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Abstract: This study proposes a novel two-phase model framework for designing sus-
tainable biomass supply chains of Community-Scale Biomass Power Plants (CSBPPs) by
optimization based on geospatial-based Multi-criteria Decision Making (MCDM), the
Analytic Hierarchy Process (AHP) method and the Location–Allocation Model. Phase I
involved land suitability criteria prioritization and suitable land area analysis. The location–
allocation model was the main tool used in Phase II to identify optimal locations, followed
by the analysis of the levelized cost of electricity (LCOE). The model optimized site lo-
cation based on the availability (remaining) of local crop residues, electricity demand,
road networks and other key criteria for power plant development, such as the location of
substations and the location of existing power plants. The results show that the estimated
total remaining crop residue potential in the EEC region was 2403 kt/year, which can
generate approximately 34,156 TJ. The location–allocation model identified the top five
locations for CSBPPs. The total required installed capacity of these five locations was
approximately 100.23 MW in order to serve the district energy demand by the residential
sector of 793.82 million (kWh/year). Assuming direct combustion-steam turbine technol-
ogy with an installed capacity of 6–10 MW, the average LCOE was found to be in a range
of $0.076 to $0.081 USD/kWh.

Keywords: distributed energy generation; community-scale biomass power plant;
sustainable supply chain; location–allocation model; optimal locations; plant-level
levelized cost of electricity

1. Introduction
Thailand’s centralized energy system, reliant on fossil fuels and imports, hinders

economic security and sustainability [1,2]. Distributed energy resources (DERs) offer a so-
lution, enabling efficient local power generation and community participation. This aligns
with Thailand’s vision of supporting local economies through community-based energy
initiatives [3]. Biomass is considered a sustainable alternative fuel for power generation
and serves the purpose of DERs. For a successful and sustainable community-scale biomass
power plant (CSBPP) project, a holistic approach considering multi-faceted decision-making
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criteria ranging from geographical to socio-cultural issues must be taken [4–7]. The avail-
ability of biomass resources and securing a stable supply are crucial [2,3,8]. Engaging the
local community in biomass supply is a strategic approach to ensure a stable supply of
biomass and leverage local acceptance and participation.

Different methods have been used in energy policy-making and sustainable energy
management and prioritizing renewable energy key criteria selection. Budak et al. [9] used
AHP to evaluate the best renewable energy technology for sustainable energy planning
in Turkey. Effatpanah et al. [10] conducted a comparative analysis of five Multi-criteria
Decision Making (MCDM) techniques (SAW, TOPSIS, ELECTRE, VIKOR, and COPRAS) for
clean energy technologies including biomass, solar, wind, and nuclear solutions. Numerous
scientific studies have been conducted, including Multi-criteria Decision Making (MCDM)
methods for renewable energy planning and resource allocation [7,11–15] and combined
Geographic Information System (GIS) with Analytic Hierarchy Process (AHP) to prioritize
renewable energy options [9,16] or for facility site selection [17]. The methods have also
been applied to explore the suitability of biomass resources for bioenergy production
and power plant location and size determination. Kocoloski et al. [18] investigated the
impact of facility size and location on production costs. Perpiñá et al. [19] used GIS for
biomass logistics optimization, while Bojić et al. [20] and Höhn et al. [21] focused on power
plant location and size determination. Modeling and optimization studies have also been
conducted to optimize power plant locations [13,22–25]. Leduc et al. [26] developed an
optimization model for forest biomass-based methanol production plants in Sweden, and
Comber et al. [27] used GIS-based location–allocation algorithms for community-scale ADs
in the UK. Natarajan et al. [28] created maps to determine surplus biomass resources and
optimize power plant placement.

Despite these advancements, existing studies still have some limitations. The selection
criteria are somehow considered separately from the GIS-based location analysis, and
therefore, the resulting locations may not reflect the most suitable candidates. So far,
physical factors such as geographical and infrastructural factors are often included as
criteria in the location analysis and less socio-economic criteria, which are also important
for the sustainability of a project. Lastly, there is a lack of integration of spatial and temporal
analysis of feedstock residues, especially for distribution at district levels.

To address some of the gaps mentioned above, this study has developed a two-
phase model framework and used it for CSBPPs site selection and LCOE analysis for
the EEC region in Thailand as a case study. The proposed mode framework has the
following features.

Phase I: Prioritizing critical criteria and developing a comprehensive framework.
This study prioritized 13 critical criteria reflecting sustainability for CSBPPs. Combining
GIS-based MCDM, AHP techniques, and expert recommendations, area suitability was
classified in the EEC region.

Phase 2: Optimizing CSBPPs locations using Location–Allocation Modeling. An
optimization model based on the p-median problem was implemented on the ArcGIS
Pro 3.0.2 platform to identify optimal CSBPP locations based on the minimum distances
between demand locations and CSBPP locations. The constraints of local demand and plant
capacity were also applied. Then, the levelized cost of electricity (LCOE) was analyzed for
potential CSBPPs. Sensitivity analysis of biomass fuel types was also conducted for future
fuel supply management.

The main advantage of conducting the study in two phases over other existing models
is that each phase can be flexibly designed based on the objectives, available database,
selection criteria, level of complexity and so on. The model can also work in conjunction
with other open platforms.
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2. Materials and Methods
2.1. The Study Area

The Eastern Economic Corridor (EEC) is a newly developed industrial region situated
along Thailand’s eastern seaboard [29,30]. This innovative hub focuses on high-value
industries and covers 1.334 million hectares. The study area is located between latitudes
12◦20′ and 14◦10′ N, and longitudes 100◦50′ and 102◦00′ E. To assess land suitability for
CSBPPs, a geospatial modelling platform was used, incorporating ModelBuilder and the
coding toolbox from ArcGIS Pro 3.0.2 platform [31].

2.2. Modeling Framework

Figure 1 presents the model framework, which uses a two-phase approach. Phase-I
used the GIS-MCDM and AHP methods. Key criteria considered as constraints included
four main criteria groups: geophysical, infrastructural, socioeconomic–cultural, and ex-
clusion. Each criteria group was further divided into sub-criteria, prioritized with expert
recommendations. Based on the geospatial dataset and GIS-MCDM and AHP results, area
suitability was classified. Within the boundary of highly suitable areas optimized in Phase-I,
Phase-II used the network analysis to select the most suitable sites for CSBPPs and LCOE
analysis. Constraints included electricity demand, biomass supply availability and other
factors such as road networks.
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2.3. Input Data and Criteria Assumptions
2.3.1. GIS-MCDM and AHP Method with Expert Recommendation Criteria Assumptions
(Phase I)

Parameters or criteria for CSBPPs site selection were initially identified based on
Boonman et al. [4], which covered three main dimensions: geophysical, infrastructural, and
socioeconomic–cultural with an exclusion zone. Selected experts from multi-stakeholders
were invited to evaluate and prioritize the criteria for land suitability assessment. Criteria
prioritization was conducted through a questionnaire constructed based on the AHP
method. A geospatial database was prepared to convert feature class datasets (points, lines,
and polygons) into a raster feature format for automated geospatial-based MCDM and
AHP methods. Each dataset was displayed on a 100 m grid cell covering the period from
2019 to 2037, available in both gridded and attribute data formats. A summary of the types
and sources of datasets for the main and sub-criteria is presented in Table 1 (Phase I). The
selection of CSBPPs suitable sites was determined from the analyzed weight scores given
by the experts.

• Geophysical criteria

The geophysical parameters considered included five sub-criteria. Biomass feedstock
potential was a crucial factor to ensure a stable supply for the biomass power plant. Water
resources were also essential for accessing raw water required in power plant operations.
The remaining three sub-criteria focused on land suitability, prioritizing locations within
agricultural promotion zones or industrial development zones with appropriate land
slopes [32–35].

• Infrastructural criteria

Infrastructure criteria included four sub-criteria. CSBPPs should be located near power
lines and substations to minimize grid connection costs. Existing and planned biomass
VSPP capacity and location were considered to avoid feedstock competition. Primary
and sub-road networks were also evaluated to assess transportation costs for biomass
supply [36,37].

• Socio-economic criteria

Socio-economic impact was a key criterion in this study, focusing on three sub-
criteria [10,38]. Land suitability for rural community development was determined based
on future land use plans. Maintaining appropriate distances between power plants and
essential places like schools and hospitals was also considered. Local community participa-
tion and public acceptance were crucial for the project’s success and benefits. These factors
were assessed based on the distance from local communities, which indicated potential for
partnerships and local biomass supply.

• Exclusion zone criteria

Exclusion zones, including commercial areas, urban areas, future development sites,
and environmentally sensitive areas, were unsuitable for CSBPP construction. Densely
populated urban areas, particularly along the eastern coast, forests, and flood-prone regions,
were excluded from consideration for new CSBPP development [32,39].

2.3.2. Spatial Optimal Location–Allocation Model Criteria Assumptions (Phase II)

Table 1 (Phase II) summarizes the datasets used for site selection optimization, includ-
ing highly suitable areas, energy consumption data at the district level, road networks,
transmission lines, power substations, potential crop residue availability, and demand loca-
tion. The specific criteria and their corresponding integer values are detailed in Figure 2a–f.
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Table 1. Selection of constraint used, type, and sources of datasets.

Prioritizing Criteria
Phase I Sub-Criteria Data Format Sources Year

1. Geophysical Biomass feedstock potential Polygon LDD 1/OAE 2 2019/20
Waterbody Polygon DPT 3/EECO 4 2019

Agricultural promotion zone Polygon DPT 3/EECO 4 20-year land
use plan (2018–2037)Industrial development zone Polygon DPT 3/EECO 4

Slope data Polygon DEM 5 2019

2. Infrastructural Transmission/Distribution
power lines Line DPT 3/PEA 6 2020

Power substation Point DPT 3/EECO 4 2019/20
Existing biomass-VSPP Point DPT 3/EECO 4 2019/20

Main road network Line DPT 3/EECO 4 2019
Sub road network Line DPT 3/EECO 4 2019

3. Socioeconomic–cultural Potential land for rural
community development Polygon DPT 3/EECO 4 20-year land use plan

(2018–2037)
Important locations

(Hospitals and Schools) Point LDD 1 2019

Local community participation
and public acceptance Point DPT 3/EECO 4 2019/20

4. Exclusion zone
Commercial and Urban

community area Polygon DPT 3/EECO 4

20-year land use plan
(2018–2037)

Future Urban Development Polygon DPT 3/EECO 4

Environment protection Polygon DPT 3/EECO 4

Land reform Polygon DPT 3/EECO 4

Forest Preservation Polygon DPT 3/EECO 4

Flood risk area Polygon GISTDA 7 2020

Key Criteria Phase II Parameter Assumptions Data Format Sources Year

A highly suitable location Candidate site Point Generated from the
Phase-I study 2020

Main road network Import facility Line DPT 3/EECO 4/GISTDA 7 2019
Power substation and
power grid network

(22 kV)
Required Line DPT 3/EECO 4 2022

Energy consumption in
the EEC region 10 years

average (2012–2022) at the
district level

Demand data Table PEA 6 and generated 2012–2022

Local community
participation point Demand potential Point DPT 3/EECO 4 2020

Existing biomass power
plants (VSPPs) Competitor Point DEDE 8 2019

Total potential crop
residues (remaining) for

energy production
Supply side potential Point Generated from the

Phase-I study 9 2019/20

1 LDD: Land Development Department [33] 2 OAE: Office of Agricultural Economics [34] 3 DPT: Department of
Public Works and Town & Country Planning [32] 4 EECO: The Eastern Economic Corridor Office of Thailand [30]
5 DEM: Digital Elevation Model from NASA’s Earth Science Data Systems (ESDS) [35] 6 PEA: Provincial Electricity
Authority [36] 7 GISTDA: Geo-Informatics and Space Technology Development Agency (Public Organization)
[39] 8 DEDEc: Department of Alternative Energy Development and Efficiency [40] 9 DEDEb (ESCAP-guideline for
biomass pilot training project handbook, 2020) [38].

• Highly suitable areas

Area suitability was analyzed. Highly suitable areas were identified as illustrated
in dark green color (Figure 2b) and was used as the boundary for suitable site selection
for CSBPPs.

• Road network, power substation and power grid networks

Required facilities were constrained to the following criteria for CSBPPs such as a road
network (Figure 2c) or a power grid network (22 kV) with location of power substations
identified as red symbols (Figure 2d) [32,36].
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• Other spatial data

(1) A competitor facility pertains to specific types of problems, particularly in
addressing market share challenges. This includes the location of existing
biomass power plants (VSPPs) within the EEC region categorized by the in-
stalled capacity (Figure 2e).

(2) Candidate point shown in pink color (Figure 2f) represents points of demand
or local community participation within highly suitable area, while the facility
represented by a symbol indicate locations with district demand potential.

(3) Once the model solver has determined the optimal locations for the candidate
CSBPPs sites, it updates the facility type from candidate to chosen.

2.4. Assessing Spatial and Temporal Variation of Feedstock Supply Availability

This study evaluated the remaining potential of annual crop residues for biomass
power production. The parameters and assumptions considered included plantation area,
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crop productivity, Residue-to-Product Ratio (RPR), and unused fraction. Data on plantation
areas and crop productivity were obtained from GIS databases and published studies.
Potential feedstock sources included rice (husk and straw), sugarcane, cassava, oil palm,
and para rubber tree residues. The spatial and temporal distributions of crop residues are
provided in Figures S1–S5 of the Supplementary File.

2.5. Optimizing CSBPPs Site Selection: A Location–Allocation Modeling Approach

Geospatial tools can be used to spatially indicate community-scale biomass power
plants facility location. Network analysis can be involved in finding origin and destination
points. In the context of CSBPPs, highly suitable areas are origin points, while local
communities are destination points. The goal is to maximize accessibility by locating
CSBPPs to serve as many communities as possible. This can be framed as a general
planning problem, where multiple facilities (CSBPPs) are located and allocated to nearby
demand points (communities) for efficient service delivery [31,40,41]. Unlike a sequential
approach, where sites are selected one by one, the simultaneous location of multiple CSBPPs
is crucial for minimizing transportation costs

Location–allocation modelling provides a valuable tool for complex decision-making
processes. By incorporating prioritizing criteria based on both qualitative and quantitative
data, this approach optimizes facility locations [25,40–44]. The objective is to minimize
the overall distance between facilities potential (x, y, coordinate of feedstock supply) and
demand points. The p-median problem type, as a common location–allocation model, aims
to find the optimal locations for a given number of facilities to minimize the total weighted
distance between demand points and facilities. While traditional spider plots visualize
facility and allocation decisions, they lack information on demand and allocation quantities.
To address this, GIS offers the potential to mitigate errors and uncertainties, enabling a
more comprehensive understanding of the problem. Traditionally used for warehouse
location optimization, location–allocation models can also be applied to public facilities
like CSBPPs, which minimize impedance (travel distance) and ensure equitable access
for communities.

The following notation for this study is the metric weighted distance for the location–
allocation minimized weighted impedance (p-Median) problem type [31,41–44]. The goal
is to allocate several CSBPPs to minimize the overall weighted distance between these
facilities and the demand points they serve. We assume that each demand point was
allocated to the nearest CSBPPs. Consider the following notation for applied the problem
in this study, the mathematical representation of the p-Median problem is developed
according to the mentioned indices, parameters, and decision variables [41]:

i =index of demand point (1, 2, . . . , n)

j =index of CSBPPs potential site (1, 2, . . . , m)

dij =shortest distance from demand point ito potential CSBPPs site j

ai =amount of demand in point i

p = number of CSBPPS sites to be located

Yj = number

{
1
0

if CSBPPs at site j is located (1) and otherwise (0)
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Xij = number

{
1
0

if demand iis served by CSBPPs site j (1) and otherwise (0)

This condition, given the binary requirement for the Yj variables, ensures that exactly p
of the Yj variables will equal one. Note that any number of CSBPP site locations can be con-
sidered, depending on budgetary limitations or a range of potential sites. These functions
and inequalities can be combined to formulate the following location–allocation problem:

Minimize
n

∑
i=1

m

∑
j=1

aidijXij (1)

Subject to:
m

∑
j=1

Xij = 1 (2)

Xij≤ Y j for each i = 1, 2, . . . , n and j = 1, 2, . . . , m for each i = 1, 2, . . . , n (3)

m

∑
j=1

Yj = p (4)

Xj = {0, 1} for each j = 1, 2, . . . , m (5)

Xij = {0, 1} for each j = 1, 2, . . . , n and j = 1, 2, . . . , m

The goal (1) is to minimize the total weighted assignment distance. Constraint (2)
requires each demand point i to be served by a CSBPPs site. Constraint (3) restricts
allocations for a given demand i to only sites j that have been chosen for residential
community sites. Given the minimization goal and constraints (2) and (3), each demand
can be distributed to its nearest CSBPPs. Constraint (4) specifies the selection of p sites for
CSBPPs placement.

Finally, binary requirements are imposed in constraints (5). Note that it is only neces-
sary to keep the binary properties on the Yj variables when solving this problem in practice.
Since each demand point must be allocated exactly once and is restricted to assign to only
those sites that have been selected for a CSBPPs candidate site, the goal function ensures
that demand point assignments will be made entirely to the closest CSBPPs site, if there is a
single closest CSBPPs. An assignment variable for a given demand may be functional in an
optimal solution only when there is a variable accordingly for the closest located CSBPPs to
that demand community location. This model is adapted from the classic facility location
problem, as presented by ReVelle and Swain [43], Rosing et al. [44], with adopted from
Church and Wang [41].

Figure 3 presents the Phase-II simulation-based optimized location model used in the
study. The selection of sites for an ideal multi-site layout was performed simultaneously
rather than individually. It is constrained by a domain of values, which is referenced by the
integer value in parentheses in the following list:

• Potential site selection (1) is a candidate of a CSBPP site or a facility location potential
that is a part of the solution.

• Required (2) is a required of CSBPPs or a facility that is essential to the solution.
• Competitor (3) is a competitor facility location specific to the target demand share

problem types. It is an existing biomass power plant site that will competitively reduce
duplicate demand within the problem domain.
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• Chosen (4) is the CSBPP site that was once determined by the location–allocation
solver as a candidate facility for the solution.
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Figure 3. Phase-II simulation-based location optimization model used in the study.

2.6. Cost Analysis and Assumptions for Calculation

Levelized Cost of Energy (LCOE) is a common metric used to compare different power
generation technologies. Essentially, LCOE represents the price at which energy must be
sold to recover all costs associated with a technology over its lifetime [38,45,46]. The LCOE
was calculated as shown in Equation (6).

LCOE = ∑n
t=1

It + Mt + Ft

(1+r)t

Et

(1 + r)t

(6)

where, It is investment expenditures in year t (including financing) of investment,
Mt is operations, maintenance and expenditures in year t,
ft is fuel expenditures in year t,
Et is the sum of all electricity generated in year t,
r is the discount rate of the project,
n is life of the system.
In this study, only direct combustion-steam turbine technology with a capacity of

6–10 MW was assumed for CSBPPs since it is the most common technology to convert
biomass to electricity in Thailand and worldwide. The popular adoption of this technology
is due to its simplicity, cost effectiveness, and flexibility [38,47,48]. Combustion stoker-fired
systems can work best with raw material biomass fuels that have up to 60% of moisture.
The capacity of 6–10 MW is reasonable for a community scale, which is a trade-off between
the fuel supply collection and the economy of scale. Some salient specifications of the
technology used, the investment costs related to it, percentages of taxes, depreciation, etc.,
and cost-specific characteristics are summarized in Table 2. The assumptions were based
on a 10 MW CSBPP using para rubber wood as feedstock. The cost analysis includes
capital expenditure (CAPEX), operational expenditure (OPEX), and biomass fuel costs. The
resulting LCOE is expressed in USD per kWh.
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Table 2. Inputs for cost-specific characteristics of selected CSBPPs.

Parameter [38,49–51] Units Values

Debt ratio % 30
Interest rate (MLR) % 6
Repayment Terms Year 7

Plant capacity MWe 10
Initial investment costs Million USD/MWe 11–20

Variable O & M Cost/year USD/Year 461,960
Total operation expense cost (fixed

O&M cost including labor)
USD/Year 676,588

Total biomass fuel cost (logistics +
fuel price + processing) 1

USD/tonne 38

Biomass Fuel required (Direct
combustion)

tonne/MWh 1.5

Biomass fuel-specific consumption MWh/tonne 0.667
Biomass fuel consumption tonne/Year 118,741

Total biomass fuel cost (BFC × 1320)
based on para rubber 1

USD/Year 4,478,218

Discount Rate % 10
VSPP operation hour h/year 7920

Operation day Day/Year 330
Plant load factor % 75

Annual energy production kWh/Year 79,200,000
Salvage % 10

Land cost 2 Million USD/Rai 0.02–0.07
Land required Hectare (ha) 8

O&M growth rate %/Year 10
Inflation rate 3 %/Year 2.2
Project lifetime Year 20

1 Woodchip was assumed at 38 USD/tonne (or 1320 THB/tonne) and 1.5 tonne/MWh for direct com-
bustion 2 The Treasury department (Rayong provinces 2000 THB/square wah), Chon Buri provinces
6000 THB/square wah, Chachoengsao provinces 3500 THB/square wah; https://assessprice.treasury.go.th/
(accessed on 25 May 2021) [52] 3 Ministry of Commerce (Inflation rate average: 2.2% in 2023) FPO (Fiscal Policy
Office). Annual Report; 2021. https://www.fpo.go.th/main/AboutUs/AnnualReport/17999.aspx#2021 (accessed
on 14 March 2023) [51].

3. Results and Discussion
3.1. Crop Residues Remaining Potential in the EEC Regions

The annual gross crop residue potential for use as energy feedstocks in the EEC regions
was estimated from feedstock characteristics based on the existing studies [4,31,35,53,54].
As presented in Table 3, total crop residue remaining potential in the EEC region is estimated
to be 2403 kt/year, with sugarcane residues (1767 kt/year) being the highest priority
feedstock, followed by residues from rice (276 kt/year), oil palm (203 kt/year), cassava
(133 kt/year) and para rubber (24 kt/year). The total energy potential from these crop
residues is approximately 34,156 TJ.

3.2. Top Five Optimal Site Locations of CSBPPs Candidates

Based on the location–allocation modelling approach discussed in Section 2.5, Figure 4
presents the top five candidate locations for CSBPPs, including (1) Mueang Rayong (Ray-
ong), (2) Mueang Klaeng (Rayong), (3) Chom Thian (Chonburi), (4) Ban Bueng (Chonburi),
and (5) Mueang Chachoengsao (Chachoengsao). The total required installed capacity of
these five locations was approximately 100.23 MW in order to serve the district energy
demand by the residential sector of 793.82 million (kWh/year) [52].

https://assessprice.treasury.go.th/
https://www.fpo.go.th/main/AboutUs/AnnualReport/17999.aspx#2021
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Table 3. Gross crop residue (remaining) potential for the EEC region based on the year 2019/20.

Crop Total Crop
Production (kt) 1

Residues
Types 1

Crop Residues
Remaining

(kt, Dry Matter) 2

Available Energy
Potential

(TJ) 3

Sugarcane 17,090 Tops and leaves 1767 27,360

Palm 432
Palm trunk 200 1511

Palm fronds and leaves 3 5
1st Crop rice 412 Rice straw 129 1591
2nd Crop rice 468 Rice straw 147 1808

Cassava 1580
Cassava trunk 98 1532

Cassava rhizome 35 190
Para rubber 103 Rubber tree root 24 159

Gross crop residue (remaining) potential 2403 34,156
1 Total of crop production in the EEC area data source (e.g., statistical information such as annual crop production
or annual production of the primary production (ton) and yield (ton/ha) from OAE, 2019 [34], spatial land use
information from LDD, 2020 [33]. 2 Total of potential crop residues (remaining) available for energy production
(the year 2019/20) was calculated based on five crop residue types, which also included sugarcane (leaves
and tops), oil palm (palm trunk), rice (1st and 2nd crop—rice husk and straw), cassava (cassava waste and
rhizome), and para rubber (para rubber root). Crop residue (remaining) potential was calculated based on
residues to product ratio (RPR) to the main product (%), harvesting coefficient (%) and unused fraction of
residues (%). Information was obtained from Energy for Environment Foundation (EforE) [54]; DEDEb and
ESCEP-guideline for biomass pilot training project handbook, 2020) [38]; DEDEc, 2014 [53] 3 Energy potential
available = amount of biomass residue available (dry weight)× LHV × conversion factor; Conversion factor
MJ ×11,700,000 kWh × (efficiency 20%)/(42,120,000 MJ 24 h/day × 330 day/year) [38,53].
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3.3. Selection of Optimal Installed Capacity and Technology

The Thai government has launched a pilot project to generate a total of 150 MW of
power. This project involves constructing biomass power plants with a capacity of less
than 6 MW and biogas power plants with a capacity of less than 3 MW [2,3]. While the
initial target for biomass power plants was 6 MW, it is also worth considering a capacity of
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beyond 6 MW but not more than 10 MW due to the expected benefit from better efficiency.
Therefore, this study covered CSBPPs with installed capacities between 6 and 10 MWe
using direct combustion (steam turbine) technology. The resulting characteristics of the
five CSBPP candidate sites are shown in Table 4.

Table 4. Location of selected CSBPPs facilities and their required installed capacities.

Location No. Name of Location Total Installed Capacity Required
for Each Location (MWe)

I Mueang, Rayong 37.76
II Meang Klaeng, Rayong 13.93
III Chom Thian, Chonburi 17.33
IV Ban Bueng, Chonburi 12.78
V Mueang Chachoengsao 18.43

100.23

3.4. Levelized Cost of Electricity (LCOE) of CSBPPs

Table 5 summarizes the main contributors to LCOE and the estimated LCOE for
CSBPPs at the top five sites (power plant clusters), based on rubber woodchip as fuel. The
smaller the plant size in the cluster, the higher the operational cost.

Table 5. LCOE of CSBPPs from the top five optimal sites.

Power Plant Site (ID) Units 6858 (I) 5897 (II) 5651 (III) 4258 (IV) 3316 (V)

Installed capacity required (MWe) 37.76 13.93 17.33 12.78 18.43
CAPEX (Million USD/site) 43.15 15.92 19.81 14.61 21.06
OPEX (Million USD/year) 2.71 1.35 1.35 0.68 1.35

Annual fuel costs (Million USD/year) 16.91 6.24 7.76 5.72 8.25
Annual electricity

output (Million kWh/year) 299.06 110.33 137.25 101.22 145.97

LCOE (USD/kWh) 0.085 0.089 0.086 0.090 0.085
Note: Levelized Cost of Electricity (LCOE) is calculated based on 10 MWe of CSBPPs using para rubber wood as
feedstock, and the following assumptions are included [2,3,38,49,50]. (1) Capital Cost: $20 million USD/MWe
(This represents the initial investment cost of the plant) [2,3,38,49]. (2) Operations and Maintenance (O&M) Costs:
$0.68 million USD/year (This cost applies to a 10 MWe plant and scales based on the number of plants) [38].
(3) Biomass Fuel Cost: $38 USD/ton (This range reflects the cost of biomass delivered to the plant) [direct interview,
[2,3,38]. (4) Biomass Fuel Consumption: 0.667 kWh/USD (This indicates the amount of electricity generated per
unit cost of biomass) [38]. (5) Operating Hours: 7920 h per year (This assumes operation for 330 days, calculated
for a 10 MWe plant) [38,49] (6) Additional information, including data from stakeholder interviews and literature
reviews, was used to refine the calculations [38,49–51].

To conduct the sensitivity analysis, the LCOE was also estimated based on the cost of
different biomass fuel types and the results are illustrated in Figure 5. It is worth noting
that in this calculation, per unit fuel cost was assumed not to vary with transportation
distance or processing costs in order to reflect the competitive nature of the biomass
supply business. The range of the LCOE across five candidate locations was the lowest
for sugarcane leaves and tops ($0.067–$0.072 USD/kWh) and the highest for rubber tree
root ($0.085–$0.090 USD/kWh). The results clearly indicate that the management of fuel
supply, both amount and cost, is an important key parameter to ensure the sustainability of
the CSBPP project and to minimize LCOE. When planning a CSBPP project, the seasonal
availability of biomass, as shown in Figures S1–S5 in the Supplementary File, should be
taken into consideration.
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4. Conclusions
In this study, the optimal site locations for Community-Scale Biomass Power Plants

(CSBPPs) in the EEC region of Thailand and their respective LCOEs were obtained using a
two-phase model by optimization based on geospatial-based MCDM and AHP method
followed by the location–allocation Model. Phase I involved biomass residue supply
assessment, land suitability criteria prioritization and suitable land area analysis. The
highly suitable land area from Phase I was then used as one of the important inputs for the
location–allocation model in Phase II. The optimal locations of CSBPPs were selected based
on the availability (remaining) of local crop residues, electricity demand, road network and
other key criteria for power plant development, such as the location of substations and the
location of existing power plants.

The results show that the estimated total remaining crop residue potential in the EEC
region was 2403 kt/year, with sugarcane residues being the highest priority feedstock,
followed by residues from rice, oil palm, cassava, and para rubber, and the total energy
potential from these crop residues was approximately 34,156 TJ. Five optimal locations for
CSBPPs were identified, including Thap Ma (Rayong), Thang Kwian (Rayong), Na Chom
Thian (Chonburi), Na Pa (Chonburi), and Bang Tin Pet (Chachoengsao). The total required
installed capacity of these five locations was approximately 100.23 MW in order to serve
the district energy demand by the residential sector of 793.82 million (kWh/year).

Assuming direct combustion-steam turbine technology with an installed capacity of
6–10 MW, the average LCOE was found to be in a range of $0.076 to $0.081 USD/kWh.
The sensitivity analysis clearly indicates that the management of fuel supply, both amount
and cost, is an important key parameter to ensure sustainability of the CSBPP project and
to minimize LCOE. When planning a CSBPP project, the seasonal availability of biomass
should be taken into consideration.

The spatial decision support tools and location optimization model based on the
ArcGIS Pro platform developed in this study can be applied to other regions facing similar
challenges. However, modification or selection of the main and sub-criteria to align with
specific geophysical conditions, other local contexts, and community priorities will be
necessary to achieve a suitable location for the CSBPP facility.



Energies 2025, 18, 520 14 of 16

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/en18030520/s1, Figures S1–S5: Spatial and temporal infor-
mation of biomass potential resources based on feedstock supply types in five potential locations.
Figure S6 Spatial layer import facility types and demand point input dataset for the Location-
Allocation model. Table S1. Inputs for cost-specific characteristics of selected CSBPPs.
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