,765 GWh (− 56%), while slightly decreasing the irrigated area of field crops (− 7%), fruits (− 12%), and veg-
etables (− 6%) for a 75% exceedance probability in 2100 (Figure 5). This prioritization of the agriculture sector
leads to increasing competition for water, affecting the availability of water for the energy sector and damaging
hydropower production. The decline of water accessibility for energy generation is explained by the large irri-
gation withdrawals to achieve food production targets, which resulted in lower basin stream flows. Water is used

Figure 5. Trade‐offs among sectors for baseline, CC‐2070 and CC‐2100 periods under energy and agricultural priority.
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for energy production only to the extent permitted by the irrigation‐oriented reservoir releases, and the resulting
higher irrigation evapotranspiration which depletes stream flows in the river. The agriculture priority shows the
energy sector's lower performance and higher vulnerability to climate conditions. In contrast, the energy priority
policy increases hydropower production to 5,218 and 4,609 GWh for 2070 and 2100 respectively, reduces the
performance of agriculture, and maintains urban water use. There is a large reduction in the production of field
crops (− 31%), fruits (− 20%) and vegetables (− 66%) compared to agricultural priority for a 75% exceedance
probability in 2100 (Table S7 in Supporting Information S1, Figure 5). This reveals the trade‐offs between energy
and agriculture, which are an important consideration for decision making. Climate water stress reduces crops
with low profitability and high‐water requirements, and the cropland acreage under less efficient irrigation

Figure 6. Trade‐offs among sectors by spatial location (upstream‐downstream) for baseline, CC‐2070 and CC‐2100 periods under energy and agricultural priority.
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technologies. The responses of different crops to water shortages are explained by the demand elasticity of each
crop. Crops with more elastic demand are more sensitive to changes in price (and thus changes in water avail-
ability) compared to crops with less elastic demand. Water use in urban centers is met with a reliability of 95%
under both agricultural and energy priority policies for all climate scenarios, achieving human water security.
This is explained by the low urban price elasticity of demand, which leads to smaller reductions in urban eco-
nomic welfare compared with agricultural and energy welfare.

The intra‐sectoral trade‐offs between agricultural subsectors can be expected especially under energy priority
policy (Figure 5). These trade‐offs arise due to limited water resources to cover crop water requirements in all
irrigation districts and the need to maximize the economic benefits of all sectors and achieve the energy pro-
duction target under the energy priority policy. The energy priority could reduce field crops, vegetables, and fruit
trees to 150,000; 4,000; and 24,000 ha in 2100 (Table S7 in Supporting Information S1). A considerable reduction
of vegetables (− 42% in 2070; − 67% in 2100), and field crops (− 21% in 2070; − 31% in 2100) is sustained for a
50% exceedance probability under energy priority when water scarcity intensifies. However, the agricultural
priority slightly reduces the area of field crops (− 7%), fruits (− 9%) and vegetables (− 8%) for a 50% exceedance
probability in 2070 and 2100 (Figure 5). For the energy priority policy, the probability of the area of field crops
and vegetables falling below 218,000 ha and 14,000 ha, respectively, is close to 25% in the baseline. This
probability rises to around 75% in 2070 and 100% in 2100, highlighting the vulnerability of field crops and
vegetables to climate water stress. The probability of the area of fruits falling below 44,000 ha is 0% in the
baseline, and around 50% in 2070 and 75% in 2100, showing that fruits are less vulnerable to climate water stress
than field crops and vegetables. The substantial decrease in field crops and vegetables under energy priority is due
to the low profitability and high‐water requirement linked to outdated irrigation technology (surface irrigation).

As mentioned above, the agricultural priority policy results in low performance and high vulnerability of hy-
dropower production under water stress conditions. However, the vulnerability level depends on the spatial
location and the economic value of hydropower plants. Figure 6 and Table S8 in Supporting Information S1 show
that under agricultural priority, downstream hydropower generation decreases by 15% in 2070 and 28% in 2100
for a 50% non‐exceedance probability, while upstream hydropower generation declines only by 7% in 2070 and
20% in 2100. This indicates that downstream hydropower production is more vulnerable than upstream hydro-
power production.

Despite the slight vulnerability of the agriculture sector under agricultural priority, agriculture downstream is
more impacted (− 6% in 2070 and ‐8% in 2100) than agriculture upstream under future climate scenarios for a 75%
non‐exceedance probability (Figure 6). This indicates that agriculture downstream is more vulnerable than
agriculture upstream. The reason is the high‐water requirement and low value of some crops in the downstream
irrigated areas which make the agriculture upstream has the advantage of using water from inflows and reservoir
releases.

The energy priority policy decreases upstream irrigated area by 89% and 57% in 2070 and by 100% in 2100, for
25% and 50% non‐exceedance probabilities, respectively. However, the downstream irrigated area decreases only
by around 8% in 2070 and 17% in 2100 for both 25% and 50% non‐exceedance probabilities (Figure 6 and Table
S8 in Supporting Information S1). The low vulnerability of downstream irrigation is explained by the high hy-
dropower production downstream, which delivers large reservoir releases to irrigation downstream. More details
about the energy production, irrigated areas and optimized water use by location and sector under climate sce-
narios and policies are available in Tables S3–S6 of Supporting Information S1.

Benefits from hydropower, irrigation and urban supply decrease under future climate scenarios (CC‐2070 and
CC‐2100) for both priority policies. For the CC‐2100 scenario, average annual agricultural benefit falls by 8% and
23% under agricultural and energy priorities, and average annual energy benefit falls by 27% and 21% under
agricultural and energy priorities, respectively (Table S9 in Supporting Information S1). The implication is that
the agricultural priority promotes food security and energy priority promotes energy security. However, agri-
cultural priority worsens the performance and increases the vulnerability of hydropower, and energy priority has
the same negative effect on agriculture. Results on basin‐wide benefits indicate the trade‐offs of shifting from
agricultural to energy priority: agriculture benefit losses would be close to 50% (43% in baseline, 46% in 2070,
and 52% in 2100), while energy benefit gains would be close to 20% (14% in baseline, 17% in 2070, and 23% in
2100) (Table S9 in Supporting Information S1).
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The costs of climate change for irrigation districts and hydropower plants by spatial location are presented in
Figure 7 and Table S9 of Supporting Information S1. This information provides a better understanding of the
vulnerability of sectors across locations in the basin. Under energy priority, upstream irrigation districts would
lose 57% of their benefits for CC‐2070 and 95% for CC‐2100 climate scenarios. This demonstrates how climate
water stress coupled with energy priority, increases the likelihood of irrigation losses up to the point of threatening
the continuation of upstream irrigation activities. Benefits of downstream irrigation districts are less affected by
future water stress coupled with energy priority, because they take advantage of large reservoir releases that
maximize downstream hydropower production.

Under agricultural priority, benefit losses of downstream hydropower could reach 45% for the CC‐2100 climate
scenario, while benefits of upstream hydropower plants would be only slightly reduced (Figure 7). This is
explained by the advantage of hydropower in upstream areas that can use water from headwaters and reservoir
releases, whereas hydropower downstream is faced with depleted stream flows since more water is consumed by
irrigation districts under agricultural priority.

4. Discussion and Policy Implications
This paper develops a stochastic hydro‐economic model in the Ebro basin. The purpose is to assess different water
allocation policies to confront future climate water stress, considering the interaction between water, energy, and
agricultural systems. The results of this study highlight the importance of selecting adequate water policies for
sustainable and effective water allocation among all sectors and spatial locations under future climate conditions.
The analysis of hydrologic risks indicates reductions in stream flows under both climate change scenarios (CC‐
2070; CC‐2100), which are consistent with the results of other studies. Pulido‐Velazquez et al. (2021) indicate
that there would be substantial streamflow reductions in Spain's northern basins, and Lopez‐Moreno et al. (2014)
estimate a 14% decrease in stream flows in the Pyrenees from the projected trend of warming for the period 2021–
2050.

The study estimates the impacts of future climate water stress on both water demand and supply by sector and
location. Under climate change, there is competition between food security, energy security and human water
security in urban centers. Our results indicate that human water security is achieved under both priority policies
and climate scenarios. They also demonstrate that choosing a policy of agricultural priority worsens the

Figure 7. Benefit losses by sector under future climate scenarios.
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performance and increases the vulnerability of hydropower. Conversely, selecting a policy of energy priority
increases the vulnerability of irrigated agriculture. Wu et al. (2021) indicate that boosting food production reduce
hydropower generation. Tilmant et al. (2020) indicate that food production is highly vulnerable to changes in
hydro climatic conditions and allocation policies in the case of the Senegal basin, emphasizing the importance of
factoring this vulnerability into schemes for water and benefit sharing negotiations.

Understanding the trade‐offs among spatial locations by sector is indeed crucial for improving the knowledge
required for strengthening food, energy and human water security. Findings show that the energy priority policy
reduces water supply to upstream irrigation schemes, with substantial benefit losses in upstream agriculture.
Conversely, the agricultural priority policy would damage hydropower generation downstream, where the larger
hydropower plants are located, because upstream withdrawals by irrigation districts deplete downstream river
flows used for hydropower. Although hydropower production does not consume water, the seasonality of releases
and the spatial location of plants may have strong impacts on river flows. These flow changes could lead to
conflicts between large hydropower plants downstream and upstream irrigation districts. The same dilemma is
found by Jalilov et al. (2016) in the AmuDarya River Basin in the assessment of alternative priority policies. They
indicate that energy priority ensures more energy production by Tajikistan but dwindling agricultural benefits in
downstream countries, while agricultural priority brings more agricultural benefits to Tajikistan and Uzbekistan.
They stress the importance of seasonality and timing in reservoir releases for the performance of energy pro-
duction and irrigated agriculture.

The study demonstrates that the urban sector bears the lion's share of economic benefit under both agriculture and
energy priority policies. Climate stress has a slight impact on urban benefits under energy priority (− 0.4% for CC‐
2100 for 25% non‐exceedance probabilities), while it remains unaffected under agriculture priority across the
25%, 50%, and 75% non‐exceedance probabilities. The energy and agriculture priority ensures the achievement of
the targeted irrigated and hydropower production, leading to a distribution of benefits where the energy and
agriculture sectors perform according to their priorities (Figure S4 in Supporting Information S1). The water
resources allocation under each policy and climate scenario directly influences the distribution of economic
benefits, reflecting the sectors' performance. Understanding the probabilistic trade‐offs between economic
benefits under policies and climate scenarios provides a more comprehensive grasping of the complexities and
uncertainties involved in water resource management under climate change. This information allows policy-
makers to make better informed decisions that balance economic benefits across sectors while accounting for the
inherent uncertainties in climate projections.

The complexity of adaptation efforts requires careful consideration of trade‐offs among sectors and location.
Torhan et al. (2022) demonstrate that trade‐offs could result from adaptation responses that appear in the form
maladaptation responses and limitations, which potentially rise risks in the adaptation of another sector and
exacerbate vulnerabilities. De Vos et al. (2021) highlight the need to simultaneously consider different di-
mensions of the nexus when developing scenarios that aim to achieve multiple sustainability targets. Under-
standing trade‐offs and the interconnectedness of different sectors and their spatial location in an integrated ways
could anticipate unintended consequences for developing effective and sustainable adaptation strategies that
minimize risks, vulnerabilities, and economic losses, and for enhancing resilience in the face of evolving water
and climate challenges. Identifying vulnerabilities can be valuable tools for conservation and climate adaptation
planning (Schmidt et al., 2023).

Our study extends the application of the Stochastic Dual Dynamic Programming (SDDP) algorithm, tradi-
tionally used to explore sectoral trade‐offs, by incorporating an analysis of the spatial dimensions and in-
teractions of these sectors under future climate scenarios. The model addresses the gap in understanding how
spatial and sectoral dynamics interact, particularly in the context of increased water stress and climate vari-
ability, taking the Ebro River basin in northeast Spain as a key case study. This Mediterranean basin faces
serious challenges including seasonal water scarcity, water demand sector competition and water stress and
variability intensification. The model includes sectoral preferences, priorities, and hydrologic and economic
constraints for each policy and climate scenario, enhancing its ability to consider the needs and constraints of
selected sectors and locations. This enables a nuanced examination of how different water allocation policies
affect each sector under baseline and future climate conditions. It addresses the basin's challenges by revealing
probabilistic trade‐offs, identifying vulnerable objectives, enhancing cross‐sectoral planning, and fostering
wider approval and support for a sustainable and effective water planning system. Moreover, the projected
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future hydrologic data for each spatial location is derived from the model predictions of CEDEX (2017) and the
SIMPA model in the Ebro basin. Those predictions have a spatial resolution of 1 km for each emission scenario
and account for changes in the frequency of droughts of different intensity and duration, dealing with spatial
variability and climate uncertainty.

Our paper contributes to several aspects: (a) Identifying the probabilistic trade‐offs among sectors, intra‐sectors
and spatial locations in the basin under future climate scenarios and priority policies, highlighting their vulner-
ability to climate water stress. The model's capacity to provide optimized solutions for all sectors and locations
under varied future climate conditions demonstrates the model's sensitivity to parameter changes and qualifies it
for effective policy support. The trade‐offs analysis could inform a nexus dialog between sectors for supporting
the science‐informed design of efficient, flexible, and equitable cross‐sectoral water planning and promoting
sustainable development. Identifying those trade‐offs is a prerequisite toward the development of adapted and
socially acceptable allocation policies between sectors and spatial locations, and for supporting the collective
action of stakeholders and decision‐makers to advance sustainable water management coupled with food, energy,
and human water security. (b) Assessing the economic losses by sector and spatial location and informing the
targeted policy recommendations for each specific area. (c) And analyzing the hydrologic risks associated with
future climate water stress and the impending economic risks for each sector. In the context of limited resources,
optimization models can ensure that resources are allocated most efficiently, achieving the maximum possible
impact for the given constraints. This efficiency can make plans more feasible by fitting within budgetary and
resource limitations, reducing future uncertainty.

A certain number of simplified assumptions have been undertaken in the modeling approach. The stochastic
optimization model presents ongoing debates only between irrigated agriculture, urban supply and energy sectors.
The inclusion of other important competing water users such as environmental flows for ecosystems could
improve the assessment of the probabilistic trade‐offs between sectors. This will guide a broader sectoral scope
for efficient water allocation under future climate water stress. The projections of future hydrologic data that are
used in this study are focused on the worst‐case scenario of RCP8.5 and represent an average combination of
diverse climate models. Examining the probabilistic trade‐offs for each climate model separately and also for the
RCP4.5 scenario could provide a more extensive spectrum of changes in order to better deal with uncertainty.
Despite these limitations, our modeling approach generates useful insights for improving cross‐sectoral planning,
achieving equitable trade‐offs with the support of stakeholders, adapting to future climate water stress, and
providing policymakers with inspiring messages for the design and implementation of efficient and feasible water
allocation policies.

5. Conclusions
This study develops a stochastic optimization model (SDDP) for the Ebro basin to identify the vulnerability of
the economic sectors to hydrological risks, and the response through alternative priority policies that result in
gains and losses among sectors and spatial locations. The probabilistic trade‐off analysis shows the ranges of
vulnerability for agriculture and hydropower, depending on the goals embodied in the policy priorities of
decision makers. The policies of agricultural or energy priority combined with the spatial locations of irrigation
schemes and hydropower plants, determine stream flows across the basin and water withdrawals to competing
sectors. Climate change could result in up to a 95% loss of benefits for upstream irrigation districts under
energy priority and up to a 45% loss of benefits for downstream hydropower under agriculture priority by CC‐
2100. This results in dramatically different benefit gains and losses by sector and location (Table S9 in
Supporting Information S1). However, neither priority policy provides an equitable sharing of benefits among
all sectors and spatial locations under climate change. This fact emphasizes the difficulties of reaching win‐win
outcomes that would enhance food, energy and human water security in large river basins. However, identi-
fying the economic losses for each sector and spatial location could help policymakers and stakeholders to
minimize the impact of water stress and make more informed decisions to enhance resilience and sustainability
in the face of water‐related challenges. Additionally, the information on probabilistic trade‐offs contributes to
the design of water management policies that could handle the challenges posed by climate water stress, by
reducing economic losses with possible compensations in order to achieve acceptable levels of energy, agri-
cultural and human water security.
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Data Availability Statement
The input data underlying the reported research, along with a detailed description of each model parameter are
made available at Zenodo via https://doi.org/10.5281/zenodo.14283046. Software Availability Statement: The
software employed for postprocessing the SDDPmodel large amount of simulation outputs, and for analyzing and
visualizing the results in this research are made available in the Zenodo repository under accession code https://
doi.org/10.5281/zenodo.14283046.
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