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Early warning of complex climate risk with
integrated artificial intelligence
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Gustau Camps-Valls 6, Felix Creutzig 7,8, Carina J. Fearnley 9, Boran Han 1,
Kai Kornhuber 10,11, Nasim Rahaman12, Bernhard Schölkopf 12,13,
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Dorothea Frank3, Giulia Martini 16, Naomi Nganga17, Danielle C. Maddix1 &
Kommy Weldemariam1

As climate change accelerates, human societies face growing exposure to
disasters and stress, highlighting the urgent need for effective early warning
systems (EWS). These systems monitor, assess, and communicate risks to
support resilience and sustainable development, but challenges remain in
hazard forecasting, risk communication, and decision-making. This perspec-
tive explores the transformative potential of integrated Artificial Intelligence
(AI)modeling.Wehighlight the role of AI in developingmulti-hazard EWSs that
integrate Meteorological and Geospatial foundation models (FMs) for impact
prediction. A user-centric approach with intuitive interfaces and community
feedback is emphasized to improve crisis management. To address climate
risk complexity, we advocate for causal AI models to avoid spurious predic-
tions and stress the need for responsible AI practices. We highlight the FATES
(Fairness, Accountability, Transparency, Ethics, and Sustainability) principles
as essential for equitable and trustworthy AI-based Early Warning Systems for
all. We further advocate for decadal EWSs, leveraging climate ensembles and
generative methods to enable long-term, spatially resolved forecasts for
proactive climate adaptation.

Early-warning systems (EWS) are an essential component of risk-
reduction strategies for climate and environmental hazards and thus
should be a central element of resilient sustainable-development
strategies1. The United Nations (UN) and the World Meteorological
Organization (WMO) recognize the importance of these EWS and have
installed efforts to develop them via the Early-Warnings-for-All Initia-
tive launched in 2022, also related to Target G of the UN Sendai

Framework 2015–20302. There are numerous past cases proving the
valueof EWSs for saving lives and livelihoods3–5. One key example is the
investment in research and implementation in tsunami warnings fol-
lowing the Indian Ocean tsunami in 20046. Focused collaboration has
resulted in more robust, international, and technologically advanced
warnings that have saved many lives since 2004, including during the
2011 Tōhoku tsunami7. However, it is essential to recognize that
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complex risks from surging climate and weather extremes involving
multiple hazards as either concurrent or cascading events pose sig-
nificant additional challenges to developing effective EWS in particular
when considering the non-stationary conditions of many climate
impact drivers due to anthropogenic climate change8: Projected
increases in severity and frequency under unmitigated greenhouse gas
emissions on top of changing exposure and vulnerability will make
these efforts even more important for future climate risk adaptation9,
because relying on past norms and guidelines will prove inappropriate
under non-stationary risks.

TheUnitedNations10 define EWSas ‘An integrated systemof hazard
monitoring, forecasting and prediction, disaster risk assessment, com-
munication and preparedness activities, systems and processes that
enables individuals, communities, governments, businesses andothers to
take timely action to reduce disaster risks in advance of hazardous
events’. Yet, current EWS tend to emphasize thehazardprediction (e.g.,
weather) compared to impact prediction and communication (a recent
example is the Ahr Flood in Germany (cf. SI Table 1)), where weather
forecast and weather warning from the weather services was timely
and correct, but the impact not anticipated11 and adequate preventive
measures not taken. Lately, therehasbeenmore focus towards impact-
based forecasts and warnings (IBFW)12. However, early studies suggest
that these make little difference to outcomes as they still only provide
the impact information rather than what actions to take in response13.
Moreover, it has been proposed to design IBFWs for individual mem-
bers of the public, which allows for a more fine-grained treatment of
vulnerability and coping capacity, thus increasing the strength of
future warnings14.

The accuracy and effectiveness of EWSs depend not just on the
quality of data gathered from sensors, process understanding, and the
ability to predict hazards accurately and assess their potential impact,
but also the speed and effectiveness of communication, and the ability
to make timely and effective decisions, e.g., implemented as Antici-
patory Action in the humanitarian domain15. All of this requires pre-
paredness to enable the EWS to be sustainable, effective, and enable
the end users to take early actions to enhance their safety and reduce
economic and social losses. An important aspect for EWS is the rele-
vant time-scale. Early warnings typically vary from seconds, to tens of
thousands of years, but for climatic hazards time scales are generally
on the hourly to weekly time-scale for more rapid onset hazards (e.g.,
storms), and have longer time scales for slow-onset hazards (e.g.,
drought, desertification). Longer time scales beyond a year are not

considered on classical EWS but are very relevant for conscious spatial
and infrastructure planning and societal preparedness, especially in
the context of climate change16. The diversity of relevant aspects for
early warning results in tremendous complexity and challenges in
implementing effective EWS, while some require a large collective
effort to make progress, for others, AI can offer the necessary leap
forward.

Main challenges with early-warning systems
Weather-related EWSs operate along a warning chain involving
observations, forecasts (weather, hazard, impact), communication and
decision-making17, and should be continuously evaluated (Fig. 1). As in
the case of a chain, the overall efficacy largely depends on the weakest
link, which would then undermine skill and technical advancement in
others.

Hydrometeorological hazard forecasts to a large extent rely on
numerical weather prediction (NWP), which has improved tre-
mendously over the past decades18. However, challenges remain: For
example, with fast-onset disasters such as storms and floods, accurate
forecasting of precipitation is necessary, a fact that involves resolving
convection, which is computationally slow in NWPmodels. Hence, for
such disasters, lead times can be fairly short, sometimes too short for
effective action19. For instance, in late 2021, the tropical cyclone Rai
struck the Philippines. It had undergone an unforeseen very rapid
intensification in the hours before landfall, a lead time that makes it
difficult to still start activities that are anticipatory in nature20. On the
other hand, early warning for slow-onset disasters, e.g., droughts,
builds upon sub-seasonal to seasonal forecasting21. At these time
scales, predictability is driven by boundary conditions such as the sea-
surface temperatures and the land-surface soil moisture and with the
chaotic nature of the atmosphere, seasonal forecasts suffer from a lot
of uncertainty (cf. Fig. 2, Table S1), although for large-scale extremes
like the recent long lastingHornofAfrica drought somepredictive skill
has been achieved22. Yet for more localized extremes, given uncertain
boundary conditions and the chaotic nature of the weather system,
there is seldom enough forecast certainty on spatio-temporal extents
to enable effective early action more than a few weeks in advance.

Crucially, weather or hazard forecasts are not sufficient, because
the same weather event can result in vastly different impacts. For
instance, thiswas evidenced inGermany 2021 (Fig. 2, Table S1),where a
few weeks before the devastating Central European floods there was a
similar meteorological event in North EasternGermany with almost no
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Fig. 1 | Depiction of the early-warning chain from observation to decision and
its relation to the EarlyWarnings for All Framework. a “All five bridges of death”
(pers. comm. Brian Golding, HiWeather) have to be crossed for an effective early

warning. Figure modified after ref. 17. b Link to the four pillars of the UN Early
Warnings for All Framework.
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impact23. The reason is a completely different landscape, which is less
hilly and has more sandy soils, allowing for faster infiltration of rain.
Yet predictions of impacts are challenging because they result from
the interaction of theweather systemwith ecosystems/landscapes and
societal systems24. This needs to consider sub km-scale, often m-scale,
local context, and variables that are outside the physical climate sys-
tem. In addition, even hydrodynamic models partially failed in 2021
because the complexities such as debris flow and geohy-
dromorphological dynamics have not been considered. Moreover,
societal impact forecasts need to build upon maps of exposure and
vulnerability4. Such maps are often coarse in resolution due to a gen-
eral sparsity of gridded socioeconomic data, although down-scaling
attempts have yielded promising results25. Combining them with the
physical variables obtained from the hazard forecast is not trivial,
especially since dynamic aspects of vulnerabilities are not often
considered26.

Another major challenge is concurrent, compounding, and cas-
cading events, hampered by the lack of connections across the various
thematic, institutional, and regional silos27, but also because forecasts
across systems are harder, because of complexity, and if inter-
disciplinary model integration is lacking. This is particularly critical, as
amplifying cross-border effects such as impacts on supply chains,
water management and disaster response capacities are important.
Even more broadly, teleconnections, e.g., due to trade, river systems
and atmospheric transport, are barely integrated into EWS, as their

inclusion requires advanced data sharing, real-time communication,
and predictive models that can account for these long-distance rela-
tions, information sources and impacts28.

Furthermore, an ideal EWS strives to harness the full spectrum of
available observations, yet present systems face notable limitations in
achieving this. For instance, feeding satellite information to a physical
model often requires an observational operator, as what ismeasured is
only a proxy of what is modeled. This becomes increasingly challen-
ging in regimes with low signal-to-noise ratio, uneven and sparse data
sampling, scarcity of measurements, and wide diversity of quality,
quantity and granularity of data. Hence, existing EWS rarely leverage
all available data. For instance, EWS for floods and storms do not
assimilate all locally available radar, gauge, and satellite information,
but instead focus on a few data modalities and resolutions29. Further-
more, potentially informative sources of data for food security EWS,
e.g., from social media or economic factors, are not typically exploited
in their entirety30.

Communication of warnings, especially to the affected popula-
tion, i.e. the last mile12, is another critical aspect31 (Fig. 2, Table S1).
Numerous cases over history demonstrate that even if the EWS fore-
casting part produces actionable forecasts, communication failed32.
Most recently, the Mediterranean storm Daniel led to severe rainfall
and flooding in Libya with over 4300 people dead and many more
displaced33. While a lack of communication was certainly not the only
reason for this devastating outcome, it surely contributed, given even
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Fig. 2 | Three cases of past disasters and where machine learning could have
helped in either prediction, communication, or both. a The European Ahrtal
flood, b drought-related food insecurity in Eastern Africa, c heat-fire-smoke hazard

in North America. For a detailed description, see Table S1. This figure uses images
licensed under CC BY 2.0, detailed image credits are listed in the “Acknowl-
edgements” section.
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TV weather reports predicted the landfall at least four days ahead34.
Global initiatives such as the Common Alerting Protocol have been
useful to standardize warning data enabling media outlets and cell
phone broadcasters to issue warnings35. Still, affected communities
can have very different needs on EWS information, which can be best
achieved by involving them already in the creation of the EWS36, yet
doing that on a global scale is hard. Here, an additional opportunity
arises, often local traditional or indigenous knowledge is overseen in
EWS, but can be a useful source37, for instance, when it comes to the
challenge of inclusiveness. Warnings should be inclusive, not just for
direct ethical reasons, but also because inclusive EWSs help to save
more lives, preserve livelihoods and prevent greater economic losses,
and impact longer-term equitable growth and prosperity. Designing
inclusive EWSs requires considering the peculiarities of diverse com-
munities and their needs, ideally through their involvement from the
beginning38. This is a challenge for current EWS, as adapting them to
local conditions is costly, continuously iterating them through adap-
tive learning often restricted by rigid constraints, and in contrast, a
one-size-fits-all model is cheap to implement and maintain, but not
optimal for the local communities.

Last but not least, an ideal EWS should also take the expected
impact of decisions based on the warnings into account, i.e., the
response itself as a risk factor39. This can lead to a highly non-trivial
decision-making feedback loop. In otherwords, basedon the decisions
that are taken upon awarning, vulnerabilities and impactsmay change,
which therefore would change the warning. For example, a hurricane
impact forecast would be most useful if it considered not only the
number of people affected by flooding and wind damage if no action
were taken, but also how these numbers would change if evacuation
measures were implemented. This would account for the effects of
actions such as road congestion, the availability of shelters, and the
potential risks posed by moving vulnerable populations. This requires
the modeling of sociology and psychology, which, especially in com-
bination with physical modeling, is challenging. Furthermore, after a
disaster or an avoided disaster, the effect of interventions needs to be
understood. Essentially, this requires constructing models that can
operatewith counterfactuals to compare “whatwould have happened”
with “what actually happened”. For example, the food security impact
of droughts is often dampened by the markets through food imports.
Given this mediating effect, it is challenging to estimate what the
impact of an EWS and derived anticipatory action is. Here, Earth
Observation (EO) has been identified as a critical tool for Monitoring,
Evaluation, Accountability, and Learning (MEAL) in the context of
anticipatory action40. EO offers unique capabilities, such as high-
resolution satellite imagery and near-real-time data, to assess changes
in environmental and socioeconomic conditions both before and after
an intervention. For example, satellite-derived vegetation indices can
provide insight into crop health or pasture recovery, helping to infer
the impact of drought-related early actions on food security. However,
while EO shows great promise for strengthening the evidence base via
rapid, low-cost assessments, further efforts are needed to turn these
concepts into real and operational practices.

In summary, current EWSs face challenges including limitations in
forecasting accuracy for fast and slow-onset disasters, difficulties in
predicting impacts due to local environmental and societal variables,
underutilization of diverse data sources, and challenges in effectively
communicating warnings to varied communities. In addition, the
complex task of incorporating societal and psychological aspects of
potential warnings into the decision-making process is critical. In all of
these challenges, developments in AI promise to advance the field.

Artificial intelligence for improved early warning
Extracting knowledge from data is now increasingly achieved with
techniques known asmachine learning (ML)within the broader field of
artificial intelligence (AI)41. These provide algorithms to assess the data

instead of carefully chosen models. Most common is supervised
machine learning, where the algorithm produces an input-output map
and is trained on many labeled input-output pairs. For example,
modern smartphone cameras detect faces to set the correct focus, the
ML model behind it has been trained on a large dataset of pictures
(inputs) and bounding boxes of the faces (output). Prevalent algo-
rithms include variants of deep neural networks (e.g., Transformers,
LSTMs or CNNs) or of decision trees (e.g., random forest or gradient
boosting trees). Beyond supervised learning, there are many other ML
approaches, e.g., unsupervised learning, reinforcement learning or
causal inference (for a practical overview see ref. 42). For EWS,
supervised ML will often bring the largest benefits, allowing for fore-
casting, mapping or also generative AI, that is e.g., generating text or
image data.

Pushing forecast accuracy
Forecasting models are available for essentially all climate hazards.
Now,ML is increasingly leveraged for this purpose. As long as sufficient
data is available and an input-output mapping can be defined, a ML
model can be trained. Inmany cases, theseMLmodels display a higher
accuracy, as they can exploit statistical correlations beyond process-
based theory.

In weather forecasting, models trained on reanalysis data, which
has been corrected formodeling errors43, retain these corrections also
at forecast time, displaying an improved skill at global medium-range
weather forecasting44–48. In other words: these approaches outperform
conventional atmosphericmodels as they suffer less from the problem
needing to have the subgridscale-processes parameterized without
having a perfect theory for this. For rainfall nowcasting, ML models
improve accuracy49–54 by exploiting one of their key advantages: they
can easily handle observational data such as rainfall radar, which
contains information about processes beyond what is resolved in
numerical schemes.

Similar evidence exists beyond just weather forecasting. Flood
forecasting suffers from many unresolved processes in the hydro-
logical modeling, making conventional forecasting hard and thus
favoring ML55,56. Wildfire risk prediction requires linking earth obser-
vation with anthropogenic andmeteorological drivers, thus benefiting
from the flexibility of ML57. Seasonal ENSO58–61 and derived drought
forecasting22 has always relied on empirical analysis of statistical pat-
terns, whichML excels in.Manyof these success stories haveonly been
possible through adapting large deep neural networks which have
been optimized to handle high-dimensional data (such as 3D fields),
e.g., convolutional neural networks62 or transformers63.

Moving from hazards to impacts
So far, most efforts to use ML have focused on hazard forecasts and
have yet to trickle down the early warning chain. A critical next step is
impact-centric forecasting. Here, ML can make use of predictors pre-
viously unavailable: it can leverage any predictive inputs to produce
the best-possible forecast. Conventional approaches are often too
rigid to incorporate such information. A central approach here is using
weather forecasts as predictors and an impact-related quantity as
target. In other words, the ML model maps from weather to impact,
and is trained by collecting datasets of this mapping in the past. For
instance, the impact of weather extremes on vegetation status as
observed from satellite imagery can be predicted64–67, leveraging the
vast archive of satellite products and aligning it with past weather
information to create training datasets. In addition to the weather
forecasts, other inputs such as socioeconomic time series can be easily
added – e.g., to forecast food insecurity and famine68,69.

Beyond just traditional meteorological, geospatial, and socio-
economic data, deep neural networks can incorporate predictors such
as social media posts, archived reports, or radio news70, which can be
highly heterogeneous and are typically not considered in current EWS.
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Towards localized warnings
Warnings aremost helpful, if they take the local context into account71.
Already the push in accuracy and speed of ML models will help bring
forecasts to higher resolution. For instance, recent AI models greatly
reduce the tracking errors of tropical cyclones45,46. Beyond that, the
move to impact-centric forecasting allows skipping scales and incor-
porating local information. For example, the link from weather to
vegetation could be done using high-resolution satellite imagery64,66,67,
which provides land-surface information available at field-scale
(~10m)72. In fact, beyond just satellite imagery, any local variable can
be used to condition the forecast. E.g. this could be maps of the built-
up infrastructure or the terrain for landslide risk modeling73.

Looking forward, text can potentially play a big role at localizing
and personalizing warnings. For example, if privacy and ethical con-
cerns are properly addressed, personal user data such as socio-
economic status, health information or available infrastructure can
improve the contextualization of and increase trust in warnings. Here,
the EWS for climate risk could become similar in spirit to the EWS that
already exist in personalized medicine for disease risk74 – and thus, in
similar ways benefit from ML models.

Democratizing access globally
The quality of forecasts and warnings varies significantly across the
globe, not merely due to differences in epistemic predictability
between locations, but primarily because of disparities in data avail-
ability, which are largely influenced by a country’s economic
conditions75. ML can accelerate the democratization of access to EWS.
For instance, while conventional approaches often have skill-gaps in
regions with low availability of primary data, ML can bridge the gaps
with alternative data streams. Flood forecasting based on ML can
provide skillful predictions in many un-gauged basins globally76. Here,
also Earth observations play an important role. Many satellite obser-
vations are globally available, making them an interesting substitute
for conventional data: e.g., an ML rainfall nowcasting model can be
trained to forecast radar data globally, by only using satellite inputs77

and the Sentinel-1 & -2 satellites help mapping critical ecosystem
variables78. On the other hand, many national hydrometeorological
services (NHMS) struggle with insufficient observational infrastructure
or limited modeling and forecasting systems or access to those79,80.
Here, AI and ML may allow NHMS to overcome those challenges, e.g.
because it can fill data gaps or due tomore (cost-)efficient modeling—

but only if open-source implementations are available, knowledge is
shared and public institutions are supportive. The role of national
hydrometeorological services and nationallymandated institutions for
early warning (such as civil protection agencies) remains central to this
democratization process. While private sector innovation contributes
significantly to developing ML models and infrastructure, public
institutions retain the local contextual knowledge and jurisdiction
needed to align EWS with national disaster risk-reduction strategies.

The adoption of AI in EWS introduces macro-level and individual-
level risks that demand critical attention. A key concern lies in the
concentration of essential EWS infrastructure within a few entities,
particularly private corporations. If governments become heavily
reliant on proprietary AI platforms for monitoring, predicting, and
alerting about natural hazards, this could create vulnerabilities to
national security and public safety. Over-dependence on private
infrastructure risks allowing external entities to influence or disrupt
critical services during emergencies. To mitigate this, there is an
urgent need for open-source AI models and systems, transparent
standards, and international cooperation that ensures equitable access
to these technologies.

Collaboration between the private sector, research institutions,
and NHMS is needed to maximize the potential of ML for EWS while
maintaining the necessary levels of accountability and public over-
sight. To truly democratize access, policies must foster partnerships

that empower national entities without rendering them dependent on
proprietary, inaccessible technology. Open standards, capacity-
building initiatives, and institutional support are key elements to
enabling NHMS and other nationally mandated institutions to fully
leverage AI and ML, ensuring they can play a maximally beneficial role
in protecting lives and livelihoods.

Improve communication
Historically, a warning is a spoken or written message, that is, a one-
way, relatively abstract mode of communication. Now ML allows to
change that. More intuitive warnings are possible by creating photo-
realistic images of landscapes or properties affected by a predicted
hazard with generative AI81. By including text-capability, ML models
becomechatbots, enabling new levels of communication. Chatbots are
able to adapt messages to their users’ needs. Interactivity allows to
display additional information upon interaction. Of course, this is also
possible with conventional web-apps, but the degree of interactivity
increases with the advent of large-scale AI. One important aspect of
interactivity is explainability82, while Chatbots are not yet able to reli-
ably explain why they came up with certain outcomes, a large body of
work embraces methods to explain the outputs of deep neural net-
works and other ML models83–85. Integrating such techniques into
warnings improves upon the situation with current conventional
approaches: they are often too complex to easily decipher the
underlying reasons for a prediction.

Foundation models as a path forward
A technological path forward for AI-based EWS is the development of
foundationmodels (FMs). A foundationmodel is typically a large deep
neural network trained in a self-supervised manner on a large body of
unlabeled data, to subsequently enable its application to many dif-
ferent (downstream) tasks. A first class of foundation models have
been Large LanguageModels (LLMs)86–89, trained essentially on textual
information, from Wikipedia, scientific papers and ArXiV to news,
blogs and reports. These have been followed by Large Multi-Modal
Models (LMMs)90–93, trained in addition on images and sometimes
audio and video.

Recent works have introduced Foundation Models for Meteorol-
ogy and for Geospatial applications94–96. The former are trained on
large archives of atmospheric data, and can subsequently perform,
e.g., weather forecasting97, climate projections or air quality
forecasting98. For Meteorological FMs, the trend is to move from
reanalysis-based training towards directly training on measured
weather data, mainly from Earth Observation, as it represents most
closely the real Earth system. The vast availability of satellite imagery is
also exploited by geospatial FMs, e.g.,99, which are thus useful for any
type of mapping task, e.g., land cover mapping or biomass estimation.

For localized and impact-centric early warning, the combination
of meteorological and geospatial data, as well as socioeconomic data
appears necessary. It is not difficult to imagine a new generation of
FMs, trained on all three such data streams, or instead the coupling of
the separate FMs (Fig. 3). In fact, the techniques to achieve the bridging
of different modalities have already been developed for LMMs100–104

and thus just need to be adapted for the high-dimensional data
representing the whole Earth system.

A significant step in developing an early warning Foundation
Model is incorporating capabilities similar to LMMs, such as proces-
sing natural language and images. Integrating text can unlock new
predictors, personalized communication, and democratized access:
the state-of-the-art is reviewed more comprehensively in the supple-
mentary information. However, numerous challenges need to be
addressed, which we discuss in the following sections. First, we
address machine learning challenges related to biases, generalization
and explainability, and then take a broader perspective on responsible
AI in the context of Early Warnings for all.
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Towards robust AI-enabled EWS
Biases and distribution shifts
One of the major advantages of machine learning early warning sys-
tems is that they can implicitly learn from large amounts of data,which
is evenmore true for modern data-hungry foundationmodels. That is,
we hand over control of the modeling assumptions (e.g., locality or
recurrence) to the model itself. This, however, is no silver bullet to
solve all problems – rather the usage of AI comes with its own chal-
lenges when these implicit modeling assumptions (so-called inductive
biases105) are improper. Considering the impact of erroneous predic-
tions, avoiding such failures to model the real world is crucial in an
early warning foundation model.

One cause that can lead to such failure in neural networks is their
tendency to favor simplicity106,107. What reminds of Occam’s razor can
manifest in various forms, such as a preference for lower frequencies
and simpler data characteristics108. Ultimately, this simplicity bias can
even result in causally relevant aspects being disregarded in favor of
simpler yet causally irrelevant properties109. Such shortcut biases are
not limited to classical application areas of deep learning and have also
been shown to be relevant in earth system analysis110. Thus, a central
challenge is to connect FMs with novel attempts to estimate causality
in geospatial settings111.

Since ML models only learn a mapping from inputs to outputs,
they are also fundamentally limited to be applicable only in cases
where the inputs and the input-to-output relationships are similar to
the training data109,112. However, this conditionmight not be fulfilled for
Earth-related datasets110,113, especially considering climate-related
hazards, some of which simply did not occur in the past. For conven-
tionalMLmodels, one would typically tackle such a sampling bias two-
fold: on the one hand, tweaking datasets and training algorithms, such
that all applications can be captured by the training data domain, and
on the other hand, through uncertainty quantification: that is, expli-
citly labeling when the model may not be trusted.

For foundation models, their design characteristics already pro-
vide an important step towards robustness against distribution shifts.

Typically, they are not trained to specifically solve the thought-after
downstream task, but rather, on a generic self-supervised task like gap-
filling or next-step prediction. Yet, FMs are trained at a much larger
scale on diverse data, which should provide improved regularization
and help with covering well the covariate domain. Also, related to
climate change, an FM would have to be trained on many different
local climatic conditions around the globe, whichmay allow for space-
for-time substitution114 and climate analogs115 to mitigate the issue
partly: an extreme event may be out-of-distribution at one location,
but the norm in another. Still, further research is needed, in particular
to aid with overconfidence and hallucination116 in generative FMs and
allow for calibrated output uncertainties.

Open data
Key datasets need to be available and harmonized in order for FMs to
become feasible. In meteorology andmore general hazard prediction,
this has already been partly achieved117–119. For geospatial data, which is
heavily dependent on data pre-processing (e.g., cloud masking,
atmospheric corrections), there are some initiatives120–122, but no con-
sensus has evolved yet. In both cases, publicly funded data from
continuous observatories, satellites, and radar are commonly available
and provide relatively global coverage. Further down the earlywarning
chain, the situation becomesmore dire: socioeconomic data is seldom
available at finer resolution than district level and often not
standardized across countries. Moreover, much data on impacts
is buried in reports stored in the archives of national agencies and
insurance companies, without public availability. The past has
shown, ML research thrives, when clear benchmarks and targets
are available – designing such with EWS in mind is an open area of
research.

Bridging across scales
Such benchmark datasets will stumble upon a hurdle that will likely
require new method development: Designing globally applicable,
personalized EWS requires bridging across many scales. While
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Fig. 3 | Vision for an Integrated Early Warning Foundation Model. Integration of currently developed foundation models into a modular Early Warning Foundation
Model (center) allowing for ingestion of diverse data (left) and for addressing prediction and communication tasks (right).
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medium-range weather forecasting has a resolution of 10 s of KM,
socioeconomic data may be at any granularity from individual
households to large countries and geospatial data can be of high
spatial (just a few meters) or high temporal (a few minutes) fidelity.
How to align these different data streams, set points of reference and
also just plainly manage the storage and compute necessary for such
an endeavor needs to be studied. Even more so, since a split-apply-
combine, which is commonly used for scaling up methods, may be
inapplicable: teleconnection and cross-boundary interactions can be
relevant. Here, transformers123 are likely a good starting point for the
required advancements: they are suitable for modeling long-range
connections, e.g., for wildfire risk57, and they can be used to model
many different data streams in the same latent space102,104, even if the
data comes with different sparsity levels, e.g., linking county-level
agricultural data to satellite imagery for crop yield prediction124.

Respecting causality and scientific laws
EWS are most useful, if integrated into the decision-making process.
For instance, one could imagine an AI-based EWS to be used from
within a situation room, informing stakeholders about the current
situation, relevant context and potential courses of action. Especially
for the latter one, the system would need to be suitable for what-if
analysis, i.e., run counterfactual scenarios. Such scenarios are only
usable if the AI respects the causal mechanisms. Conventional ML can
be extended with prior knowledge to obey causality in certain
ways125,126, e.g., this has been recently used to study human
displacement127. For FMs, how to achieve this is an active area of
research: causal representation learning128. FMs for EWS ideally lever-
age causal representations, and at the same time provide a great test-
bed for developing such methods: current mechanistic EWS can be
used as ground-truth in emulation studies129, before moving to
observational data. In addition, knowledge-guided machine learning
(KGML) offers a promising pathway to enhance AI-based EWS by
embedding domain expertise directly into the learning process130. This
approach incorporates scientific principles and established rules to
ensure that the system’s predictions and recommendations align with
known laws of physics, economics, or other relevant fields. Hybrid
modeling systems, which combine data-driven AI models with tradi-
tional mechanistic models, are particularly well-suited for these
tasks131. Fine-tuning foundational models (FMs) within such hybrid
frameworks poses a useful challenge, as it requires integrating large-
scale, pre-trained models with the precise constraints and nuances of
domain-specific knowledge. This fine-tuning can enhance the robust-
ness and interpretability of EWS, allowing them to not only predict
outcomes but also offer explainable insights grounded in established
scientific and causal mechanisms.

EWS that work for all
Apart from the above algorithmic challenges, there are related but
broader concerns with making EWS work for all, providing access also
for the Global South and disadvantaged communities, and avoiding
power abuse. Some of these challenges implicitly exist also with tra-
ditional EWS. These challenges directly relate to the four pillars of early
warning systems identified by theWMO132: risk knowledge,monitoring
and forecasting, dissemination, and response capability (cf. Fig. 1).
Ensuring equal access to AI-based EWS supports risk knowledge and
monitoring across diverse contexts, while effective dissemination and
community-responsive design are essential to foster actionable
responses.With prudent design of anAI-based EWS there is the chance
of resolving them in a favorable way, but this requires intensive future
research.

Representation and trustworthiness
Amajor concernwith AI-basedmethods is the presence of biases in the
training datasets as detailed in the previous section. These biases are

particularly evident in the geographical distribution of data, where for
instance in-situ observations are more abundant in the Global North.
While Earth observation data from space can provide global coverage,
geostationary satellites, for example, offer the best data around the
equator. For societal data related to local vulnerability, these geo-
graphical biases are often even more pronounced. In addition to geo-
graphical biases, there are documented biases concerning ethnicity,
gender, age, and other features133. However, human decision-making is
also prone to biases and prejudices, which tend to be exacerbated in
stressful conditions or when rapid decisions are required134. Moreover,
humans have a limited capacity to process and integrate vast amounts
of knowledge and experience. This is where AI systems have the
potential to help, by accessing more extensive information and trans-
ferring knowledge (e.g., from one location to another) while still
accounting for local context—provided that (1) the AI has access to
appropriate data, and (2) some level of generalization can be assumed.

Furthermore, an AI-based system can be carefully developed
during calm times, making sure it maintains objectivity and follows
norms and rules during emergencies, where its warnings will be
independent of the subjective stress of the situation. Strides in this
direction have already been made, e.g., with large language models
where for instance echoing racist speech is being avoided135. Approa-
ches towards this Fair Learning are currently intensively researched
with Reinforcement-Learning-based approaches. Yet, this reveals the
important question of who is making the respective design decisions.
It is evident that the beneficiaries from such systems should have
agency in the design loop. This should both increase the objective
quality of warnings, taking local conditions into account, and the
trustworthiness, which is a function of the reliability of the system and
the psychological identification of the humans working with it136. It is
less clear how this can be achieved and the level at which each decision
should be made (community, district, country, …). Research will be
needed to scrutinize respective tradeoffs, which also relate to eco-
nomic and infrastructural capabilities that are required to adequately
deploy and work with such an EWS.

Ownership and agency
Data and tools provide power, raising the question about their own-
ership, especially to address the potential risks associated with the
centralization of power: when control over these resources is con-
centrated in the hands of a few, typically external entities, it can lead to
power imbalances that disenfranchise local communities—those who
aremost affected by climate risks. Ensuring data ownership and agency
for local communities is therefore essential. This involves not only
making data accessible but also participatory approaches to data col-
lection, interpretation, and usage137. Such empowerment helps to tailor
solutions that are culturally relevant and more effective at addressing
local needs. Furthermore, it supports sustainable practices and builds
resilience by fostering local expertise and leadership in climate-
adaptation strategies. Thus, research is needed on how to effectively
implement community-driven governance models for data ownership
in climate-adaptation strategies, e.g., through data trusts (cf.138).

Addressing the digital divide
Another prerequisite for effective AI-based EWS is addressing the
digital divide: While advancements in technology have somewhat
mitigated the accessibility issues related to digital-based early warning
systems, particularly in urban and semi-urban areas, significant chal-
lenges persist in rural and underdeveloped regions where infra-
structure remains inadequate. As global connectivity improves, the
focus increasingly shifts towards affordability and literacy — data
access costs need to be affordable and content understandable. Fac-
tors such as educational level and age need to be considered. Ensuring
that EWS are not only physically accessible but also economically
viable and user-friendly will thus be crucial.
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At least, in termsof energy and computational costs it is likely that
AI-based EWSs can be “cheaper” than traditional ones. For instance,
current efforts on medium-range weather forecasting allow AI-based
forecast with a small fraction of the classical computation, enabling
inference on a laptop45. Moreover, recent works on multilingual lan-
guage models139,140 hold promise to enable distributing warnings in
diverse languages, which is particularly important in the global
south133. Future research needs to study how to bring these promises
also to FM-based EWS, making them economically viable and acces-
sible across different socioeconomic and geographical landscapes,
considering variations in infrastructure, age, educational levels, and
technical proficiency.

Personalized warnings
The debate around personalized AI-based warnings versus empower-
ing individuals to understand their own risks is multifaceted and
nuanced. Personalized warnings offer specific benefits, such as pro-
viding timely, relevant information tailored to the unique circum-
stances and risk profiles of individuals. By running a personalization
step directly on a private smartphone, data does not need to be sent
back to a central server. This approach can enhance privacy, reduce
latency, and lessen bandwidth usage. Smartphones can collect envir-
onmental data (like location, motion, or even nearby sounds), which
can then be analyzed locally to generate personalized risk assess-
ments. For example, a smartphone could detect that it is in a flood-
prone area during heavy rains and alert the user accordingly. Of
course, higher levels of aggregation with less specificity, e.g., warnings
tailored to a community, are important, too. These levels of specificity
can improve responsiveness, enhance trust, and increase compliance,
particularly during emergencies when quick decision-making is cru-
cial. Furthermore, these systemscanhelp tooptimize resource use and
mitigate alert fatigue among populations in safer areas by reducing
unnecessary alerts. On the other hand, the increased specificity of
personalized warnings presents not only challenges in validation but
also raises ethical concerns regarding equity, fairness, and potential
biases in the AI models that generate these warnings. Personalized
systems may inadvertently lead to unequal access to critical informa-
tion if individuals are excluded due to technological barriers, such as
lack of smartphone access or connectivity. There is also the risk of
over-reliance on AI-generated messages, which could lead to mis-
placed trust if the model makes erroneous assessments. Safeguarding
mechanisms are essential to ensure that AI systems do not amplify
existing social inequities or inadvertently marginalize vulnerable
groups.

Moreover, transparency inhow these AImodels function is crucial
to maintain trust. Users should understand the basis upon which
warnings are personalized, and the underlying data must be ethically
sourced and usedwith explicit consent.Misuseor unauthorized access
to personal data is a significant risk, particularly when dealing with
sensitive information that could reveal an individual’s location or
behavior patterns. Therefore, safeguarding user privacy and ensuring
robust data governance practices are paramount to prevent misuse.
Effective frameworks for accountability are also needed. If govern-
ments or institutions base actions on personalized warnings, a clear
chain of accountability should be established, detailing how decisions
are made, who is responsible, and what safeguards are in place to
prevent misuse or misinformation. Balancing the benefits of persona-
lizationwith ethical considerations and riskmitigation is critical for the
future of AI in early warning systems.

Still, when these concerns are addressed, personalized warnings
canprovide significant advantages to empowering individualswith the
knowledge to assess their own risks. This approach promotes auton-
omy and enduring knowledge, enabling people to make informed
decisions independently of technological aids, which is particularly
valuable in scenarios where technology may fail or be inaccessible,

such as emergencies. Education on personal risk also fosters broader
societal benefits by increasing general awareness. However, environ-
mental data’s complexity and the rapid pace at which conditions can
change often exceed the average individual’s capacity to stay informed
without assistance. Personalized AI warnings can alleviate cognitive
overload by distilling complex information into actionable insights,
tailored to the user’s individual capacity. Thus, future work is needed
to ensure that the integration of personalized AI-based warnings does
not harm initiatives that enhance individual understanding of envir-
onmental risks, thus helping both immediate responsiveness and long-
termresilience.Moreover, in doing so, it is necessary to ensure that the
privacy and integrity of user data is preserved.

Beyond immediate crisis response
The success of early warning systems (EWSs) also hinges on their
ability to incorporate the response, the societal feedback, as well as
considering long-term systemic impacts as risk factors beyond the
classical hazard-exposure-vulnerability paradigm39. Traditional EWSs
often focus on immediate responses to crises, but future EWSs must
evolve to anticipate and mitigate long-term consequences, especially
those arising from potentially misguided or counterproductive
responses. Addressing these challenges involves exploring largely
untested approaches. Integrating agent-based models can simulate
societal behaviors for better prediction accuracy, while machine
learning-based inverse inference reveals hidden systemic risks by tra-
cing outcomes back to their root causes (Fig. 4). Gamification provides
an innovative way to engage the public in data collection, not only
enriching datasets for more accurate long-term predictions but also
empowering individuals by involving them actively in the process,
enhancing their awareness and preparedness.

Last but not least, current early warning systems, which are based
on impacts caused by concrete weather conditions in the next hours to
weeks, should be complemented by decadal time-scale early warning
systems. Developing a decadal time-scale EWS for climate and weather
risks is essential due to the increasing variability and extremity of
weather patterns caused by climate change. Decadal EWS should guide
effective adaptationmeasures,more targeted thanwhat can be inferred
from general climate change metrics and a general precautionary
principle. This involves identifying vulnerable regions and sectors,
planning infrastructuredevelopments, and formulatingpolicies that are
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Fig. 4 | Integrative, artificial intelligence (AI) - enabled strategy for Early
Warning of complex climate risks including an interactive component. The
Early Warning FM leads to improved causal and data-informed risk anticipation, fol-
lowed by AI-based communication. Anticipating disaster response as a risk factor39
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Information from the user-interaction should feed back to the model improvement.
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resilient to long-term climatic changes. Effective communication stra-
tegies are needed to convey long-term risks and adaptations to gov-
ernments, businesses, and communities, ensuring preparedness. Of
course, reliable forecasts are a prerequisite, too. Hence, generally
similar challenges as the ones mentioned above for short-term EWS
need to be addressed, yet with an important addition: For this impor-
tant challenge probabilistic and ensemble forecasts are highly relevant.
These forecasts present a range of possible outcomes with associated
probabilities, offering amorenuancedunderstandingof long-term risks
and allowing the development and discussion of scenario components.

Additionally, integrating EWSs with policy-making is crucial for
influencing long-term planning, ensuring decisions are guided by
potential future impacts. Finally, fostering global collaboration among
technical, community, and policy stakeholders is essential for devel-
oping innovative and resilient EWSs. Resulting key research questions
are synthesized in Box 1.

Outlook
Integrated AI will lead to paradigm shifts in EWS. First, AI, especially
Meteorological FMs, are already revolutionizing weather and hazard
forecasts, leading to enormous improvements in lead times and reso-
lution of warnings before disaster strikes. Second, multi-modal AI,
materialized through Impact FMs, can leverage geospatial and socio-
economic data to assess vulnerabilities and tear down previously exist-
ing silos impeding effective impact-based warnings. Yet, a foundation
model addressing the challenges mentioned above needs to resolve the
dichotomy of representing generalizable global knowledge while
accounting for local context. Society could reach large benefits from
such a system, or rather, fromsuch systems: the path towards integrated
AI in the early warning chain is not a monopoly. Instead, modularity is
key: ensuring checkpoints regarding hazards, direct and indirect
impacts along the warning chain for traceability and diversity in mod-
eling approaches, to achieve robustness and avoid concentration of
power. Foundationmodels tend to follow such an approach, where task-
specific fine-tuning follows a generic pre-training approach. It may be
fine to have a few fundamental approaches to the latter, to save upon
computational costs, while stakeholders can bring their owndata for the
former. For the societal integration of an AI-based EWS, it is essential to
prioritize human-centric approaches in the system’s design and imple-
mentation. AI researchers need to interact with stakeholders such as

humanitarians, economists, or sociologists, as well as the communities
that shall benefit from the systems. Then, Integrated AI will lead to
paradigm shifts in EWS. Especially for multi-hazard EWS, soon to be
implemented across the globe for the UN Early Warnings for All initia-
tive, AI has a lot to offer. Multi-modal AI can accelerate the shift from
hazards to impacts, increase the locality and personalization of warn-
ings, boost their accuracy and lead time, advance democratized access
and enable a previously unseen level of interactivity. With such cap-
abilities, our society’s ability to protect livelihoods from complex cli-
mate risk will be strengthened.
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