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Abstract

Turbidity is a key indicator of water quality and has significant impacts on underwater light availability
of lakes. But the spatiotemporal variability of turbidity, which is important for understanding
comprehensive changes in the water quality and status of aquatic ecosystems, remains unclear on a
global scale. In this study, the spatial distribution pattern, seasonal variability, spatiotemporal
variability, and influencing factors of turbidity in 774 lakes worldwide have been investigated using the
turbidity product of Copernicus Global Land Service (CGLS) derived from Sentinel-3 OLCI. We
found that 63.4% oflakes show low turbidity (< 5 Nephelometric Turbidity Units). The ranking of
turbidity by climate zone is as follows: arid climate > tropical climate > temperate climate ~ polar
climate > cold climate. Turbidity decreased significantly in 40% of studied lakes, and increased
significantly in 32% lakes. The lake with low turbidity has less seasonal variation, and there is a large
seasonal variation in lake turbidity in the tropical and polar climate zones of Northern Hemisphere.
Positive covariates to turbidity of global lakes include wind speed of lake, slope, surface runoff, and
population in the catchment. Conversely, negative covariates include lake area, volume, discharge,
inflow of lake, and GDP. Abundant water volume, favorable flow conditions, and more financial
investments in lake management can help to reduce turbidity. These findings highlight the
spatiotemporal changes of global lake turbidity and underlying mechanisms in controlling the
variability, providing valuable insights for future lake water quality management.

1. Introduction

Climate change has caused a variety of extreme weather events and other climatic phenomena. The global
annual mean temperatures from 2015 to 2022 were the eight warmest on record despite the cooling impact of a
LaNina event [1]. These changes have led to strong responses in global lake ecosystems [2—4]. For example, a
pervasive and rapid warming was observed in global lake summer surface water temperatures [5, 6]; 53% of
global lake water storage decreased statistically significantly over the period 1992-2020 [7]; the storage returns of
global reservoir decreased except for those in North America, Europe and Siberia during 1999-2018 [8]; and
total suspended sediments (T'SS) have decreased in most lakes of the Middle and Lower Yangtze River basin over

© 2025 The Author(s). Published by IOP Publishing Ltd
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the period 2000-2014 [9]. Healthy aquatic ecosystems are crucial for sustaining biodiversity of water bodies,
safeguarding our drinking water resources, and supporting human well-being [10-12].

Turbidity is a key indicator of water clarity [13, 14], and it is a measurement of diffuse attenuation or side
scattering at NIR (Near Infrared) wavelength [15]. Attenuation is the sum of NIR scattering and NIR absorption,
reduced underwater light availability at depth, and it is largely a proxy of particle scattering and concentration
since NIR absorption of pigments and CDOM is low. Turbidity can be measured by two approaches,
nephelometry and turbidimetry, for low and high turbidity levels, respectively [15]. Increasing turbidity reduces
water clarity for transmitted light, facilitating the thermal stratification of the lake [16], further altering the lake
mixing regime together with the increasing air temperature, and the in-lake biogeochemical process [17, 18].
Therefore, it is of significance to reveal how changes in aquatic ecosystems respond to climate change and the
major driving factors.

Turbidity, total suspended matter (TSM), and transparency are closely related water quality properties [9],
because all of them are tightly related to the scattering of suspended particles. Accordingly, turbidity is directly
correlated with TSM [19-21]. High concentrations of TSM (such as suspended sediment, phytoplankton,
allochthonous organic particles (e.g. plant debris)) typically indicates a higher turbidity and lower water
transparency [22, 23]. Turbidity can be influenced by natural factors (climate, hydrology, geography, lake
specific properties, etc) [17] and human activities (domestic and industrial wastewater discharge, agricultural
fertilizer application, land use change, etc) [24—26]. Many studies have shown that the turbidity in shallow lakes
is more likely to increase with the increase of lake wind under the process of sediment re-suspension [9, 27, 28].
Previous analyses in China [22, 29, 30], Minnesota of the USA [31], and southern Canada [26] have shown that
deeper lakes generally have lower turbidity compared to shallow lakes. However, lake depth and wind can not
completely dominate the fate of lake turbidity. For example, the high water clarity of shallow lakes in the Eastern
China Plain in summer was highly related to low TSM as the strong precipitation and weak sediment
resuspension, while low water clarity of deep lakes in the western China plateau was highly related to
chlorophyll-a due to the intense phytoplankton growth under the high temperature in summer [22]. Also, as the
decrease in wind speed [14], and long-term increase in vegetation coverage within the catchment, e.g., most
lakes in northeast China have exhibited a statistically significant decrease in lake turbidity [32]. Therefore, the
response of lake turbidity to natural factors and human activities demonstrates a high degree of regional
heterogeneity and complex dynamic mechanisms, and current research on the dynamic patterns of turbidity
and influencing factors across global lakes remains relatively limited.

In recent years, Sentinel satellites (such as Sentinel-1, Sentinel-2, and Sentinel-3) [33], MODIS and Landsat
satellite data have been widely used for assessments of lake water quality, including Secchi Disk Depth
[22,34,35],SPM[9, 29, 36], and turbidity [ 14, 37, 38]. For example, surface water temperature and total
phosphorus were found as the important factors in explaining the variability of lake turbidity between 2002 and
2012 in European [37]. The increase in turbidity of Tonle Sap Lake in the lower Mekong River during 2004-2021
was more significantly influenced by human activities [38]. However, these previous studies primarily focused
on individual lakes or regional lake, and few studies conducted comprehensive investigation on revealing the
spatiotemporal variability of lake turbidity response to climate-geography-hydrology-human interaction
influences on a global scale. In this study, we close this research gap and detect the spatiotemporal variability of
global lakes from January 2017 to December 2022 by utilizing remotely sensing water turbidity of 774 lakes
worldwide from the Copernicus Global Land Service (CGLS), which is based on 300 m resolution Sentinel-3
satellite data and aggregated in 10-day averages. The non-parametric Mann-Kendall [39—41] and Sen’s slope
[42] analysis methods were used to analyze the spatial distribution pattern, seasonal variability, spatiotemporal
variability of turbidity in different types of lakes (natural lakes /reservoirs, deep / shallow lakes, and climate
classes), and then correlation analysis and general linear model (GLM) were used to reveal the influencing
factors. This study provides important information to understand the dynamics of turbidity of global lakes.

2. Materials and methods

2.1.Data sources and data processing

The Copernicus Global Land Service (CGLS, https://land.copernicus.eu/global /) provides different water
quality products for lakes and reservoirs in the whole world. Turbidity is available in 10-day averaged 300 m
raster data for the periods between 2002 to 2012, based on Envisat MERIS, and for 2016 to present, based on
Sentinel-3 OLCI. The version 1 products of CGLS consist of data for 1015 lakes. The products are processed
using the Calimnos processing chain [43]. They are based on a combination of algorithms for TSM retrieval
[44—46] which apply suitable spectral bands for a priori estimated optical water types [47]. The TSM estimates
obtained in such manner are then converted to turbidity (conversion factor of 1.17 NTU/gm > as formulated
by [19,20]).
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The water quality data derived from Envisat MERIS (2002—2012) of CGLS have been extensively used in
previous studies and showed reliability [37, 38, 48, 49]. These analyses derived from the CGLS have shown that
the Calimnos processing chain can be applied to both sensors, Envisat MERIS (2002—-2012), and Sentinel-3 OLCI
(2016-present) [50]. The further optimized Calimnos v2 was applied to Sentinel-3 OLCI (2016 - present), and a
new Lake Ice Cover algorithm was used to get more accurate ice masking and water surface [50]. The validation
results (9 lakes were included) in the CGLS quality assessment report [51] show the lake water turbidity derived
from Sentinel-3 OLCI (2016 - present) performed well, and consistency between Sentinel-3 OLCI turbidity and
observations is high between years (2016-2019), indicating the suitability of the Sentinel-3 OLCI for detecting
spatiotemporal changes of turbidity. We also performed cross validation with remote-sensed Forel-Ule Index
(FUI) [52], highly related to turbidity [30]. The results showed that the R of linear regression model between FUI
and turbidity in 41.1% available lakes was > 0.45 (99/241 lakes), the Rin 36.1% lakes was > 0.5, and the R in
14.1% lakes was > 0.7 (figures S1, S2, and table S1). This cross validation further confirms the reliability of the
turbidity data.

In this study, lake-wise spatial aggregation of the 10-day raster data was carried out with the same Python
scripts used by [48]. It iteratively runs the operator StatsOp in ESA’s SNAP toolbox [53] for the lake shapefiles
provided by CGLS, and extracts the spatial median value from the CGLS turbidity raster data for all analysis in
this study. Of the 1,015 lakes, we excluded 271 lakes which have no data for more than 30% of the time series,
and time points were filtered out if less than 50% of the lake’s surface was visible for any given 10-day period. For
the data gaps resulting from ice or cloud coverage, we fill in the data gaps in the time series using a bootstrapping
approach inside a 1-year-long moving window centered around the date of interest [48]. Finally, the monthly
turbidity time series of 774 lakes, from January 2017 to December 2022, were used in this study.

Raster data of potential covariates (see table S2) were extracted in a similar manner. In extracting the spatial
average value of covariates in the lake catchment, we prepared the drainage catchments of lakes using the
HydroATLAS dataset [54, 55] and lake boundaries from CGLS. The HydroLAKES database [56] was used to
verify and correct some erroneous CGLS polygons. The covariates considered in this study include: lake
attributes (geographical coordinates, lake area, lake depth, slope, lake type, etc) from the HydroLAKES,
meteorological data (temperature, precipitation, surface runoff, wind speed, etc) from the ERA5-land dataset
[57], the global population from the Gridded Population of the World (GPW) version 4 [58], gross domestic
product (GDP) from the Gridded global datasets for Gross Domestic Product [59]. Furthermore, the Képpen-
Geiger climate classification [60] was used. A full description and data sources of the covariates are described in
table S2 section of Supplementary Information.

According to the guidelines for drinking water quality of the World Health Organization (WHO), the water
turbidity should be below 1 NTU for drinking purpose and not exceed 5 NTU for other consumption purposes
[23]. The average turbidity of global 774 lakes between January 2017 and December 2022 was divided into two
groups (low turbidity: < 5 NTU, and high turbidity: > 5 NTU). Meanwhile, considering that a large number of
lakes in Canada in this study (with low values) and water quality guidelines for the protection of aquatic life
based on Canadian council of ministers of the environment (CCME), lake average turbidity in figure S1 was
further divided into 6 categories (0~1, 1~2,2~5, 5~10, 10~15, >15 NTU). Furthermore, lake types (natural
lake or reservoir) were reported as important influencing factors for lake water storage [7]. Turbidity differences
between natural lakes and reservoirs, as well as between deep and shallow lakes [22, 29, 30] were also analyzed.
The sources of guidelines are described in the Methods section of Supplementary Information.

2.2. Time series analysis

To eliminate the impact of monthly seasonal cycles on all the variables (turbidity and other covariates), the
seasonal-trend decomposition procedure based on Loess (STL) method was used. This method, widely used in
the time-related data analysis [61, 62], can decompose time series into three component sub-series: seasonal,
trend, and residual:

Yl‘:E+St+Rt 1

where Y} is the observed value at the date t; T; is the trend component (hereafter referred to as TC-STL); S, is the
seasonal component; R; is the residual component which represents the remaining variation beyond seasonal
and trend components. Therefore, the time series in this study includes the raw time series of turbidity, and the
TC-STL of all variables.

Afterwards, Sen’s slope analysis method [42] was used to estimate the change in slope of the time series (T'C-
STL and raw time series). The Z statistics from non-parametric Mann-Kendall (hereafter referred to as M-K test)
were used to detect the significance of changes of the time series. There is no statistically significant change in
variable time series when the IZI < 1.96 (significance level o = 0.05); otherwise, the change in variable time series
is statistically significant at significance levels. Negative values of Z indicate decreasing trends in variable time
series, whereas positive value indicates upward trends.
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2.3. Statistical analysis

For the analysis of lake turbidity with reference to lake types and proprieties, climate regions, and social
perspectives, we used correlation analysis and multiple general linear model (GLM). We calculated the Pearson
correlation coefficient to identify the linear relationships between Z value of turbidity obtained from M-K test
and various covariates considering different lake conditions. The p-value (2-tailed significance test) and Pearson
correlation coefficient for each covariate were also used to indicate the strength and direction (positive or
negative) of the relationship. The influence of the covariate on Z value of turbidity is statistically significant when
p-value of the Pearson correlation coefficient is less than 0.05.

The possible covariates and drivers of lake turbidity include precipitation, temperature, runoff, wind speed,
lake water storage, lake depth, and anthropogenic activities, etc. Referring to the statistical analysis of Gilarranz
etal (2022) [48], we chose GLM, which was commonly used in studying the driving factors of water quality
[29, 63, 64], and used the binary values (1 or 0) for the response variables to analyze the variability of global lake
turbidity. Before using the GLM, all explanatory variables were scaled, and were log-transformed when
necessary to normalize the data. This process helps deal with the nonlinear effect [65]. Three GLMs, considering
abinomial distribution, were applied to assess the relationship between these covariates and drivers, and the
temporal variation of turbidity. In the three GLMs, the response variable was set to either 1 (significant increase
in lake turbidity) or 0 (significant decrease) in GLM 1; the response variable was either 1 (significant increase in
lake turbidity) or 0 (nonsignificant increase) in GLM 2; and the response variable was either 1 (significant
decrease in lake turbidity) or 0 (nonsignificant decrease) in GLM 3. Through these three models, we can
determine the contribution and direction of each driving factor to the lake turbidity under the scenarios of
significant increase/decrease (GLM 1), significant/non-significant increase (GLM 2), and significant/non-
significant decrease (GLM 3). We conducted variable selection that when the correlation coefficient between the
original explanatory variables is greater than 0.5, one of the two is deleted to avoid the strong multicollinearity
[66], and the remaining variables were scaled so that the effect sizes are comparable. The final selected models
were fitted to the data by maximizing log-likelihood. The final used variables are shown in ST appendix. All the
analyses were performed with R 4.1.2. It should be noted that turbidity and other variables in these statistical
analyses used the TC-STL of these variables.

3. Results

3.1. Spatial difference of average turbidity in global lakes

We found that the average turbidity in 63.4% of the studied lakes was below 5 NTU over the period January 2017
and December 2022 (figure 1), which is suitable for diverse consumption regarding the lake turbidity
requirements of WHO [23]. Lake turbidity below 1 NTU (drinking water requirements) was observed in only
7.5% of the studied lakes, and almost all of which are deep and large lakes (figures S3, S4). Figure S5 shows the
spatial distribution of lake area (a) and water depth (b) of 774 lakes worldwide. Specially, two-thirds (63.4%) of
lakes with low turbidity (< 5 NTU) are deep lake (average lake depth greater than 10 m), while more than 70% of
lakes with high turbidity (> 5 NTU) are shallow lakes. Turbidity in shallow lakes is significantly higher than that
of deep lakes, which have lower variabilities in deep lakes (figure 1(e)). Interestingly, statistically significant
differences in turbidity were found between natural lakes with different water depths and lake sizes, but were not
observed in different reservoirs (figure S6). The turbidity in deep natural lakes is significantly lower than that of
all reservoirs, while the turbidity in shallow natural lakes is the opposite. In addition, the turbidity in small
natural lakes is significantly higher than that of large natural lakes and reservoirs (figures S4, S6), while the
difference with that of small reservoirs is not significant. The condition of large natural lakes is also the opposite.
The lake turbidity in arid climate (the Képpen-Geiger B climate classification) is significantly higher than that of
others, while lakes of cold climate (D) had significantly lower turbidity as well as lower variability. The ranking of
turbidity by climate zone is as follows: B (arid climate) > A (tropical climate) > C (temperate climate) ~ E (polar
climate) > D (cold climate). Spatially, lakes in North America, Europe, and Tibetan Plateau are dominated by
low turbidity, while African lakes are dominated by high turbidity (> 15 NTU, figure S3), although some low
turbidity levels in lakes are observed in the west branch of Rift Valley in Africa. Furthermore, we found that lakes
over Bolivia, Kazakhstan, and the eastern China had predominantly medium turbidity (5 ~ 15 NTU, figure S3).

3.2. Seasonal variability in global lake turbidity

We found that the seasonal variation of lake turbidity in E climate zone of the Northern Hemisphere is the
largest, followed by the A climate zone and the C climate zone of Northern Hemisphere (figure 2). In terms of
continents, lakes with low multi-year average turbidity have small seasonal variations (figure S7), such as North
America, Europe, and Southeast Asia, while lakes with high multi-year average turbidity have large seasonal
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Figure 1. Global patterns of turbidity in 774 lakes (natural lake and reservoir) between January 2017 and December 2022. (a). The
spatial distribution of monthly average turbidity, lakes are colored by two turbidity levels (low turbidity: < 5 NTU, high turbidity: > 5
NTU) and two lake depth types (shallow lakes: < 10 m, deep lakes: > 10 m). Each point represents one center of the 774 lakes. Colors
of land illustrate the dominant climate classes in Kdppen-Geiger climate classification [60] (tropical climate (A), arid climate (B),
temperate climate (C), cold climate (D), polar climate (E)). b ~ c: Lake average turbidity across different longitudes and latitudes are
summarized. d: The percentage of specific-colored lakes in total lakes studied. e ~ f: The differences of lake turbidity across different
lake depth, lake type (natural lake or reservoir), and the Képpen-Geiger climate classification. 2-sample test (wilcox.test) was used for
data comparison, illustrating with several degrees of statistical significance (NS: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

g~ h: The nonlinear relationship between log-transformed lake turbidity, lake area (g), and lake mean depth (h). The colors of data
points correspond to the different lake depth (g), and lake type (h). The figure was created using R 4.1.2.

variations, such as West Africa, East Africa, and Central Asia. In addition, the seasonal variation of lake turbidity
in South Asia is very significant, followed by lakes in South America and East Asia.

We further mapped the seasonal turbidity distribution of global lakes over 2017 to 2022 (figure S8), and
compared the seasonal changes of lake turbidity in different years (figure S9). Similar to the results of the box
plot (figure S7), we found that there was no obvious seasonal change in lakes in North America and Europe.
Compared with spring (figure S9), the turbidity of lakes, in Africa, South America and India, increased
significantly in summer, and decreased significantly in winter. Differently, the turbidity of lakes in the Tibet
Plateau decreased significantly in autumn, while increased significantly in winter. Meanwhile, an interannual
variation in lake turbidity in different seasons also was observed (figure S10). Compared with the turbidity in
2017, we found that, most lakes in North America and Northern Europe showed a significant increase of
turbidity in the spring, summer, and winter of 2018—2019. Also, the spring turbidity of lakes in the Tibet Plateau
increased significantly since 2020, while the winter turbidity increased since 2017. The turbidity of lakes in all
seasons in African and Oceania, generally decreased year by year since 2017. The summer turbidity of lakes in the
Amazon River Basin increased significantly in 2020 and 2022. The summer turbidity of lakes in Indian increased
since 2017, the autumn turbidity increased significantly in 2019, and the winter lakes decreased since 2017. The
turbidity of lakes in eastern China, in summer and autumn, generally increased in 2021-2022.

3.3. Spatiotemporal variability in global lake turbidity

Based on the raw monthly turbidity data, 198 lakes show a statistically significant decrease, and 163 lakes show a
statistically significant increase for the period of January 2017 to December 2022 (figure S11(a)). However, from
the results of the M-K test, we found that removing monthly seasonal cycles from raw time series of lake
turbidity using STL helps identify more accurate changes, as has been reported in other studies [67, 68]. After the
seasonal cycle was removed, we found that 310 lakes show a statistically significant decrease between 2017 to
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Figure 2. Seasonal variability of monthly turbidity among different climate classes in global 774 lakes (Northern hemisphere (a), and
Southern Hemisphere (b)). Northern Hemisphere: March to May is spring, June to August is summer, September to November is
autumn, December to February is winter; Southern Hemisphere: March to May is autumn, June to August is winter, September to
November is spring, December to February is summer.

2022, and 248 lakes show a statistically significant increase (figure 3). The results confirm that the removal of
seasonal cycle strengthens the identification of temporal variation. There is a higher probability of misjudgment
in the M-K test including seasonal cycles when the change rate in lake turbidity is small, e.g., for the change rate
ranges from —0.01 to 0.01 (figures S11(c) ~ (d)). Especially, the M-K test with seasonal cycles exhibited the
highest rate of misjudgment in lake turbidity in the United States (31/78 lakes) (figures S11(a) ~ (b)). Therefore,
this study mainly analyzes the temporal variation of lake turbidity without monthly seasonal cycle, that is, the
change rate of TC-STL oflake turbidity.

The lakes in Northeast America and East Africa are clustered with a significant decrease in lake turbidity
(figure 3). For specific countries, Canada has the highest number of lakes with a significant decrease in turbidity
(65/150 lakes) in the world, while China has the highest number of lakes with a significant increase in turbidity
of our studied lakes (46 /111 lakes). Furthermore, particular concerns are the hotspots with medium and high
average turbidity, such as Bolivia, Kazakhstan, and eastern China, which also show a significant increase in
turbidity (figures 1, 3, S12). There are significant differences for lake turbidity changes in different climate
regions, especially the cold climate (D), tropical climate (A), and polar climate (E) (figure 3(d)). As shown by
figures S13 and 3(¢), significant increases in turbidity are observed in lakes with low average turbidity (2 ~ 5
NTU) in tropical climate, while decrease in turbidity are observed in some lakes with high average turbidity (> 5
NTU). Meanwhile, significant decreases in turbidity are observed in most lakes in cold climate except for the
lakes with super high average turbidity (> 15 NTU), and significant increases in lake turbidity are observed in
most lakes in polar climate except for several lakes with low average turbidity (< 2 NTU). As shown in figure S14,
nearly all the studied lakes in polar climate are located on the Tibetan plateau. Unlike the average turbidity of
global lakes, which is mainly affected by lake depths, the temporal variation of global lakes is mainly affected by
lake sizes. As shown in figures S15 and S16, we found that the turbidity in large lakes decreased significantly,
while the turbidity in small lakes increased significantly. No significant difference was observed between the
turbidity changes of lakes with different depths, but there was a strong significant difference between the
significant decrease in turbidity in shallow large lakes and the turbidity changes in deep small lakes.
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Figure 3. Results of M-K test in lake turbidity time series. a: The spatial distribution of Z value of lake turbidity. Significant decreases in
lake turbidity are shown in light blue (40.1% of 774 lakes), while non-significant decreases are shown in blue (12.4%). Non-significant
increases in lake turbidity are shown in orange (15.5%), while significant increases are red (32%). The inserted subplot b shows the
histogram oflakes with four types of turbidity changes. Here, turbidity refer to the TC-STL of lake turbidity. Z values of lake turbidity
are estimated by the M-K test, and constructed on a critical value of +:1.96 (p < 0.05). c: The differences of lake turbidity (average
turbidity) across four types of turbidity changes. d: The differences of Z value of lake turbidity across main Képpen-Geiger climate
classification. The test method in boxplots for data comparison and the symbols indicating statistical significance are same as figure 1.
The meaning of the points and the colors of the land on the map are the same as in figure 1.

3.4. Relationships between lake turbidity changes and other factors

Figure 4 features the bivariate maps based on the Z values of the M-K test for turbidity, precipitation, and air
temperature over the period between JanuarOy 2017 and December 2022. These maps indicate that the lakes,
around the Great Lakes and the reservoirs in eastern Canada, show a significant increase in air temperature with
significantly decreasing precipitation and turbidity figure S17). Other hotspots are the Nile basin and the east
branch of the Rift Valley in Africa with significant decreasing of precipitation, temperature and turbidity.
Furthermore, particular concern hotspots with relatively high turbidity and significant increases in lake
turbidity, such as Bolivia and Kazakhstan, presented a significant increase in temperature and significant
decrease in precipitation.

We further combined the results of correlation analysis and GLMs to examine the relationship between lake
turbidity changes and other factors (table S3 and figure 5). In addition to latitude, the other significant factors
can be broadly grouped into three categories: hydroclimatic factors (temperature, runoff, and wind speed),
catchment and lake properties (slope of catchment, lake area and inflow), and socio-economic factors
(population and GDP). A robust and significant negative relationship is observed between latitudes and Z value
of turbidity in GLM 1 and GLM 2 (figure 5). This indicates that the higher latitudes of lakes decreased the
probability of a lake experiencing a significant increase in turbidity. Meanwhile, the results of the correlation
analysis also show the same relationship (table S3).

For hydroclimatic factors, the Z values of wind speed in GLM 1 has a statistically significant positive effect on
lake turbidity, indicating that wind speed in the catchment increases the probability of a lake experiencing a
significant increase in turbidity. Similar condition is also observed in the shallow natural lakes of the correlation
analysis results (table S3). In addition, a significant and negative relationship between temperature and Z value of
turbidity (figure 5) may suggest that the turbidity of lakes with higher monthly mean temperature is more likely
to decrease significantly, while that of lakes with lower monthly mean temperature is more likely to increase
significantly, except for the global shallow reservoirs (table S3). This may be due to the significant increase of
turbidity in many lakes located in the cold region (Central Canada and the E climate zone), and the significant
decrease of lake turbidity in the African Rift Valley (hot region) (figures 3, S18). However, there is a robust
positive influence on the increase of lake turbidity from surface runoff in the catchment, while total runoff
presents a robust negative influence on increasing lake turbidity (figure 5).
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Figure 5. Factors affecting the turbidity change based on the multiple general linear models. These are three multiple general linear
models (GLM) using a binomial distribution. The response variable is either 1 (significant increase in turbidity) or 0 (significant
decrease) in GLM 1; the response variable is either 1 (significant increase in turbidity) or 0 (nonsignificant increase) in GLM 2; and the
response variable is either 1 (significant decrease in turbidity) or 0 (nonsignificant decrease) in GLM 3. Red factors represent positive
effects, while blue factors represent negative effects. Effect significance factor is denoted by an asterisk, where ‘ means p < 0.1,

p <0.05,""p <0.01,and ™" p < 0.001. In particular, after the non-significant variables were deleted one by one, except for
temperature and low vegetation LAl in GLM 1, other significant variables were still significant in the final models. Z values of all
variable are estimated by the M-K test, and constructed on a critical value of £1.96 (p < 0.05). More detailed meanings of factors, used
in GLM and figure 5, are given in table S2.

The catchment and lake properties, such as water storage volume, lake inflow, lake discharge, catchment
area, and lake area have a consistent and significant positive effect on the decrease in turbidity (table S3). To be
clear here that the correlation between lake area and catchment area is extremely high (Pearson correlation
coefficient > 0.6). On the contrary, a robust positive influence on the increase of lake turbidity from the average
slope within 100 m around the lake was observed as well.

For the socio-economic drivers, population density within the catchment is significantly positively
correlated to lake turbidity, while the average GDP in the catchment has a significant effect on decreased that
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probability. In other words, wealthier areas tend to have a higher probability of significant decreases in lake
turbidity, possibly due to more effective water environmental management strategies to improve water
quality [48].

In addition, we further conducted Pearson correlation analysis between lake turbidity and factors in
different climate classes (table S4). We first found some similar relationship to the results of GLM on global
lakes. For example, we found that the catchment and lake properties, such as water volume, and lake area, have a
consistent positive effect on the decrease in turbidity in the lakes of different climate classes, and lake depth (table
S4). In terms of runoff, the relationship between total runoff and deep lake turbidity in D climate class, surface
runoff and shallow lake turbidity in D climate class and lake turbidity in basin 161 in E climate zone is consistent
with GLM. Also, the relationship between GDP and deep lake turbidity in C climate class, vegetation index and
all lake turbidity in A climate class, total lake wind speed and shallow lake turbidity in D climate class is
consistent with GLM.

However, the relationship between lake turbidity and precipitation and temperature is different among
different climate classes. For example, a strong positive correlation between temperature and the turbidity of
deep lakes in A climate class, while a negative correlation between temperature and the turbidity of all lakes in C
climate class and deep lakes in D climate class. A positive correlation between precipitation and turbidity of
shallow lakes in C climate class, but a strong negative correlation between precipitation and turbidity of deep
lakes in D climate class. Meanwhile, we also found that the relationship between lake turbidity and horizontal
wind speed and vertical wind speed is different among different climate classes. GDP has a positive effect on
turbidity of deep lakes in A climate class. Besides, there is a significant positive correlation between trophic and
turbidity of all lakes in D climate class.

4. Discussion

Our study, for the first time, provides a comprehensive assessment of the spatiotemporal variability in lake
turbidity on a global scale. Our findings on lake turbidity with different depths are consistent with previous
studies [26, 30, 31] that the average turbidity in global shallow lakes is significantly higher than that of deep lakes,
mainly due to the wind and sediment resuspension [9, 27, 28]. We found the turbidity of deep natural lakes is
significantly lower than that of all reservoirs, while the opposite is true for shallow natural lakes. The widespread
low average turbidity was found for more than 60% lakes, and most of them are located in North America,
Tibetan Plateau, and Europe [30]. The low average lake turbidity in the first two regions may be explained by the
increased water depth result from the historical increased water storage [22, 69, 70].

By mapping the Z values of turbidity in global lakes from 2017 to 2022, we found a significant latitudinal
difference in turbidity of global lakes (figures 3, 5, and table S3), which is most likely caused by hydroclimatic
drivers as the opposite changes in lake turbidity between tropical climate, polar climate, and cold climate
(figure 3(d)). The same phenomenon has also been observed in studies about water clarity [34]. Our findings
suggest that the variability in lake turbidity observed in cold climate zones (D) is significantly likely related to the
widespread warming (figures 4, S15), increased wind speed, decreased precipitation, and decreased total runoff
in the region (figure S19) [71, 72]. On the other hand, the observed increase of lake turbidity in tropical climate
(A) is correlated to increased temperature and phytoplankton growth, and most of them had positive
correlations with temperature and LAI (table S4). Previous studies indicate that, as the global warming, the
intensity of algal blooms is increasing rapidly in Africa [22, 73], and the proportion of algal bloom outbreaks in
tropical lakes is the highest in the past 20 years [70]. Moreover, high precipitation and decomposition of large
amounts of organic litter in tropical rainforests [74] may lead to increased turbidity in lakes due to the
runoff [75].

One major difference from the results of other studies [22, 29, 30, 34] is that the turbidity of lakes in the Tibet
Plateau in this study is rising. The discrepancies may be due to the different lakes studied and the different time
periods between previous studies and this study. We found that the seasonal and temporal variation was very
similar based comparison of the lake turbidity of CGLS in Tibet Plateau with the FUI in Wang et al (2021) [52]
during 2016-2018 (figure S2). Also, the seasonal variation (figures S2, S9) was similar with the study of Mi e al
(2019) [76]. The observed increase of lake turbidity had positive correlations with vertical wind speed, average
turbidity and Z value of total runoff of catchment (table S4). Lakes, in Tibet Plateau and polar climate (E), greatly
affected by sediments brought by glacial meltwater, have seen a significant increase in lake turbidity, specially in
winter and spring (figure S10), due to increased temperature, glacier meltwater, runoff, and sediment during the
hottest eight years (https://wmo.int/news/media-centre/eight-warmest-years-record-witness-upsurge-
climate-change-impacts) from 2017 to 2022. It was indicated that sediments carried by meltwater would
increase the lake turbidity in Tibet Plateau, such as the Lake Silingco [76]. Also, lake warmer, which favors
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phytoplankton growth, may be another primary factor controlling the increase of turbidity for lakes, which has
been identified in plateau of western China [22, 73].

Furthermore, our study finds that the increase in lake turbidity is significantly likely related to slope and
surface runoff. The catchment with higher slope and stronger surface runoff intensity will cause stronger soil
erosion and more suspended matter, resulting in an increase in lake turbidity [77, 78]. The slope and surface
runoffin the catchment increased the probability of a lake experiencing an increase in lake turbidity, while lake
area, flow condition (discharge, inflow, total runoff), water storage of lake largely significantly decreased that
probability. This finding is also consistent with the results of study in Canada [26], China [29], and Lake Toshka
in Egypt [79]. The significant decrease in turbidity in many lakes over the east branch of Rift Valley in Africa,
with the relatively small lake area, large lake depth and high average turbidity (> 15 NTU, figure S3), is primarily
attributed to the increase in water storage [69, 70] and the high total runoff (figure S19). The dilution effect from
large total runoff on lake turbidity is obvious at the global scale.

For the socio-economic drivers, our findings indicates that the increases in lake turbidity will become more
common as the increasing population in the catchment, but are expected to decrease significantly as increase in
per capita GDP [48]. This may be because of the improvement of water quality after water environment
treatment with high investment, such as Lake Apopka in US (https://lake.wateratlas.usf.edu/waterbodies/
lakes/7800/) [80], Lake Dianchi and Lake Taiin China [29]. However, we also found that the influence of GDP
on lake turbidity in A climate class is positive (table S4). This may be caused by the imbalance between economic
development and environmental protection in underdeveloped areas, as demonstrated in the environmental
Kuznets curve (EKC) theory [81, 82]. In contrast to previous findings [22, 29], our findings suggest that increases
in lake turbidity in China are more extensive over the period (2017-2022), although we confirm there is a
significant decrease in lake turbidity in several lakes with severe eutrophication, such as Lake Dianchi and Lake
Tai. This contrast indicates that the difference in results is most likely due to the different study periods [7] and
the extreme heat in China in 2022 [83].

This global-scale attribution of lake turbidity change has important implications for water resources
management, water security, and other benefits for humanity and ecosystems. Particularly, it is necessary to
focus on the lakes with relatively high average turbidity and significant increasing turbidity such as those in
Bolivia, Kazakhstan, and eastern China. In Kazakhstan, where the GDP is relatively low compared with the
developed countries, there is a significant increase in temperature and a significant decrease in precipitation,
probably leading to an increase in lake turbidity in the future. The issue about water resources management in
Central Asian countries is multifaceted, complex, and closely related to agricultural activities. To restore and
maintain healthy water environments for lakes will require prolonged and comprehensive strategies [84].
Moreover, despite the relatively higher GDP in eastern China, stronger lake management efforts still are
necessary in the future to maintain ecosystem health [35] due to the region’s large population density and
extensive pollutant retention in lakes.

This research reveals the spatial distribution of average monthly turbidity in global lakes, analyzes the
seasonal variability, and spatiotemporal variability of lakes turbidity, and highlights the relationship between
variability of lakes turbidity and other factors, such as hydroclimatic conditions, catchment characteristics, lake
properties, and socio-economic factors. Although there are some limitations in the study, especially length of the
time series, satellite observations provide near real-time, high-resolution data for monitoring the lake turbidity
on a global scale. Another limitation is related to lake water boundaries (maximum water extent observed), the
identification of shallow water areas, and lake ice detection in CGLS. For the lake turbidity in CGLS before 2020,
we found that many pixels near the lake boundaries showed extremely large values during the freezing period.
This may be because lake turbidity in CGLS in the period 2016-2019 generated using Calimnos processing chain
v1.3.0 applied a static, incomplete, ice mask, and ice masking performed nominally [43]. But lake turbidity in
CGLS after 2020 was produced by Calimnos processing chain v1.4.0, which differs from v1.3.0 with improved
lake ice detection. Therefore, in this study, lake turbidity when the visibility of the lake surface was less than 50%
of lake water boundaries due to lake ice or cloud cover were deleted during data preprocessing to reduce data
errors caused by the above limitation. Overall, our results highlight the importance of different factors and
underlying mechanisms in the spatiotemporal variability of global lake turbidity, providing valuable insights for
future lake water quality management. Future studies should combine more field monitoring data and used
nonlinear regression, such as Random Forest, to improve the ability of understanding the causality between lake
turbidity and different factors.

5. Conclusion

We analyzed the spatiotemporal patterns of turbidity in 774 large lakes in the world. The average turbidity in
63.4% of the studied lakes was below 5 NTU. The ranking of turbidity by climate zone is as follows: B > A > C ~
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E > D. For natural lakes, the turbidity in shallow (small) lakes is significantly higher than that of deep (large)
lakes. There is a large seasonal variation in lake turbidity in the E & A climate zone in Northern Hemisphere.
While the lakes with low turbidity have less seasonal variation, such as North America, and Europe. The
turbidity decreased significantly in 40% of studied lakes, and increased significantly in 32% lakes. The key
factors, with a positive correlation to turbidity, include slope, surface runoff, wind speed, and population, while
anegative correlation is observed between turbidity and lake area, volume, flow conditions, and GDP. However,
the effects of some specific factors, such as precipitation, temperature, and GDP, are different for the turbidity in
different classes of lakes. This study suggests the important potential processes for spatiotemporal variability in
global lakes turbidity include hydrological process, soil erosion, sediment transport and re-suspension process.

High water level, good flow conditions, and more financial investments in lake management can help to reduce
lake turbidity.

Acknowledgments

We are grateful to Dr Yuanyuan Huang from Institute of Geographic Sciences and Natural Researouces Resarch
of CAS for comments on the methods and writing. This study was supported by the National Natural Science
Foundation of China (32361143871, 52109071, 52311540127, and 52411540183) and the Pinduoduo-China
Agricultural University Research Fund (Grant No PC2023A02002).

Data availability statement

The data in this paper will also be used by the authors for auxiliary analysis of other studies. Therefore, before the
results of other studies are published, the data in this paper cannot be publicly accessed unless readers make
reasonable requests. The data that support the findings of this study are available upon reasonable request from
the authors.

CRediT authorship contribution statement

Defeng Wu: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing—Original
draft, Visualization. Ting Tang: Conceptualization, Methodology, Supervision, Writing—review & editing.
Daniel Odermatt: Conceptualization, Methodology, Supervision, Writing—review & editing. Wenfeng Liu:
Conceptualization, Methodology, Resources, Supervision, Project administration, Funding acquisition, Writing
—review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Data availability

The water quality data of 1015 lakes and reservoirs around the world are available from Copernicus Global Land
Service (CGLS, https://land.copernicus.eu/global /products/lwq/). The ERA5-Land data are available from
the Copernicus Climate Change Service’s Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/
search?type=dataset). The geographic attributes, such as location and area of the catchments, the average depth
and discharge, comes from HydroLAKES (Messager ef al 2016) and Global Lakes and Wetlands Database
(GLWD) (Lehner and Déll, 2004). Population distribution data in the year 2020 are available from the Gridded
Population of the World (GPW) version 4 of Center for International Earth Science Information Network
(CIESIN, https://doi.org/10.7927 /HA5Q4T5F).

Code availability

R4.1.2 are used to create all figures and other analysis of this study. The codes are available from the
corresponding author upon reasonable request.

11


https://land.copernicus.eu/global/products/lwq/
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
https://doi.org/10.7927/H45Q4T5F

10P Publishing

Environ. Res. Commun. 7 (2025) 035007 DWuetal

ORCIDiDs

Defeng Wu @ https://orcid.org/0009-0005-5687-9610

Ting Tang ® https:/orcid.org/0000-0002-2867-9241
Daniel Odermatt ® https://orcid.org/0000-0001-8449-0593
Wenfeng Liu ® https://orcid.org/0000-0002-8699-3677

References

[1] World Meteorological Organization (WMO) 2023, January 12 Past eight years confirmed to be the eight warmest on record. World
Meteorological Organization. https://wmo.int/media/news/past-eight-years-confirmed-be-eight-warmest-record
[2] GrantLetal2021 Attribution of global lake systems change to anthropogenic forcing Nat. Geosci. 14 849-54
[3] Woolway RIetal2020 Global lake responses to climate change Nat. Rev. Earth Environ. 1 388-403
[4] Woolway R1Iefal2021 Lake heatwaves under climate change Nature 589 402—7
[5] O’Reilly CM et al 2015 Rapid and highly variable warming of lake surface waters around the globe Geophys. Res. Lett. 42 773—10
[6] Maberly S C et al 2020 Global lake thermal regions shift under climate change Nat. Commun. 11 1232
[7] Yao F etal 2023 Satellites reveal widespread decline in global lake water storage Science 380 7439
[8] LiY, Zhao G, Allen G H and Gao H 2023 Diminishing storage returns of reservoir construction Nat. Commun. 14 3203
[9]1 Hou X etal 2017 Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the
Yangtze River, China Remote Sens. Environ. 190 107-21
[10] Huang] et al2019 How successful are the restoration efforts of China’s lakes and reservoirs? Environ. Int. 123 96-103
[11] Vorosmarty CJeral 2010 Global threats to human water security and river biodiversity Nature 467 555-61
[12] Hasler AD A 1958 Treatise on Limnology. vol. I. Geography, Physics and Chemistry. George Evelyn Hutchinson. (Wiley) 1957. xiv + 1015
pp. Ilus. $19. Science 127, 88—88
[13] Carpenter DJand Carpenter S M 1983 Modeling inland water quality using Landsat data Remote Sens. Environ. 13 345-52
[14] ZhangL et al 2022 Turbidity dynamics of large lakes and reservoirs in northeastern China in response to natural factors and human
activities J. Clean. Prod. 368 133148
[15] International Organization for Standardization 2016 ISO 7027-1: Water quality—Determination of turbidity—Part 1: Quantitative
methods. ISO. https://iso.org/standard /53639.html
[16] ZhangY et al 2014 Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in
China Limnol. Oceanogr. 59 1193-202
[17] Qin B et al 2020 Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes Environ. Sci. Technol. 54 3191-8
[18] Jane S Fetal2021 Widespread deoxygenation of temperate lakes Nature 594 66—70
[19] Nechad B, Ruddick K G and Park Y 2010 Calibration and validation of a generic multisensor algorithm for mapping of total suspended
matter in turbid waters Remote Sens. Environ. 114 854—66
[20] Nechad B, Dogliotti A I, Ruddick K G and Doxaran D Particulate backscattering and suspended matter concentration retrieval from
remote-sensed turbidity in various coastal and riverine turbid waters Submitt. Proc. ESA Living Planet Symp. Prague 9—13 May, ESA-SP
740 (2016)
[21] Pfannkuche Jand Schmidt A 2003 Determination of suspended particulate matter concentration from turbidity measurements:
particle size effects and calibration procedures Hydrol. Process. 17 1951-63
[22] LiuD etal2020 Observations of water transparency in China’s lakes from space Int. J. Appl. Earth Obs. Geoinformation 92 102187
[23] WHO 2017 Guidelines for drinking-water quality Incorporating the 1st Addendum. 4th ed (Geneva: World Health Organization)
https://who.int/publications/i/item/9789241549950
[24] BragaF, Scarpa G M, Brando V E, Manfe G and Zaggia L 2020 COVID-19 lockdown measures reveal human impact on water
transparency in the Venice Lagoon Sci. Total Environ. 736 139612
[25] Lisi P Jand Hein CL 2019 Eutrophication drives divergent water clarity responses to decadal variation in lake level Limnol. Oceanogr. 64
549-59
[26] Deutsch E S, Fortin M-J and Cardille ] A 2022 Assessing the current water clarity status of ~100,000 lakes across southern Canada: a
remote sensing approach Sci. Total Environ. 826 153971
[27] CaoZ,DuanH, Feng L, Ma R and Xue K 2017 Climate- and human-induced changes in suspended particulate matter over Lake
Hongze on short and long timescales Remote Sens. Environ. 192 98—113
[28] ShiK, ZhangY, Zhu G, Qin B and Pan D 2018 Deteriorating water clarity in shallow waters: evidence from long term MODIS and i situ
observations Int. J. Appl. Earth Obs. Geoinformation 68 287-97
[29] Cao Z et al 2023 MODIS observations reveal decrease in lake suspended particulate matter across China over the past two decades
Remote Sens. Environ. 295 113724
[30] WangS etal 2020 Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS Remote Sens.
Environ. 247 111949
[31] Olmanson L G, Brezonik P L and Bauer M E 2014 Geospatial and temporal analysis of a 20-year record of landsat-based water clarity in
Minnesota’s 10,000 lakes JAWRA J. Am. Water Resour. Assoc. 50 748—61
[32] DuY etal2020 Quantifying total suspended matter (TSM) in waters using Landsat images during 1984-2018 across the Songnen Plain,
Northeast China J. Environ. Manage. 262 110334
[33] ZengF et al 2023 Monitoring inland water via sentinel satellite constellation: a review and perspective ISPRS J. Photogramm. Remote
Sens. 204 340-61
[34] HeY etal 2022 Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI
images Water Res. 215 118241
[35] Shen M etal2020 Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: implications for SDG 6.3.2 evaluation
Remote Sens. Environ. 247 111950
[36] XueK etal 2020 Variations of suspended particulate concentration and composition in Chinese lakes observed from Sentinel-3A OLCI
images Sci. Total Environ. 721 137774
[37] Stefanidis K, Varlas G, Papaioannou G, Papadopoulos A and Dimitriou E 2023 Assessing temporal variability of lake turbidity and
trophic state of European lakes using open data repositories Sci. Total Environ. 857 159618

12


https://orcid.org/0009-0005-5687-9610
https://orcid.org/0009-0005-5687-9610
https://orcid.org/0009-0005-5687-9610
https://orcid.org/0009-0005-5687-9610
https://orcid.org/0000-0002-2867-9241
https://orcid.org/0000-0002-2867-9241
https://orcid.org/0000-0002-2867-9241
https://orcid.org/0000-0002-2867-9241
https://orcid.org/0000-0001-8449-0593
https://orcid.org/0000-0001-8449-0593
https://orcid.org/0000-0001-8449-0593
https://orcid.org/0000-0001-8449-0593
https://orcid.org/0000-0002-8699-3677
https://orcid.org/0000-0002-8699-3677
https://orcid.org/0000-0002-8699-3677
https://orcid.org/0000-0002-8699-3677
https://wmo.int/media/news/past-eight-years-confirmed-be-eight-warmest-record
https://doi.org/10.1038/s41561-021-00833-x
https://doi.org/10.1038/s41561-021-00833-x
https://doi.org/10.1038/s41561-021-00833-x
https://doi.org/10.1038/s43017-020-0067-5
https://doi.org/10.1038/s43017-020-0067-5
https://doi.org/10.1038/s43017-020-0067-5
https://doi.org/10.1038/s41586-020-03119-1
https://doi.org/10.1038/s41586-020-03119-1
https://doi.org/10.1038/s41586-020-03119-1
https://doi.org/10.1002/2015GL066235
https://doi.org/10.1002/2015GL066235
https://doi.org/10.1002/2015GL066235
https://doi.org/10.1038/s41467-020-15108-z
https://doi.org/10.1126/science.abo2812
https://doi.org/10.1126/science.abo2812
https://doi.org/10.1126/science.abo2812
https://doi.org/10.1038/s41467-023-38843-5
https://doi.org/10.1016/j.rse.2016.12.006
https://doi.org/10.1016/j.rse.2016.12.006
https://doi.org/10.1016/j.rse.2016.12.006
https://doi.org/10.1016/j.envint.2018.11.048
https://doi.org/10.1016/j.envint.2018.11.048
https://doi.org/10.1016/j.envint.2018.11.048
https://doi.org/10.1038/nature09440
https://doi.org/10.1038/nature09440
https://doi.org/10.1038/nature09440
https://doi.org/10.1016/0034-4257(83)90035-4
https://doi.org/10.1016/0034-4257(83)90035-4
https://doi.org/10.1016/0034-4257(83)90035-4
https://doi.org/10.1016/j.jclepro.2022.133148
https://iso.org/standard/53639.html
https://doi.org/10.4319/lo.2014.59.4.1193
https://doi.org/10.4319/lo.2014.59.4.1193
https://doi.org/10.4319/lo.2014.59.4.1193
https://doi.org/10.1021/acs.est.9b05858
https://doi.org/10.1021/acs.est.9b05858
https://doi.org/10.1021/acs.est.9b05858
https://doi.org/10.1038/s41586-021-03550-y
https://doi.org/10.1038/s41586-021-03550-y
https://doi.org/10.1038/s41586-021-03550-y
https://doi.org/10.1016/j.rse.2009.11.022
https://doi.org/10.1016/j.rse.2009.11.022
https://doi.org/10.1016/j.rse.2009.11.022
https://doi.org/10.1002/hyp.1220
https://doi.org/10.1002/hyp.1220
https://doi.org/10.1002/hyp.1220
https://doi.org/10.1016/j.jag.2020.102187
https://who.int/publications/i/item/9789241549950
https://doi.org/10.1016/j.scitotenv.2020.139612
https://doi.org/10.1002/lno.11095
https://doi.org/10.1002/lno.11095
https://doi.org/10.1002/lno.11095
https://doi.org/10.1002/lno.11095
https://doi.org/10.1016/j.scitotenv.2022.153971
https://doi.org/10.1016/j.rse.2017.02.007
https://doi.org/10.1016/j.rse.2017.02.007
https://doi.org/10.1016/j.rse.2017.02.007
https://doi.org/10.1016/j.jag.2017.12.015
https://doi.org/10.1016/j.jag.2017.12.015
https://doi.org/10.1016/j.jag.2017.12.015
https://doi.org/10.1016/j.rse.2023.113724
https://doi.org/10.1016/j.rse.2020.111949
https://doi.org/10.1111/jawr.12138
https://doi.org/10.1111/jawr.12138
https://doi.org/10.1111/jawr.12138
https://doi.org/10.1016/j.jenvman.2020.110334
https://doi.org/10.1016/j.isprsjprs.2023.09.011
https://doi.org/10.1016/j.isprsjprs.2023.09.011
https://doi.org/10.1016/j.isprsjprs.2023.09.011
https://doi.org/10.1016/j.watres.2022.118241
https://doi.org/10.1016/j.rse.2020.111950
https://doi.org/10.1016/j.scitotenv.2020.137774
https://doi.org/10.1016/j.scitotenv.2022.159618

10P Publishing

Environ. Res. Commun. 7 (2025) 035007 DWuetal

[38] Zou T et al 2024 Analysis of the temporal and spatial evolution of turbidity in tonle sap lake and its influencing factors Sci. Total Environ.
943173618

[39] Kendall M G 1975 Rank Correlation Methods (Griffin)

[40] Mann H B 1945 Nonparametric tests against trend Econometrica 13 245-59

[41] YueS, Pilon P and Cavadias G 2002 Power of the mann—kendall and spearman’s rho tests for detecting monotonic trends in
hydrological series J. Hydrol. 259 25471

[42] Sen P K 1968 Estimates of the regression coefficient based on kendall’s tau J. Am. Stat. Assoc. 63 1379-89

[43] Simis S, Stelzer K, Miiller D and Selmes N 2020 Algorithm theoretical basis document — Lake Water Quality 300m - 1km version 1.0,
Copernicus Global Land Operations. https://land.copernicus.eu/en/technical-library/lake-water-quality-v1.0 /@@download /file

[44] Binding CE, JeromeJ H, Bukata R P and Booty W G 2010 Suspended particulate matter in lake erie derived from MODIS aquatic
colour imagery Int. J. Remote Sens. 31 5239-55

[45] Vantrepotte V etal 2011 Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from
satellite ocean color sensor over the French Guiana coastal waters J. Coast. Res. 1750 1754

[46] ZhangY, ShiK, LiuX, Zhou Y and Qin B 2014 Lake topography and wind waves determining seasonal-spatial dynamics of total
suspended matter in Turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data PLoS One 9 98055

[47] Spyrakos E et al 2018 Optical types of inland and coastal waters Limnol. Oceanogr. 63 846—70

[48] Gilarranz L], Narwani A, Odermatt D, Siber R and Dakos V 2022 Regime shifts, trends, and variability of lake productivity at a global
scale Proc. Natl. Acad. Sci. 119 2116413119

[49] Odermatt D, Danne O, Philipson P and Brockmann C 2018 Diversity IT water quality parameters from ENVISAT (2002-2012): a new
global information source for lakes Earth Syst. Sci. Data 10 1527—49

[50] Simis S et al 2022 D4.1: Product validation and intercomparison report. https://climate.esa.int/media/documents/CCI-LAKES-
0031-PVIR_v2.1.pdf

[51] Stelzer K, Miiller D, Simis S and Selmes N 2020 Quality assessment report — Lake Water Quality 300m - 1km version 1.0, Copernicus
Global Land Operations. https://land.copernicus.eu/en/technical-library/lake-water-quality-v1.0/@@download /file

[52] WangS etal 2021 A dataset of remote-sensed forel-Ule index for global inland waters during 2000-2018 Sci. Data 8 26

[53] Zuhlke M, Fomferra N, Brockmann C, Peters M, Veci L, Malik ], Regner P et al 2015 SNAP (Sentinel Application Platform) and the ESA
Sentinel 3 Toolbox. In Sentinel-3 for Science Workshop, ESA Special Publication (Vol. 734, pp. 21). European Space Agency. Available
at: https://ui.adsabs.harvard.edu/abs/2015ESASP.734E..21Z.

[54] Lehner B and Grill G 2013 Global river hydrography and network routing: baseline data and new approaches to study the world’s large
river systems Hydrol. Process. 27

[55] Linke S et al 2019 Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution Sci. Data 6 283

[56] Lehner Band Déll P 2004 Development and validation of a global database of lakes, reservoirs and wetlands J. Hydrol. 296 1-22

[57] Munoz-Sabater ] etal 2021 ERA5-Land: a state-of-the-art global reanalysis dataset for land applications Earth Syst. Sci. Data 13 4349-83

[58] Center for International Earth Science Information Network-CIESIN-Columbia University 2018 Gridded Population of the World,
Version 4 (GPWv4): Population Count, Revision 11 (Version 4.11) [Data set]. Palisades, NY: NASA Socioeconomic Data and
Applications Center (SEDAC). https://doi.org/10.7927 /HAJW8BX5

[59] Kummu M, Taka M and Guillaume ] H A 2018 Gridded global datasets for gross domestic product and human development index over
1990-2015 Sci. Data 5 180004

[60] Beck H E et al 2023 High-resolution (1 km) Képpen-Geiger maps for 1901-2099 based on constrained CMIP6 projections Sci. Data
10724

[61] Dong W, ZhangY, Zhang L, Ma W and Luo L 2023 What will the water quality of the Yangtze River be in the future? Sci. Total Environ.
857159714

[62] HeH, Gao S, Jin T, Sato S and Zhang X 2021 A seasonal-trend decomposition-based dendritic neuron model for financial time series
prediction Appl. Soft Comput. 108 107488

[63] TongY etal2017 Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006 Nat. Geosci. 10 50711

[64] Tao Setal 2015 Rapid loss of lakes on the Mongolian Plateau Proc. Natl. Acad. Sci. 112 2281-6

[65] LiuW et al 2020 Global phosphorus losses from croplands under future precipitation scenarios Environ. Sci. Technol. 54 1476171

[66] Harrison X A et al 2018 A brief introduction to mixed effects modelling and multi-model inference in ecology Peer] 6 1-32

[67] HaoJ and Liu F 2024 Improving long-term multivariate time series forecasting with a seasonal-trend decomposition-based
2-dimensional temporal convolution dense network Sci. Rep. 14 1689

[68] Zhao K et al 2019 Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear
dynamics: A Bayesian ensemble algorithm Remote Sens. Environ. 232 111181

[69] Akbas A 2024 Human or climate? differentiating the anthropogenic and climatic drivers of lake storage changes on spatial perspective
viaremote sensing data Sci. Total Environ. 912 168982

[70] GEOARC 2021 Ecological and Environmental Status of Global Typical Lakes, National Remote Sensing Center of China, Beijing,
China. https://doi.org/10.11878 /rp.202110.001137.en, available at: https://chinageoss.cn/knowledgehub /report/reportDetail /
63a47d46f64eb66545fa02a0

[71] Liu Cetal2021 The increasing water clarity of Tibetan lakes over last 20 years according to MODIS data Remote Sens. Environ. 253
112199

[72] Bonansea M, Rodriguez M C, Pinotti L and Ferrero S 2015 Using multi-temporal landsat imagery and linear mixed models for assessing
water quality parameters in Rio Tercero reservoir (Argentina) Remote Sens. Environ. 158 28—41

[73] Hou X et al 2022 Global mapping reveals increase in lacustrine algal blooms over the past decade Nat. Geosci. 15 1304

[74] Rose K C, Greb SR, Diebel M and Turner M G 2017 Annual precipitation regulates spatial and temporal drivers of lake water clarity
Ecol. Appl. 27 63243

[75] Roulet N and Moore T R 2006 Browning the waters Nature 444 283—4

[76] MiH, Fagherazzi S, Qiao G, Hong Y and Fichot C G 2019 Climate change leads to a doubling of turbidity in a rapidly expanding Tibetan
lake Sci. Total Environ. 688 952—9

[77] Abudu S etal2016 Integration of aspect and slope in snowmelt runoff modeling in a mountain watershed Water Sci. Eng. 9 26573

[78] Lana-Renault N, Alvera B and Garcia-Ruiz ] M 2011 Runoff and sediment transport during the snowmelt period in a mediterranean
high-mountain catchment Arct. Antarct. Alp. Res. 43 213-22

[79] Abd Ellah R G and Sparavigna A C 2023 Combining bathymetric measurements, RS, and GIS technologies for monitoring the inland
water basins: a case study of Toshka Lakes, Egypt Egypt. J. Aquat. Res. 49 1-8

13


https://doi.org/10.1016/j.scitotenv.2024.173618
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
https://doi.org/10.1016/S0022-1694(01)00594-7
https://doi.org/10.1016/S0022-1694(01)00594-7
https://doi.org/10.1016/S0022-1694(01)00594-7
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1080/01621459.1968.10480934
https://land.copernicus.eu/en/technical-library/lake-water-quality-v1.0/@@download/file
https://doi.org/10.1080/01431160903302973
https://doi.org/10.1080/01431160903302973
https://doi.org/10.1080/01431160903302973
https://doi.org/10.1371/journal.pone.0098055
https://doi.org/10.1002/lno.10674
https://doi.org/10.1002/lno.10674
https://doi.org/10.1002/lno.10674
https://doi.org/10.1073/pnas.2116413119
https://doi.org/10.5194/essd-10-1527-2018
https://doi.org/10.5194/essd-10-1527-2018
https://doi.org/10.5194/essd-10-1527-2018
https://climate.esa.int/media/documents/CCI-LAKES-0031-PVIR_v2.1.pdf
https://climate.esa.int/media/documents/CCI-LAKES-0031-PVIR_v2.1.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS2_QAR_LWQ300_1km_v1.3.1_I1.11.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS2_QAR_LWQ300_1km_v1.3.1_I1.11.pdf
https://doi.org/10.1038/s41597-021-00807-z
https://ui.adsabs.harvard.edu/abs/2015ESASP.734E..21Z
https://doi.org/10.1002/hyp.9740
https://doi.org/10.1038/s41597-019-0300-6
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.1038/sdata.2018.4
https://doi.org/10.1038/s41597-023-02549-6
https://doi.org/10.1016/j.scitotenv.2022.159714
https://doi.org/10.1016/j.asoc.2021.107488
https://doi.org/10.1038/ngeo2967
https://doi.org/10.1038/ngeo2967
https://doi.org/10.1038/ngeo2967
https://doi.org/10.1073/pnas.1411748112
https://doi.org/10.1073/pnas.1411748112
https://doi.org/10.1073/pnas.1411748112
https://doi.org/10.1021/acs.est.0c03978
https://doi.org/10.1021/acs.est.0c03978
https://doi.org/10.1021/acs.est.0c03978
https://doi.org/10.7717/peerj.4794
https://doi.org/10.7717/peerj.4794
https://doi.org/10.7717/peerj.4794
https://doi.org/10.1038/s41598-024-52240-y
https://doi.org/10.1016/j.rse.2019.04.034
https://doi.org/10.1016/j.scitotenv.2023.168982
https://doi.org/10.11878/rp.202110.001137
https://chinageoss.cn/knowledgehub/report/reportDetail/63a47d46f64eb66545fa02a0%EF%BB%BF
https://chinageoss.cn/knowledgehub/report/reportDetail/63a47d46f64eb66545fa02a0%EF%BB%BF
https://doi.org/10.1016/j.rse.2020.112199
https://doi.org/10.1016/j.rse.2020.112199
https://doi.org/10.1016/j.rse.2014.10.032
https://doi.org/10.1016/j.rse.2014.10.032
https://doi.org/10.1016/j.rse.2014.10.032
https://doi.org/10.1038/s41561-021-00887-x
https://doi.org/10.1038/s41561-021-00887-x
https://doi.org/10.1038/s41561-021-00887-x
https://doi.org/10.1002/eap.1471
https://doi.org/10.1002/eap.1471
https://doi.org/10.1002/eap.1471
https://doi.org/10.1038/444283a
https://doi.org/10.1038/444283a
https://doi.org/10.1038/444283a
https://doi.org/10.1016/j.scitotenv.2019.06.339
https://doi.org/10.1016/j.scitotenv.2019.06.339
https://doi.org/10.1016/j.scitotenv.2019.06.339
https://doi.org/10.1016/j.wse.2016.07.002
https://doi.org/10.1016/j.wse.2016.07.002
https://doi.org/10.1016/j.wse.2016.07.002
https://doi.org/10.1657/1938-4246-43.2.213
https://doi.org/10.1657/1938-4246-43.2.213
https://doi.org/10.1657/1938-4246-43.2.213
https://doi.org/10.1016/j.ejar.2022.10.003
https://doi.org/10.1016/j.ejar.2022.10.003
https://doi.org/10.1016/j.ejar.2022.10.003

10P Publishing

Environ. Res. Commun. 7 (2025) 035007 DWuetal

[80] JiG and Havens K 2019 Periods of extreme shallow depth hinder but do not stop long-term improvements of water quality in Lake
Apopka, Florida (USA) Water 11 https:/ /www.mdpi.com/about/announcements /784

[81] Grossman G M and Krueger A B 1995 Economic growth and the environment™ Q. J. Econ. 110 35377

[82] Hunjra AT, Bouri E, Azam M, Azam R Iand DaiJ 2024 Economic growth and environmental sustainability in developing economies
Res. Int. Bus. Finance 70 102341

[83] WangW et al 2023 A record-breaking extreme heat event caused unprecedented warming of lakes in China Sci. Bull. 68 578—82

[84] Sultonov Z and Pant H K 2023 Potential impacts of climate change on water management in the aral Sea Basin Water Resour. Manag. 37
5743-57

14


https://doi.org/10.3390/w11030538
https://www.mdpi.com/about/announcements/784
https://doi.org/10.2307/2118443
https://doi.org/10.2307/2118443
https://doi.org/10.2307/2118443
https://doi.org/10.1016/j.ribaf.2024.102341
https://doi.org/10.1016/j.scib.2023.03.001
https://doi.org/10.1016/j.scib.2023.03.001
https://doi.org/10.1016/j.scib.2023.03.001
https://doi.org/10.1007/s11269-023-03627-5
https://doi.org/10.1007/s11269-023-03627-5
https://doi.org/10.1007/s11269-023-03627-5
https://doi.org/10.1007/s11269-023-03627-5

	1. Introduction
	2. Materials and methods
	2.1. Data sources and data processing
	2.2. Time series analysis
	2.3. Statistical analysis

	3. Results
	3.1. Spatial difference of average turbidity in global lakes
	3.2. Seasonal variability in global lake turbidity
	3.3. Spatiotemporal variability in global lake turbidity
	3.4. Relationships between lake turbidity changes and other factors

	4. Discussion
	5. Conclusion
	Acknowledgments
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Code availability
	References



