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Abstract
In this paper, we consider multi-stage robust optimization problems of the minimax type. We
assume that the total uncertainty set is the cartesian product of stagewise compact uncertainty
sets and approximate the given problem by a sampled subproblem. Instead of looking for
the worst case among the infinite and typically uncountable set of uncertain parameters, we
consider only the worst case among a randomly selected subset of parameters. By adopting
such a strategy, two main questions arise: (1) Can we quantify the error committed by the
random approximation, especially as a function of the sample size? (2) If the sample size
tends to infinity, does the optimal value converge to the “true” optimal value? Both questions
will be answered in this paper. An explicit bound on the probability of violation is given
and chain of lower bounds on the original multi-stage robust optimization problem provided.
Numerical results dealing with a multi-stage inventory management problem show that the
proposed approach works well for problems with two or three time periods while for larger
ones the number of required samples is prohibitively large for computational tractability.
Despite this, we believe that our results can be useful for problems with such small number
of time periods, and it sheds some light on the challenge for problemswithmore time periods.
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1 Introduction

We consider a multi-stage decision problem, i.e. a problem, where the decisions xt have to
be taken at discrete time instants t = 1, . . . , H +1, where H +1 is the horizon length. In our
setup, some relevant parameters are not known at time t of decision and become revealed only
at time t + 1. We look for the optimal decision strategy under the objective to minimize the
costs for the worst case among all possible parameter values. Thus we look for a multi-stage
robust solution.

The usual robust optimization models deal with static problems, where all the decision
variables have to be determined before the uncertain parameters are revealed. A vast literature
focused on uncertainty structure to obtain computationally tractable problems is available,
see for instance Dimitris Bertsimas (2004) and Soyster (1973) for polyhedral uncertainty sets
and Ben-Tal &Nemirovski (1999) for ellipsoidal uncertainty sets, respectively. However, this
approach cannot directly handle problems that are multiperiod in nature, where a decision at
any period should take into account data realizations in previous periods, and the decision
maker needs to adjust his/her strategy to the information revealed over time. This means that
some of the variables (non-adjustable variables) must be determined before the realization of
the uncertain parameters, while the other variables (adjustable variables) have to be chosen
after the uncertainty realization. For a recent overview of multiperiod robust optimization,
we refer to Bertsimas et al. (2011), Delage and Iancu (2015), Gabrel et al. (2012). In order
to describe such a situation, and extend robust optimization to a dynamic framework, the
concept of Adjustable Robust Counterpart (ARC) has been first introduced and analyzed in
Ben-Tal et al. (2003). This approach opened up the research in several new application areas,
such as portfolio optimization (Pınar & Tütüncü 2005, Tütüncü & Koenig 2004), inventory
management (Ben-Tal et al., 2005; Bertsimas & Thiele, 2006), scheduling (Yamashita et
al., 2007), facility location (Baron et al., 2011), revenue management (Perakis & Roels,
2010) and energy generation (Zhao et al., 2013). ARC is clearly less conservative than the
static robust approach, but in most cases it turns out to be computationally intractable. One
of the most recent methods to cope with this difficulty is obtained by approximating the
adjustable decisions by decision rules, i.e. combinations of given basis functions of the
uncertainty. A particular case is the Affinely Adjustable Robust Counterpart (AARC) (Ben-
Tal et al., 2003), where the adjustable variables are affine functions of the uncertainty. The
decision rule approximation often allows to obtain a formulation which is equivalent to a
tractable optimization problem (such as linear, quadratic and second-order conic (Ben-Tal et
al., 2002), or semidefinite (Ghaoui et al., 1998)), transforming the original dynamic problem
into a static robust optimization problem whose decision variables are the coefficients of the
linear combination. In Postek and denHertog (2016) amethodology for constructing decision
rules for integer and continuous decision variables has been provided. The authors show by
iteratively splitting the uncertainty set into subsets, how one can determine the later-period
decisions based on the revealed uncertain parameters.

However, in many practical cases, also the static robust optimization problem ensuing
from the decision rule approximation is still numerically intractable. In these situations, one
can recur to approximate solutions based on constraint sampling, which consists in taking
into account only a finite set of constraints, chosen at random among the possible continuum
of constraint instances of the uncertainty. The attractive feature of this method is to provide
explicit random bounds on the measure of the original constraints of the static problem that
are possibly violated by the randomized solution. The properties of the solutions provided
by this approach, called scenario approach have been studied in Calafiore and Campi (2004),
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Campi and Garatti (2008), de Farias and Roy (2004), where it has been shown that most of
the constraints of the original static problem are satisfied provided the number of scenarios
sufficiently large. The constraint sampling method has been also extensively studied within
the chance constraint approach through different directions by Erdogan and Iyengar (2006),
Luedtke and Ahmed (2008), Pagnoncelli et al. (2009).

In Bertsimas and Dunning (2016), Calafiore and Nilim (2004), Vayanos et al. (2012)
multi-stage convex robust optimization problems are solved by combining general nonlin-
ear decision rules and constraint sampling techniques. This means that the dynamic robust
optimization problem is transformed into a static one through decision rules approximation
and then solved via a scenario counterpart. In practice, the novelty of Vayanos et al. (2012)
is to introduce, besides polynomial decision rules, also trigonometric monomials and basis
functions based on sigmoidal and Gaussian radial functions, thus allowingmore flexibility. A
rigorous convergence proof for the optimal value, based on the decision rule approximation
and of the constraint randomization approach is also given. Convergence is proved when both
the complexity parameter (the number of basis functions in the decision rule approximation)
and the number of scenarios tend to infinity.

The work of Bertsimas & Dunning (2016) proposes a technique based on structured
adaptability that results in sample complexity, i.e. the minimum number of samples required
to achieve the desired probabilistic guarantees, that is polynomial in the number of stages.
This allows to provide a hierarchy of adaptability schemes, not only for continuous problems,
but also for discrete problems.

In the context of randomized methods for uncertain optimization control problems, the
scenario with certificates approach has been proposed in Formentin et al. (2016), based on
an original idea of Oishi (2006). This approach has been then extended and exploited for
anti-windup augmentation problems (Formentin et al., 2016). Themain idea of this approach
is to distinguish between design variables (corresponding to non-adjustable variables) and
certificates (corresponding to adjustable variables).

Linear decision rules have a long history also in stochastic programming (see, e.g., Garstka
and Wets (1974)), and have been adapted to Multi-stage Linear Stochastic Programming
(MSLP) in Shapiro and Nemirovski (2005), and in Kuhn et al. (2011) who analyzed their
application in the dual of the MSLP. Under certain assumption such as stagewise indepen-
dence, compact and polyhedral support, if uncertainty is limited to the right-hand side of
the constraints, Kuhn et al. (2011) and Shapiro and Nemirovski (2005) have shown that the
static approximations obtained restricting the primal and dual policies to be linear decision
rules are both tractable linear programs. Better policies have been obtained in Bampou and
Kuhn (2011), Chen et al. (2008) by considering polynomial decision rules and piecewise
linear decision rules respectively, while binary decision rules have been considered in Bertsi-
mas and Georghiou (2018). Recently Bodur and Luedtke (2018) present a new use of linear
decision rules for MLSP named two-stage linear decision rule approach based on the idea
of partitioning the decision variables into state and recourse decisions and applying linear
decision rules only to the state variables. This approach allows to reduce the problem to a two-
stage stochastic linear programwith a potentially improved policy and bounds. The approach
is also applied to the dual of an MSLP, imposing the restriction only on the dual variables
associated with the state equations and they show to obtain better bounds and policies than
the the ones provided by the standard static approach.

Other approaches not involving decision rule approximations have been proposed in the
literature to solve multi-stage robust optimization problem under special problem structure:
this is the case of the work Georghiou et al. (2019) which presents a Robust Dual Dynamic
Programming (RDDP) scheme to solve multistage robust linear optimization problems with
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special structure such as uncertain technology matrices and/or constraint right-hand sides.
The proposed algorithm decouples the problem into H + 1 two-stage subproblems that
approximate the costs arising in future stages through bounds on the cost-to-go functions and
iteratively solves the H + 1 subproblems in sequences of forward and backward passes.

In this paper, we consider randomized methods for robust multi-stage optimization prob-
lems. We approximate the given robust problem by a sampled subproblem via a scenario-tree
approximation, where instead of looking for the worst case among the infinite and typically
uncountable set of uncertain parameters, we consider only the worst case among a randomly
selected subset of parameters. In this way, we establish a link between multi-stage robust
optimization and multi-stage stochastic optimization. By adopting such a strategy, two main
questions arise: (1) Can we quantify the error committed by the random approximation, espe-
cially as a function of the sample size and provide a bound on the violation probability of the
ignored constraints? (2) If the sample size tends to infinity, does the optimal value converge
to the “true” optimal value? Both questions will be answered in this paper.

To simplify the understanding, we first consider the two-stage case, and we show that the
theoretical sample complexity depends only on the number of first-stage variables. For the
multi-stage case, the contributions can be summarized as follows: (i) define the probability
of violation at each decision stage; (ii) provide a bound on the probability of violation by a
function of the number of nodes of the tree up to that stage, the number of decision variables at
that stage and the pre-specified violation tolerance; (iii) come up with an iterative scheme to
define a sufficiently large number of nodes of the tree at each stage; and lastly, (iv) define the
total violation probability as the probability of violation at any stage.Moreover, lower bounds
on the true optimal value by extending two commonly used relaxations from the stochastic
programming literature such as the wait-and-see problem, and the two-stage relaxation are
provided. The proposed ideas are illustrated on a simple inventory model. The way how the
proposed algorithm works is shown by analyzing the optimality gaps and empirical violation
probabilities of the scenario-problem solutions, for many levels of the violation threshold, for
the two- and three-stage cases.While themain application considered deals with a piece-wise
affine objective and linear constraints, our bounds are valid also in the more general setup of
a convex objective and convex constraint sets. An example with convex objective function
and linear constraints is also presented.

The main difference between the approach proposed in this paper and the one in Vayanos
et al. (2012), is that we do not change the decision model to a simpler one restricting the
decision functions spaces via decision-rule approximation.The asymptotic result theyprovide
holds only, if the chosen function space is such large that any continuous function can be
uniformly approximated with a sup-distance less than some chosen ε. By more sampling
alone, the optimization gap cannot be brought to zero. In our setup, we keep the model as it
is and approximate it by sampling. Moreover, the authors in Vayanos et al. (2012) consider
only sampled paths from the uncertain parameters, while we consider complete sampled
scenario trees, leading to a much stricter notion of the so called violation probability, as it
will be explained in detail in Sect. 2.6. Furthermore, if the uncertainty set is finite and we
have sampled all points, then our solution is exact, while the decision-rule approximation
approach is typically not.

We may summarize the differences between our approch and that of Georghiou et al.
(2019) as follows: We allow convex objective functions and convex constraints, which is not
the case of Georghiou et al. (2019). Besides, our uncertainty sets can be arbitrary and need not
to be polyhedral. What we only need is a method to sample with a density which is bounded
from below. Advisable is to use a sampling method with constant density. In contrast, in
the setup in Georghiou et al. (2019) the geometry of the uncertainty sets as polyhedra is
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crucial for the algorithm to work. There is an extension in Georghiou et al. (2019), where the
authors talk about convex non-polyhedral sets which can be asymptotically approximated by
polyhedral sets. In this case the problem cannot be reduced to a finite number of constraints
but the approximation method decribed in Georghiou et al. (2019) is shown to converge to
the true optimal value asymptotically. This is achievable only with gigantic sample sizes.
No quality assertion can be given for a finite number of samples. In contrast, our notion
of violation probability allows to make a statement about the quality of the result for finite
sample size and also allows to calculate the required sample size for a predescibed required
quality. Furthermore, in our approach, the assumption that the uncertainty set is a cartesian
product can easily be relaxed. One may sample from the cartesian product and reject points
which are outside the prescribed uncertainty set. In terms of the scenario trees which we
will construct, we just cut off some subtrees which represent scenarios which are not in the
uncertainty set.

Our work is also related to a recent stream of articles (see (Chen & Luedtke, 2022;
Lam & Li, 2022; Liu, 2020)) on the use of sample average approximation for stochastic
programming problems without the assumption of relatively complete recourse. However,
the special nature of the robust optimization problem considered in this paper allows us to
obtain stronger results than the ones in the articles mentioned above. In particular, for the
case of two-stage stochastic linear programs, the strongest bounds in the literature on the
required sample size are obtained in Chen and Luedtke (2022) and the bounds proposed in
this paper for the robust version of the same case are stronger, not depending on the number
of second-stage variables. In addition, of the three papers mentioned above, only Liu (2020)
considers multi-stage problems.

The rest of the paper is organized as follows. Section 2 discusses the formulations of two-
stage, multi-stage robust linear and convex programs, and provides a result on the probability
of violation. Bounds on the number of scenarios needed to obtain a user-prescribed guarantee
of violation is given. Section 3 provides a chain of inequalities among lower bounds on the
optimal value of the multi-stage robust optimization problem. Section 4 presents numerical
results dealing with a multi-stage inventory management problem. The conclusions follow.

2 Main results

2.1 Basic facts

We consider a multi-stage discrete-time decision problem, where the decisions at times
t = 1, . . . , H + 1, denoted by xt ∈ R

nt have to be made under the presence of parameters
ξt , t = 1, . . . , H . At time t , the values ξ1, . . . , ξt−1 are known, but for ξt it is known only that
it lies in some uncertainty set�t . The problem is to find optimal decisions under a worst-case
objective, making the problem of nested minimax type.

Typically, the uncertainty sets are uncountable and one of the possible ways of treating
this problem is by approximating the large uncertainty set by well chosen finite one. Notice
that, in this paper, we do not restrict the class of possible decisions.

The uncountable sets �t are replaced by finite subsets �̃t . These subsets may be chosen
by minimizing the Pompeiu-Hausdorff distance between the large sets �t and the finite sets
�̃t , i.e. by an optimal selection of points. However, in this paper we use the simplest way of
extracting points from larger sets: we do random sampling.
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Notice that for a sampling method we need to define a probability measure1 P on � =
XH
t=1�t . While the proposed methods work for any probability measure on �t which has a

Lebesgue density which is bounded away from zero, we recommend to use, if possible, a
uniform distribution on�t for a "fair" treatment of all points in�t and the productmeasure on
�. Notice thatwe have to use the same probabilitymeasure for sampling and for calculation of
the violation probability. Theoretically, one could also try to construct a probability measure
which makes the "extremal" points more likely, but by treating some points less likely, we
may have difficulties in interpretating the violation probability.

If one chooses a probability which is not stagewise independent, then the notion of viola-
tion probablity becomes difficult to interpret. In fact, the notion of the violation probability
can be interpreted as the volume of the set of points, which would lead to a “surprise”, when
sampled because they lead to a change in the best optimal value found so far. The volume
of “surprise” points is found be using independent sampling with probabilites with constant
density. If we choose stagewise dependent sampling, it could happen that the calculated vio-
lation probability is quite low, but the volume of samples leading to “surprise” in the above
sense is large.

By considering Nt independent random samples from Pt , for each t , finite subsets �̂
Nt
t of

sizes Nt are extracted from �t , and the multi-stage worst-case problem is solved with

�1 × · · · × �H ,

replaced by the finite sets

�̂
N1
1 × · · · × �̂

NH
H .

The technique to replace a possible infinite set of convex constraints by a random finite
selection of these constraints was originally introduced by Calafiore and Campi (2004) and
later improved independently by Calafiore (2010) as well as by Campi and Garatti (2008).
The sampled sets �̂

Nt
t are referred to as sampled scenarios. We remark that in the stochastic

optimization literature the use of a finite number of scenarios to represent the infinite possible
realization of the uncertain quantities ξt is rather popular, see e.g. Dupačová et al. (2003),
Pflug & Pichler, (2014), Shapiro et al. (2009).

Consider the robust optimization problem:

RO : min
x∈X c�x

s.t. f (x, ξ) ≤ 0, ∀ξ ∈ � , (1)

or equivalently

RO : min
x∈X

{
c�x : sup

ξ∈�

f (x, ξ) ≤ 0
}

, (2)

where x ∈ X ⊆ R
n is the optimization variable, X is convex and closed and f (x, ξ) :

X × � → R is a convex function in x for all ξ ∈ �. The optimal objective value v(·) of
problem (1) is denoted by v(RO).

Definition 1 (scenario approximation) Suppose that� is a compact set and P is a probability
measure on it with nonvanishing density. Let ξ (1), . . . , ξ (N ) be independent scenarios from
�, sampled according to P

N = P × · · · × P, N times. The “scenario” approximation of

1 If historical data are available, we can use them, but we would formulate the problem differently.
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problem (2) is defined as follows:

R̂O
N : min

x∈X

{
c�x : max

i=1,...,N
f (x, ξ (i)) ≤ 0

}
, (3)

with the understanding that, in (3), we let the optimal solution v(R̂O
N
) = ∞ whenever the

random extraction ξ (1), . . . , ξ (N ) leads to an infeasible problem.2

Definition 2 (violation probability) The “violation probability” V (·) of the sample �̂N :={
ξ (1), . . . , ξ (N )

}
is defined as:

V (�̂N ) := P

{
ξ (N+1) : min

x∈X

{
c�x : max

i=1,...,N+1
f (x, ξ (i)) ≤ 0

}
> v(R̂O

N
)

}
, (4)

where also ξ (N+1) is sampled from P.

Notice that V is a random variable taking its values in [0, 1].
We report here the Calafiore, Campi and Garatti main result, which is crucial for this

paper.

Proposition 1 (CCG Theorem, Calafiore (2010) and Campi and Garatti (2008)) Given an
accuracy level ε ∈ (0, 1) and a sample �̂N , the tail probability of the violation probability
V (�̂N ) under P can be bounded by

P{V (�̂N )>ε} ≤ B(N , ε, n) =
n∑
j=0

(
N
j

)
ε j (1 − ε)N− j . (5)

For any probability level ε ∈ (0, 1) and confidence level β ∈ (0, 1), let:

N (ε, β, n) := min

⎧
⎨
⎩N ∈ N :

n∑
j=0

(
N
j

)
ε j (1 − ε)N− j ≤ β

⎫
⎬
⎭ . (6)

Then N (ε, β, n) is a sample size which guarantees that the ε-violation probability given in
(5) lies below β.

Remark 1 (On the CCGTheorem) Notice that, in the CCGTheorem,we defined the violation
probability in terms of the cost function, following the approach in Calafiore (2010). This
allows to define the violation also for possible situations in which the ensuing scenario
problem (3) turns out to be infeasible. It should also be remarked that the previous result
holds under some assumptions on the scenario problem (3). Namely, the CCG Theorem
requires that it is guaranteed that when problem (3) admits an optimal solution, this solution
is unique (uniqueness), and that it is nondegenerate with probability one (nondegeneracy).
These assumptions are of technical nature, and, as observed in Calafiore (2010), can be
usually relaxed. For instance, uniqueness of the solution can essentially be always obtained
by imposing some suitable tie-breaking rule. Regarding the definition degeneracy, we refer
the reader to Calafiore (2010, §3.4) for a detailed discussion.

We remark that, in the literature, the minimum number of samples for which B(N , ε, n) ≤
β holds for given ε ∈ (0, 1) andβ ∈ (0, 1) is referred to as sample complexity, see for instance

2 Notice that v(R̂ON
) = ∞ in (3) implies that also v(RO) = ∞ in (2) and detecting this, one may stop

sampling.
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Tempo et al. (2013). There exist several results in the literature about bounding the sample
complexity. In particular, in Lemma 1 and 2 in Alamo et al. (2015), it is proved that given
ε ∈ (0, 1) and β ∈ (0, 1):

N (ε, β, n)≤ N∗(ε, β, n) :=1

ε

e

e − 1

(
ln

1

β
+ n

)
, (7)

where e is the Euler constant and n is the dimension dim(·) of vector x , i.e. n = dim(x).
This bound gave a (numerically) significant improvement upon other bounds available in the
literature (Calafiore, 2010; Calafiore et al., 2011). Notice that while bound (7) is certainty
useful for estimating N , the problem in (6) can be solved by using bisection or ready-made
tools such as Matlab betainv, in order to get the exact (tight) value of N .

The CCG Theorem can also be applied to more general situations, since some of them
can be reformulated to fit into the form (2). A convex objective function c(x) instead of the
linear objective function can be handled as follows:

min
x∈X

{
c(x) : sup

ξ∈�

f (x, ξ) ≤ 0
}

,

which can be rewritten as:

min
x∈X,γ∈R

{
γ : sup

ξ∈�

f (x, ξ) ≤ 0; c(x) − γ ≤ 0
}
.

This problem is now as in (2). Notice that the decisions are here the pair (x, γ ) and therefore
the dimension of the decision variable (vector) is dim(x) + dim(γ ) = n + 1.

Also a supremum in the objective as in the following problem can be reformulated:

min
x

sup
ξ∈�

{
g(x, ξ) : x ∈ X(ξ)

}
, (8)

where g : x 
→ g(x, ξ) is convex in x and X(ξ) are convex sets for all ξ ∈ �. To see this,
set:

f (x, ξ): = g(x, ξ) + ψX(ξ)(x) , (9)

where

ψB(x) :=
{
0 if x ∈ B

∞ otherwise.
(10)

Then f is convex in x and (8) can be written as:

min
x

sup
ξ∈�

f (x, ξ) .

Finally, observe that this problem is equivalent to:

min
x,γ

{
γ : sup

ξ∈�

f (x, ξ) − γ ≤ 0
}

.

Again, this problem is of the standard form (2) with an augmented decision variable (vector)
of dimension dim(x) + 1.
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2.2 Two-stage robust linear case

To simplify our exposition, we first analyze a two-stage robust linear program, formally
defined as follows:3

RO2 : min
x1

c�
1 x1 + sup

ξ1∈�1

[
min
x2(ξ1)

c�
2 (ξ1)x2(ξ1)

]

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ1)x1 + W2(ξ1)x2(ξ1) = h2(ξ1), x2(ξ1) ≥ 0, ∀ξ1 ∈ �1 , (11)

where c1 ∈ R
n1 and h1 ∈ R

m1 are known vectors and A ∈ R
m1×n1 is a given (known)

matrix. The uncertain parameter vectors and matrices as functions of the uncertain factor ξ1
are given by h2(ξ1) ∈ R

m2 , c2(ξ1) ∈ R
n2 , T1(ξ1) ∈ R

m2×n1 , and W2(ξ1) ∈ R
m2×n2 . �1 is a

compact set in R
k1 . The goal is to find a first-stage decision x1 and a second-stage decision

function ξ1 
→ x2(ξ1), such that the cost function in the worst-case realization of ξ1 ∈ �1 is
minimized. To this end, we first remark that problem (11) can equivalently be rewritten as
follows:

RO2 : min
x1∈X1

{
c�
1 x1 + R(x1)

}
, (12)

where

X1 := {x1 ≥ 0 : Ax1 = h1} , (13)

and R(x1) is the worst-case recourse function

R(x1) := sup
ξ1∈�1

Q (x1, ξ1) ,

with Q (x1, ξ1) being the recourse function

Q(x1, ξ1) := min
x2(ξ1)

c�
2 (ξ1)x2(ξ1)

s.t. T1(ξ1)x1 + W2(ξ1)x2(ξ1) = h2(ξ1)

x2(ξ1) ≥ 0 . (14)

Since RO2 in (11) is of minimax type, we have to make the used notion of feasibility more
precise. This is discussed in the next remark.

Remark 2 (On the feasibility of RO2) Define the feasible set at stage 2 for given x1 and ξ1 as
follows:

X2(x1, ξ1) := {x2 ≥ 0 : T1(ξ1)x1 + W2(ξ1)x2 = h2(ξ1)} . (15)

Notice that the worst-case recourse function can be expressed in terms of (15):

R(x1) = sup
ξ1∈�1

min
x2∈X2(x1,ξ1)

c�
2 (ξ1)x2(ξ1) .

Define X2(x1) := ⋂
ξ1∈�1

X2(x1, ξ1). For all x1 such that X2(x1) = ∅, we set R(x1) = ∞.
Then, we set Feas = {x1 ≥ 0 : Ax1 = h1, X2(x1) = ∅}. Notice that the problem has

3 We adopt the convention of putting as lower indices the number of stages of the problem, e.g. RO2 denotes
a two-stage robust linear problem (H = 1).
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relatively complete recourse iff Feas = X1. If Feas = ∅, we set the optimal objective value
v(RO2) to ∞.

It may happen that all second-stage problems are unbounded, i.e.R(x1) = −∞ for some
x1 ∈ Feas = ∅. In this case we assign the value v(RO2) = −∞. However an infeasible first-
stage (i.e. Feas = ∅ with v(RO2) = ∞) is not compensated by an unbounded second stage
and gives the value v(RO2) = ∞. This resolves the problem about ∞ − ∞. An infeasible
second stage for some ξ1 makes the problem infeasible, even if the first-stage would be
unbounded.

If RO2 is feasible and bounded, its optimal value is neither ∞ nor −∞. In this case, the
optimum v(RO2) may be attained or not in general (but by our assumptions the optimum
is always attained). Suppose that the optimal value v(RO2) with −∞ < v(RO2) < ∞ is
attained. Then a solution set consists of all pairs (x1, ξ1 
→ x2(ξ1)) such that x1 ∈ Feas and
x2(ξ1) ∈ X2(x1, ξ1) for all ξ1 ∈ �1 such that

c�
1 x1 + sup

ξ1∈�1

c�
2 (ξ1)x2(ξ1) = v(RO2) .

Notice that we do not require that x2(ξ1) are in the argmins of minx2(ξ1){c�
2 (ξ1)x2(ξ1) :

x2(ξ1) ∈ X2(x1, ξ1)} for all ξ1 ∈ �1.

It is immediate to observe that problem RO2 rewrites as follows:

RO2 : min
x1∈X1

{
c�
1 x1 + γ : sup

ξ1∈�1

Q (x1, ξ1) − γ ≤ 0

}
. (16)

A key observation of this section is the fact that the above problem is exactly in the
form of the CCG Theorem. Indeed, we remark that the function Q (x1, ξ1) as defined in
(14) is a convex function in x1. This follows from the structure of (14) and the fact that if
(x, y) 
→ f (x, y) is jointly convex, then x 
→ miny f (x, y) is also convex.

The above observation justifies the adoption of a sampling approach, based on the random
extraction of N1 independent identically distributed (iid) scenarios:

�̂
N1
1 :=

{
ξ

(1)
1 , . . . , ξ

(N1)
1

}
,

of the random variable ξ1, similarly to what is proposed in Vayanos et al. (2012). Recall that
P has a nonvanishing density on the compact set �. Let T1(ξ

(i)
1 ), h2(ξ

(i)
1 ), c2(ξ

(i)
1 ) be the

realization of T1(ξ1), h2(ξ1) and c2(ξ1) under scenario ξ
(i)
1 , i = 1, . . . , N1, and let x (i)

2 be

the second-stage (adjustable) design variables created for the scenarios ξ
(i)
1 , i = 1, . . . , N1.

These scenarios are used to construct the following sample-based approximation based
on N1 instances of the uncertain constraints:

R̂O
N1
2 : min

x1∈X1,γ

{
c�
1 x1 + γ : max

i=1,...,N1
Q
(
x1, ξ

(i)
1

)
− γ ≤ 0

}
.

We note that the above problem explicitly rewrites as follows:

R̂O
N1
2 : min

x1∈X1,γ,x (1)
2 ,...,x

(N1)

2

c�
1 x1 + γ

s.t. c�
2 (ξ

(i)
1 )x (i)

2 ≤ γ, i = 1, . . . , N1

T1(ξ
(i)
1 )x1 + W2(ξ

(i)
1 )x (i)

2 = h2(ξ
(i)
1 ), i = 1, . . . , N1

x (i)
2 ≥ 0, i = 1, . . . , N1 . (17)
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We define now the violation probability V1 for the two-stage case as:

V1(�̂
N1
1 ) := P

{
ξ (N1+1) : v(R̂O

N1+1
2 ) > v(R̂O

N1
2 )
}

. (18)

The interpretation of the violation probability is as follows: if we consider the sampled

problem R̂O
N1
2 , then V1(�̂

N1
1 ) is the probability that we encounter an (yet unseen) uncertainty

realization ξ
(N1+1)
1 leading to a cost v(R̂O

N1+1
2 ) larger than v(R̂O

N1
2 ). Notice that, in the light

of Remark 2, a larger cost could also mean that the problem becomes infeasible at stage
two (we have in this case that the cost is infinite). Hence, the smaller is V1, the higher is the
probability that the solution at stage one will lead to a feasible stage two problem, and that
no cost increase is observed.

We are hence in the position of providing a rigorous result connecting the violation prob-

ability to the number of scenarios N1 adopted in the construction of the R̂O
N1
2 problem.

An easy consequence of the basic Proposition 1 is the following result (see Formentin et
al. 2016).

Theorem 2 (two-stage robust linear case) Given an accuracy level ε ∈ (0, 1), the violation
probability of the sample-based problem R̂O

N1
2 , based on the random extraction of N1 iid

scenarios of ξ1, is bounded as:

P

{
V1(�̂

N1
1 ) > ε

}
≤ B(N1, ε, n1 + 1) , (19)

where B(N1, ε, n1 + 1) is as in (5) with n1 = dim(x1) and 1 = dim(γ ).

Note that Eq. (7) can be used to obtain a priori the number of scenarios N1 (i.e. the
sample complexity) necessary to guarantee the desired level of confidence β that the violation
probability V1(�̂

N1
1 ) is less than a pre-determined desired level ε. It is important to highlight

that the number of scenarios N1 in formula (7) depends only on the dimension of first-stage
variables (non-adjustable variables); thus it reduces the number of scenarios needed to satisfy
a prescribed level of violation with respect to that proposed in Vayanos et al. (2012).

2.3 Connections with scenario with certificates approach

It is interesting to observe that problem RO2 can be restated as the following robust with
certificates RwC2 problem:

RwC2 : min
x1∈X1,γ

c�
1 x1 + γ

s.t. ∀ξ1 ∈ �1, ∃ x2(ξ1) satisfying

c�
2 (ξ1) x2(ξ1) ≤ γ

x2(ξ1) ≥ 0, T1(ξ1)x1 + W2(ξ1)x2(ξ1) = h2(ξ1) ,

where we distinguish between design variables (x1, γ ) and certificates x2(ξ1). This problem
does not contain a nested optimization as RO2. It is just a standard optimization problem
with possibly infinitely many variables and infinitely many constraints. RwC2 is feasible, if
its constraint set is non-empty (otherwise we set its optimal value to∞). It is bounded, if it is
feasible and its optimal value is not −∞. We set the optimal value v(RwC2) to ∞ if RwC2

is not feasible and to −∞ if it is unbounded.
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It should be noted that the two formulations are equivalent, as formally proved in the next
Theorem. We remark that a similar result can be found in Takeda et al. (2008). We provide
the proof in Appendix A for completeness.

Theorem 3 RO2 and RwC2 are equivalent formulations, i.e. RO2 is feasible and bounded
if and only if RwC2 is feasible and bounded. In the case of feasibility and boundedness,
the optimal value is either attained by both or by none. If the optimal value is attained, the
optimal solution values coincide.

We note that in problem R̂O
N1
2 , a certificate x (i)

2 is constructed for every scenario ξ
(i)
1 .

The rationale behind this approach is the following: We are not interested in the explicit
knowledge of the function x2(ξ1), we are content with the fact that for every possible value
of the uncertainty there exists a possible choice of x2 compatible with the ensuing realization
of the constraints. Note that this represents a key difference with respect to other sampling
based approaches. In particular, in Vayanos et al. (2012) different explicit parametrizations
of the decision function x2(ξ1) forming an M-dimensional subspace are introduced. It is
easy to infer how this latter approach is bound to being more conservative, since the an extra
constraint on the solution space is introduced.

It is clear that the approximate solution returned by problem R̂O
N1
2 is optimistic, since it

considers only a subset of possible scenarios. That is, the following bound holds for all N1:

v(R̂O
N1
2 ) ≤ v(RO2) . (20)

Hence, we have derived a lower bound, which by construction is better than bounds derived
using wait-and-see approaches, as discussed in Sect. 3. Moreover, it is easy to show that the
formulation is consistent, that is:

lim
N1→∞ v(R̂O

N1
2 ) = v(RO2) a.s.

This will be discussed in a more general setting in Sect. 2.5.

2.4 Multi-stage robust case

We are now ready to introduce the multi-stage generalization of RO2, see (11) with convex
objective functions and linear constraints. We denote by ξ

t
:= (ξ1, . . . , ξt ) the history of

the uncertainty up to time t . We consider the following robust convex program over H + 1
stages:

ROH+1 : min
x1

c1(x1)+

+ sup
ξ1∈�1

⎡
⎢⎣ min
x2(ξ1)

c2
(
x2, ξ1

)+ sup
ξ2∈�2

⎡
⎢⎣· · · + sup

ξH∈�H

⎡
⎢⎣ min
xH+1

(
ξH

) c�H+1
(
xH+1, ξH

)
⎤
⎥⎦

⎤
⎥⎦

⎤
⎥⎦

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ1)x1 + W2(ξ1)x2(ξ1) = h2(ξ1), ∀ξ1 ∈ �1

.

.

.

TH (ξH )xH (ξH−1) + WH+1(ξH )xH+1(ξH ) = hH+1(ξH ), ∀ξH ∈ �H

xt (ξ t−1) ≥ 0 ∀ξt−1 ∈ �t−1; t = 2, . . . , H + 1 , (21)
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where h1 ∈ R
m1 is a known vector and A ∈ R

m1×n1 is a known matrix. The uncertain
parameter vectors and matrices depending on the parameters ξt ∈ �t are then given by
ht ∈ R

mt , Tt−1 ∈ R
mt×nt−1 , and Wt ∈ R

mt×nt , t = 2, . . . , H + 1. �t are compact sets
in R

kt and ct : R
nt × R

kt−1 → R, i = 1, . . . , H + 1, are convex in xt and continuous in
(xt , ξt−1).

There is an important difference between the two-stage case and the three- (ormore-) stage
case, due to the dynamic character of the multi-stage model: Since the optimization problems
in (21) over stages are nested, they cannot be written as one big optimization problem unless
new additional constraints are formulated, that is decisions at stage t are not allowed to depend
on ξ -values from later stages. This property of non-anticipativity requires to reconsider the
notion of random sampling and constraint violation. Indeed, the correct data structure for a
multi-stage (non-anticipative) robust optimization problem is a tree of ξ -values and not just a
collection of ξ -vectors. This tree has height H . A relevant random draw from the uncertainty
set � = XH

t=1�t is the collection of independently sampled values:

�̂
N1
1 = {ξ (1)

1 , . . . , ξ
(N1)
1 } ,

�̂
N2
2 = {ξ (1)

2 , . . . , ξ
(N2)
2 } ,

...

�̂
NH
H = {ξ (1)

H , . . . , ξ
(NH )
H } ,

which can be organized as a tree T̂ N1,...,NH , where {ξ (1)
1 , . . . , ξ

(N1)
1 } are the successors of the

root, and recursively all nodes at stage t + 1 get all values from �
Nt
t as successors. Notice

that this is a random tree (as it depends on the sample) and that the number of nodes at stage
t + 1 of the tree is N̄t := ∏t

s=1 Ns . The total number of nodes of the tree is hence:

Ntot := 1 +
H∑
i=1

N̄i = 1 + N1 + N1N2 + · · · + N1N2 · · · NH .

For each node of the finite tree T̂ N1,...,NH one has to consider a decision variable x . Let
ξ

(i1)
1 , ξ

(i2)
2 , . . . , ξ

(iH )
H with i1 = 1, . . . , N1, i2 = 1, . . . , N2, . . . , iH = 1, . . . , NH be a path

of the tree and let x (i1)
1 , x (i1i2)

2 , . . . , x (i1...iH )
H the corresponding decision variables4. The finite

problem on the sampled tree can be written as:

R̂ON1,...,NH
H+1 :min

x1
c1(x1)+

+max
i1

⎡
⎣min
x

(i1)

2

c2
(
x(i1)
2 , ξ

(i1)
1

)
+ max

i2

⎡
⎣· · · +max

iH

⎡
⎣ min
x

(i1 ...iH )

H+1
cH+1

(
x(i1...iH )
H+1 , ξ

(iH )
H

)
⎤
⎦
⎤
⎦
⎤
⎦

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ
(i1)
1 )x1 + W2(ξ

(i1)
1 )x(i1)

2 = h(i1)
2 , ∀i1 = 1, . . . , N1

...

TH (ξ
(iH )
H )x

(i1...iH−1)
H +WH+1(ξ (iH )

H )x(i1...iH )
H+1 =hH+1(ξ (iH )

H ), ∀iH =1, . . . , NH

x(i1...it )
t ≥ 0 , t = 1, . . . , H + 1; ∀i1, . . . , iH . (22)

4 Because of the general setup of the model, the decisions may be path dependent.
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The purpose of this paper is to compute a bound for the violation probability of the optimal

value obtained by the sampled version R̂O
N1···NH
H+1 given by (22), and to show that the optimal

values of the sampled version converge to those of the basic problem ROH+1 (see (21)),
when the sampling rates tend to infinity. Notice that if the dimension of the sampled model

R̂O
N1···NH
H+1 is too large, in special cases, decomposition techniques can be applied.

2.5 Convergence analysis

In this section we show that by letting the sample sizes N1, N2, . . . , NH tend to infinity, the
optimal value of the sampled problem (22) converges almost surely to the optimal value of
the basic problem (21). To this end, introduce the following assumptions:

(i) The sets �t are compact with nonempty interior.
(ii) The probability P defined on � = �1 × · · · × �H has a nonvanishing density, such

that the probability of all relative open sets in � is positive.
(iii) The functions ξt 
→ ct+1(ξt ), ξt 
→ Tt (ξt ), ξt 
→ Wt+1(ξt ), ξt 
→ ht+1(ξt ) defined on

� are continuous and therefore uniformly continuous for t = 1, . . . , H .
(iv) There is a constant K such that the optimal values of (21) are uniformly bounded, i.e.

‖xt‖ ≤ K , t = 1, . . . , H + 1.
(v) The rank of the matrices Wt+1(ξt ) is mt+1 for all ξt ∈ �t .

Recall that we sample Nt independent replications from the distribution Pt in �t . It is
important to emphasize that the choice of the sampling probability is at our discretion. Any
distribution on � = �1,× · · · × �H with nonvanishing Lebesgue density can be used.
However, there is no reason for using dependent samples, this would only complicate the
convergence proof. Notice also that the violation probabilites must be formulated using the
same probability adopted for sampling. The best choice for P would be a sampling measure
which concentrates on the values of ξt , which are maximizers of the involved functions.
However these maximizers are unknown when the samples have to be selected.

Lemma 4 Under Assumptions (i)–(v),

lim
Nt→∞ max

ξt∈�t
min

ξ
(i)
t ∈�̂

Nt
t

‖ξ (i)
t − ξt‖ = 0,

almost surely for all t .

Corollary 5 If g is a continuous functions on �t , then min
ξ

(i)
t ∈�̂

Nt
t

g(ξ (i)
t ) converges to

minξt∈�t g(ξt ) a.s. for Nt → ∞. The same is true for the maximum.

Proposition 6 Under Assumptions (i)-(v), ifmin(N1, . . . , NH ) → ∞, then the optimal value
of the sampled problem (22) converges to the optimal value of the basic problem (21).

We provide the proofs of Lemma 4 and Proposition 6 in Appendix C for completeness.

2.6 The violation probability at stage t

First note that there is a one-to-one correspondence between a multisample �̂
N1
1 ×· · ·×�̂

NH
H

and the sample scenario tree T̂ N1,...,NH . For a fixed tree T̂ N1,...,NH , the robust optimization
problem (22) may be solved, leading to an optimal value of:

v(T̂ N1,...,NH ):= v(R̂O
N1···NH
H+1 ) .
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Fig. 1 The original sampled tree T̂ 3,2

Notice that this value is by construction a lower bound to the optimal value v(ROH+1) of
the original infinite problem (21).

As afirst step,wedefine the probability of violation at stage t . To this end,we add anewsce-
nario ξ

(Nt+1)
t from�t to the original data set, and form the associated tree T̂ N1,...,Nt+1,...,NH .

Then, a violation at stage t occurs, if solving the finite problem on this new extended tree
leads to a higher value than for the smaller tree T̂ N1,...,NH . Given the previously sampled tree
T̂ N1,...,NH , the probability of stage t violation is therefore given by:

Vt (T̂ N1,...,NH ) = Vt (�̂
N1
1 , . . . , �̂

NH
H ): = P

{
ξ
(Nt+1)
t : v(T̂ N1,...,Nt+1,...,NH ) > v(T̂ N1,...,NH )

}
.

(23)

Before discussing how to derive bounds on the probability distribution of Vt , we illustrate
with a simple example the meaning of the concepts introduced so far.

Illustration. For a simple illustration, assume that �1 = �2 = [0, 1]. We sampled from
�1 the three values ξ

(1)
1 = 0.2, ξ (2)

1 = 0.6, ξ (3)
1 = 0.8 and from�2 the two values ξ

(1)
2 = 0.3,

ξ
(2)
2 = 0.8. The corresponding sampled tree T̂ 3,2 is shown in Fig. 1. As before, we denote
the optimal value based on the (random) data of tree T̂ 3,2 by v(T̂ 3,2). In order to define the
stage 1 violation probability, we sample a new point ξ

(4)
1 = 0.4 ∈ �1 and form the new,

extended tree T̂ 4,2 (see Fig. 2). A violation V1 occurs, if v(T̂ 4,2) > v(T̂ 3,2) and the stage
1 violation probability is the probability of the random draw ξ41 which results in a violation.

Similarly, we may define the stage 2 violation probability. Sample a new point ξ
(3)
2 = 0.5

and form the tree given in Fig. 3. A stage 2 violation occurs, if the optimal value on tree T̂ 3,3

is larger than the optimal value on tree T̂ 3,2, i.e. whenever v(T̂ 3,3) > v(T̂ 3,2).
There is an important difference between the work of Vayanos et al. (2012) and our

approach. We assume that the total uncertainty set is the cartesian product set � = ×H
t=1�t

and consider therefore trees, while Vayanos et al. (2012) consider always paths. To illustrate
it, suppose that we sample N paths from the product set � = �1,× · · · × �H denoted by
(ξ

(i)
1 , . . . , ξ

(i)
H ) for i = 1, . . . , N . Since � has product structure, any combination of points

from �t , t = 1, . . . , H is a valid point in �. Thus by sampling N path, we get in fact NH

points

(ξ
(i1)
1 , . . . , ξ

(it )
t , . . . , ξ

(iH )
H ), it ∈ {1, . . . , N } ,
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Fig. 2 The randomly extended tree T̂ 4,2. The new nodes are in bold

Fig. 3 The randomly extended tree T̂ 3,3. The new nodes are in bold

i.e. all possible selections of N points from �̂t , t = 1, . . . , H . These selections can be
organised in a tree with NH leaves. Since our tree contains NH paths and not just N , a
violation is much more likely to occur and be detected earlier than in the path-oriented
approach.

The calculation ignoring the combined samples leads to an underestimation of the true
value (the true costs) of the underlying problem and also the violation probability. Compared
to Vayanos et al. (2012), our notion of violation is different and stronger. The tree structure
as we consider it in this paper guarantees the best (lower) bound of the true value, which is
obtainable from all the samples obtained so far.

Moreover, we allowdifferent sample sizes Nt for different stages,whichmay be important,
since often the sizes of the uncertainty sets vary and increase by stages (see Remark 3).

Notice that the assumption that the uncertainty set � is a cartesian product can easily be
relaxed. It is sufficient that the uncertainty set is an arbitrary subset of XH

t=1�t . One may
sample from � ⊆ XH

t=1�t by sampling from XH
t=1�t and reject points which are not from �.

In terms of the scenario trees which we will construct, we just cut off some subtrees which
represent scenarios which are not in �.
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In Appendix B, we further illustrate the difference between the path-oriented approach as
in Vayanos et al. (2012) and the tree structured model here proposed.

In order to prove the main result of this section, we use a variable-split notation for the
tree T̂ N1,...,NH . The tree has N̄H = ∏H

s=1 Ns leaves, indexed by � = 1, . . . , N̄H . Notice that
the leaves represent the random scenarios, i.e. there is a one-to-one correspondence between
the scenarios and the tree leaves. Hence, to select a sample path ξ

H
, we may equivalently

select a leaf index �.
For every leaf � the index of the predecessor at stage t is denoted by pt (�). Moreover,

we introduce the relation �1 ∼t �2, to denote the fact that the leaves �1, �2 share the same
predecessors at stage t , i.e. pt (�1) = pt (�2). We denote by xt,� the decision variable at stage
t for the scenario �. Note that, in principle, a different decision xt,� has to be made at each
stage t ∈ 1, . . . , H+1 and for each scenario � ∈ 1, . . . , N̄H . However, the non-anticipativity
condition requires that xt,�1 = xt,�2 , if �1 ∼t �2, that is if the leaves �1, �2 share the same
predecessor at stage t .

Formally, at each stage t we have an N̄H -vector xt,·, containing the different decisions
at stage t corresponding to the different scenarios/sample-paths. However, as observed, the
relation ∼t – and the related non-anticipativity constraints – dissects the set {1, 2, . . . , N̄H }
into equivalence classes. The constraint that decisions in the same equivalence class must
share the same value can be expressed by the condition (xt,·) ∈ It where It is a linear
subspace. For instance, all vectors (x1,·) ∈ I1 have all identical components, and for t > 1
some subgroups of components must share the same value.

These considerations allow us to reformulate our basic multi-stage robust problem. To
this end, let, X1 = {x1 ≥ 0 : Ax1 = h1} as in (13), and define:

Xt (xt−1, ξt−1) := {xt ≥ 0 : Tt−1(ξt−1)xt−1 + Wt (ξt−1)xt = ht (ξt−1)} .

The basic problem R̂O
N1···NH
H+1 formulated on the sampled tree can be written in a compact

form as:

R̂O
N1···NH
H+1 : min

(x1,·)∈I1
max

�
min

(x2,·)∈I2
max

�
min

(x3,·)∈I3
. . .max

�
f�(x1,�, . . . , xH ,�, xH+1,�) , (24)

where the functions f� are defined as follows, for � = 1, . . . , N̄H

f�(x1,�, . . . , xH+1,�) := c1(x1,�) + ψX1(x1,�) +
H+1∑
t=2

(ct (xt,�) + ψXt (xt−1,�,ξpt (�))
(xt,�)) ,

where ψ(·) is defined in (10). Notice that, in (24), the minima can be taken over all paths �,
since if �1 ∼t �2, then the function values for �1 and �2 are identical.

Let us now introduce the first-stage objective function:

f̄ (x1, �) = min
(x2,·)∈I2

max
�

min
(x3,·)∈I3

. . .max
�

f�(x1,�, . . . , xH+1,�) .

Two crucial observations can be made about the function f̄ (x1, �):

1. The function f̄ (x1, �) is constant on the equivalence classes given by I2. In particular,
one may write it as f̄ (x1, ξ1).

2. The function is convex in the variable x1 for given � (and hence, for given ξ1).
In particular, the convexity of f̄ in x1 can be seen from the following two facts:

(i) If (x, y) 
→ f (x, y) is jointly convex, then x 
→ miny f (x, y) is also convex.
(ii) The maximum of convex functions is convex.
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These properties hold for our case at hand (and it is the basic underlying reason in the
scenario with certificates results in Formentin et al. (2016)).

Now, we keep the samples �̂2, . . . , �̂H fixed and look only at the dependency on ξ1. In
particular, to analyze the first-stage violation, we introduce a previously unobserved random
value ξ

(N1+1)
1 at stage one, keeping all the other stages fixed. It is immediate to observe

that we are again in the standard setup of Proposition 1. Indeed, we find that the violation
probability at stage one is the violation probability of the problem:

min
x1

max
ξ1

f̄ (x1, ξ1) .

Therefore, we get the estimate:

P

{
V1(�̂

N1
1 , . . . , �̂

NH
H )>ε

}
≤ B(N1, ε, n1 + 1) , (25)

where n1 = dim(x1) and 1 = dim(γ1) with

γ1 := max
�

min
(x2,·)∈I2

max
�

min
(x3,·)∈I3

. . .max
�

f�(x1,�, . . . , xH ,�, xH+1,�) .

Similarly, at stage t , there are N̄t−1 = ∏t−1
s=1 Ns nodes of the tree. Denoting with T̂ Nt ,...,NH

j
the sub-tree born from node j , the violation probability at stage t and a fixed node j defined
as

Vt, j (�̂
N1
1 , . . . , �̂

NH
H ) := P

{
ξ

(Nt+1)
t : v(T̂ Nt+1,...,NH

j ) > v(T̂ Nt ,...,NH
j )

}
, (26)

and it follows that

P

{
Vt, j (�̂

N1
1 , . . . , �̂

NH
H )>ε

}
≤ B(Nt , ε, nt + 1),

where as before nt = dim(xt ) and 1 = dim(γt−1) with

γt−1 := min
(xt,·)∈It

. . .max
�

f�(x1,�, . . . , xH ,�, xH+1,�) .

Notice that this bound does not depend on j . Now:

Vt (�̂
N1
1 , . . . , �̂

NH
H ) = P

{
Violation at any node at stage t |�̂N1

1 , . . . , �̂
NH
H

}

≤
N̄t−1∑
j=1

P

{
Violation at node j at stage t |�̂N1

1 , . . . , �̂
NH
H

}

=
N̄t−1∑
j=1

Vt, j (�̂
N1
1 , . . . , �̂

NH
H ) ,

where the inequality follows by the fact that Vt, j , j = 1, . . . , N̄t−1 are possibly dependent
random variables. Now, we use the following result (whose proof is reported in Appendix
C):

Lemma 7 Let Z1, . . . , ZK be a sequence of identically distributed, but possibly dependent
random variables. Then

P

{
K∑
i=1

Zi ≥ z

}
≤ KP {Zi ≥ z/K } . (27)
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This gives:

P

⎧
⎨
⎩

N̄t−1∑
j=1

Vt, j (�̂
N1
1 , . . . , �̂

NH
H )>ε

⎫
⎬
⎭ ≤ N̄t−1B(Nt , ε/N̄t−1, nt+1) ,

assuming that the probability distribution P has nonvanishing Lebesgue density.
The above line of reasoning proves the following theorem, which constitutes the main result
of this paper.

Theorem 8 (Violation probability at stage t of sampled scenario tree) Given an accuracy
level ε ∈ (0, 1), let N̄t−1 = ∏t−1

s=1 Ns and εt := ε/N̄t−1. Then, the probability of violation
at stage t, Vt (�̂N1 , . . . , �̂NH ) defined in (23), is bounded as:

P

{
Vt (�̂

N1 , . . . , �̂NH )>ε
}

≤ N̄t−1B(Nt , εt , nt + 1) , (28)

where nt = dim(xt ).

Remark 3 In the light of the above result, we can derive the required sample size to guarantee
an ε-exceedance of the stagewise violations Vt , t = 1, . . . , H being smaller than β:

• N1 has to be chosen larger than N∗
1 = 1

ε
e

e−1 (ln
1
β

+ n1 + 1).

• Given N∗
1 , the number N2 has to be at least N∗

2 = N∗
1
2

ε
e

e−1 (ln
1
β

+ n2 + 1).

• Given the values N∗
1 , . . . , N∗

t−1, form N̄∗
t−1 = ∏t−1

s=1 N
∗
s and choose Nt at least N∗

t =
N̄∗2
t−1
ε

e
e−1 (ln

1
β

+ nt + 1).

Example Notice that these sample sizes are calculated under a worst-case setup. In practical
cases one needs much fewer samples. Here is a table for the required sample size resulting
from our above calculations, assuming that nt = 2.

ε β N∗
1 N∗

2

0.2 0.1 42 74088
0.1 0.1 84 592704
0.2 0.05 48 110592
0.1 0.05 95 857375

Remark 4 Notice that the sample complexity result given in Theorem8 can be easily extended
with similar considerations to multi-stage convex robust programs of the following type:

CROH+1 : min
x1,x2(ξ1),...,xH+1(ξH

)
sup

ξ
H

∈�

g(x1, x2(ξ1), . . . , xH+1(ξ H
), ξ

H
)

s.t. h(x1, x2(ξ1), . . . , xH+1(ξ H
), ξ

H
) ≤ 0, ∀ξ

H
∈ �

x1 ≥ 0 , xt (ξ t−1
) ≥ 0 , t = 2, . . . , H + 1 ,

where g : R

∑H+1
t=1 nt × � → R and h : R

∑H+1
t=1 nt × � → R are convex in xt ∈ R

nt+ ,
t = 1, . . . , H + 1 and continuous in (xt , ξ H

).
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2.7 The“total” violation probability

Theorem 8 provides a way to bound the probability of violation at stage t . This result can
be used to bound the probability of “total” violation, which we define as the probability of
violating at any stage t . Formally we write:

V tot(�̂
N1
1 , . . . , �̂

NH
H ) := P

{
ξ
(N1+1)
1 , . . . , ξ

(NH+1)
H : ∃t s.t. v(T̂ N1,...,Nt+1,...,NH ) > v(T̂ N1,...,NH )

}
.

We note that that the above quantity may be immediately bounded as follows:

V tot(�̂
N1
1 , . . . , �̂

NH
H ) ≤ V1(�̂

N1
1 , . . . , �̂

NH
H ) + · · · + VH (�̂

N1
1 , . . . , �̂

NH
H ) .

3 Lower bounds for multi-stage linear robust optimization problems

Due to the large number of required samples, problem R̂O
N1,...,NH
H+1 is typically difficult to

solve. Consequently, it is advisable to solve simpler problems allowing to obtain at least

guaranteed bounds for it. Notice that R̂O
N1,...,NH
H+1 gives a lower bound for the original problem

ROH+1 for any size of the random extractions. As to upper bounds, any feasible decision of
the original problem gives an upper bound. Thus, by extending the solution of the sampled
subproblem to a solution of the original problem, guaranteed upper bounds are obtained. An
extension would assign the decision xt to a history (ξ1, . . . , ξt ), by taking the same value as
assigned to the nearest history (ξ

(i1)
1 , ξ

(i112)
2 , . . . , ξ

(i1,...,it )
t in the sample.

Several construction principles for lower bounds are known in the context of stochastic
programming, see for instanceMaggioni et al. (2014, 2016);Maggioni & Pflug (2019, 2016).
Here we adapt them for the sampled scenario approach and compare them in terms of optimal
objective function values for the case of robust multi-stage linear programs. We remark that
a general principle for obtaining lower bounds is to relax some of the constraints. Relaxing
non-anticipativity constraints leads typically to a computationally much simpler problem,
especially for the sampled approximations (see later).

First, we introduce the robust multi-stage wait-and-see problem RWSH+1, where the
realizations of all the history of the random parameters ξ

H
= (ξ1, . . . , ξH ) are assumed to

be known at the first-stage. This problem takes the following form:

RWSH+1 : sup
ξ
H

min
x1(ξH

),...,xH+1(ξH
)
c�
1 x1(ξ H

) + · · · + c�
H+1(ξH )xH+1(ξ H

)

s.t. Ax1(ξ H
) = h1, x1(ξ H

) ≥ 0

T1(ξ1)x1(ξ H
) + W2(ξ1)x2(ξ H

) = h2(ξ1)

...

TH (ξH )xH (ξ
H

) + WH+1(ξH )xH+1(ξ H
) = hH+1(ξH )

xt (ξ H
) ≥ 0 , t = 2, . . . , H + 1 . (29)

Notice that, in the above setup, the minimum and supremum have been exchanged. Hence,
the decision process has become anticipative, since the decisions x1, x2, . . . , xH+1 depend
on a given realization of ξ

H
.

We introduce 3 definition, which is an immediate extension of the concept of Expected
Value of Perfect Information for stochastic programs:
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Definition 3 The difference

RVPIH+1 := v(ROH+1) − v(RWSH+1) , (30)

denotes the Robust Value of Perfect Information and compares robust multi-stage wait-and-
see RWSH+1 with robust multi-stage ROH+1.

Note that the RVPIH+1 can be interpreted as a measure of the advantage of reaching
perfect information in advance: A small RVPIH+1 indicates a small advantage for reaching
the perfect information since all possible realizations of uncertainty have similar costs. In
particular, the following inequality can be proven.

Proposition 9 (lower bound for ROH+1) Given the robust multi-stage linear optimization
problem ROH+1 defined in (21), and the robust multi-stage wait-and-see problem RWSH+1

defined in (29), the following inequality holds true:

v(RWSH+1) ≤ v(ROH+1) . (31)

The proof is given in Appendix D.
A second lower bound for problem ROH+1 can be obtained by relaxing the non-

anticipativity constraints only at stages 2, . . . , H and replacing the future from stage 2 with a
single sample path (see Maggioni et al. (2014)). The ensuing program is the so-called robust
two-stage relaxation RTH+1. Formally, consider the discrete random process as follows:

ξ̃
t
:= (ξ1, ξ̃2, . . . , ξ̃t ), t = 2, . . . , H ,

where ξ̃t , is a deterministic realization of the random process ξt . We denote the robust two-
stage relaxation problem RTH+1, as follows:

RTH+1 : min
x1

c�
1 x1+

sup
ξ1

[
min

x2,...,xH+1
c�
2 (ξ1)x2(ξ̃ H

) + c�
3 (ξ̃2)x3(ξ̃ H

) + . . . + c�
H+1(ξ̃H )xH+1(ξ̃ H

)

]

s.t. Ax1 = h1, x1 ≥ 0

T1(ξ1)x1 + W2(ξ1)x2(ξ̃ H
) = h2(ξ1), ∀ξ1 ∈ �1

...

TH (ξ̃H )xH (ξ̃
H

) + WH+1(ξ̃H )xH+1(ξ̃ H
) = hH+1(ξ̃H ),∀ξ1 ∈ �1

xt (ξ̃ H
) ≥ 0, t = 2, . . . , H + 1, ∀ξ1 ∈ �1 . (32)

There are no non-anticipativity conditions here (except for the first-stage decisions).
Finally we remark that one may introduce intermediate relaxation steps by just relaxing

some of the later non-anticipativities (or moving the max-operators to left only for stages
later than a given stage P). Relaxing the non-anticipativity constraints in stages P, . . . , H
with P = 3, . . . , H − 1 and replacing the future from stage P with a single sample path,
hence considering a discrete random process:

ξ̃
P,H

:= (ξ1, . . . , ξP−1, ξ̃P , . . . , ξ̃H ) ,

we can get a sequence of lower bounds by stepwise relaxation from the end to the beginning.
Denoting by v(ROP,H+1) the value of this robust P-stage relaxation, and following reasons
similar to those in the proof of Proposition 9, the followingbounds canbe proven. In particular,
it is clear that RO1,H+1 = RWSH+1 and RO2,H+1 = RTH+1.
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Proposition 10 (Chain of lower bounds for ROH+1) Given the robust multi-stage linear
optimization problem ROH+1 (21), the robust multi-stage wait-and-see problem RWSH+1
(29), the robust two-stage relaxation problem RTH+1 (32) and the robust P-stage relaxation
problem ROP,H+1, P = 3, . . . , H − 1, the following inequalities hold true:

v(RWSH+1) = v(RO1,H+1) ≤ v(RTH+1) = v(RO2,H+1) ≤ . . . ≤ v(ROP,H+1) ≤ . . . ≤ v(ROH+1).

The above results have a clear theoretical meaning. However, it should be remarked that,
in the general case, problems ROP,H+1 may be hard to solve in practice. In such case, it
becomes of great interest to introduce and study the sampled versions of them. In particular,

given R̂O
N1,...,NH
H+1 and a collection of independently sampled values �̂

N1
1 , . . . , �̂

NH
H , we can

introduce the sampled robust wait-and-see problem R̂WS
N̄H

H+1, based on the extraction of

N̄H = N1 · N2 · . . . · NH iid samples ξ
(1)
H , . . . , ξ

(N̄H )
H from �̂

N1
1 , �̂

N2
2 , . . . , �̂

NH
H :

R̂WS
N̄H

H+1 : max
i=1,...,N̄H

min
x1(ξ

(i)
H ),...,xH (ξ

(i)
H )

c�
1 x1(ξ

(i)
H

) + · · · + c�
H+1(ξ

(i)
H )xH+1(ξ

(i)
H

)

s.t. Ax1(ξ
(i)
H

) = h1, x1(ξ
(i)
H

) ≥ 0

T1(ξ
(i)
1 )x1(ξ

(i)
H

) + W2(ξ
(i)
1 )x2(ξ

(i)
H

) = h2(ξ
(i)
1 )

...

TH (ξ
(i)
H )xH (ξ (i)

H
) + WH+1(ξ

(i)
H )xH+1(ξ

(i)
H

) = hH+1(ξ
(i)
H )

xt (ξ
(i)
H

) ≥ 0 , t = 2, . . . , H + 1, i = 1, . . . , N̄H . (33)

Similarly, one can extract N1 iid scenarios ξ
(i)
1 , i = 1, . . . , N1 and keep the rest ξ̃2, . . . , ξ̃H

deterministic such that ξ̃
(i)

H
:= (ξ

(i)
1 , ξ̃2, . . . , ξ̃H ) and construct the sampled robust two-stage

relaxation problem R̂T
N1
H+1 given by:

R̂T
N1
H+1 : min

x1,γ1
c�
1 x1 + γ1

s.t. Ax1 = h1, x1 ≥ 0

Q1(x1, ξ̃
(i)

H
) ≤ γ1, i = 1, . . . , N1 , (34)

where

Q1(x1, ξ̃
(i)

H
) := min

x2,...,xH+1
c�
2 (ξ

(i)
1 )x2(ξ

(i)
1 ) + c�

3 (ξ̃2)x3(ξ̃
(i)

2
) + . . . + c�

H+1(ξ̃H )xH+1(ξ̃
(i)

H
)

s.t. T1(ξ
(i)
1 )x1 + W2(ξ

(i)
1 )x2(ξ

(i)
1 ) = h2(ξ

(i)
1 )

...

TH (ξ̃H )xH (ξ̃
(i)

H
)+WH+1(ξ̃H)xH+1(ξ̃

(i)

H
)=hH+1(ξ̃H)

xt (ξ̃
(i)

t−1
) ≥ 0, t = 2, . . . , H + 1 . (35)

The violation probability at stage one, V1(�̂
N1
1 , ξ̃2, . . . , ξ̃H ), of the objective function value

returned by R̂T
N1
H+1 depends only on dim(x1) + dim(γ1) = n1 + 1, i.e.:

P

{
V1(�̂

N1
1 , ξ̃2, . . . , ξ̃H ) > ε

}
≤ B(N1, ε, n1 + 1) .
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Thedimensionof the variables at stages greater than1 is irrelevant,which is a quite remarkable
fact.

Similarly a sampled robust P-stage relaxation R̂O
N1...NP−1
P,H+1 of problem ROP,H+1 can

be defined. Again, probabilistic guarantees of the solution of problem R̂O
N1...NP−1
P,H+1 can be

obtained on the same lines of Theorem 8.
We conclude this section by providing the following proposition, which shows the rela-

tionship between the various lower bounds based on sampling presented in this paper.

Proposition 11 (Chain of sampling-based lower bounds for ROH+1)Given the robust multi-
stage linear optimization problem R̂OH+1 (21), the sampled robust optimization problem

R̂O
N1,...,NH
H+1 (22), the sampled robust multi-stage wait-and-see problem R̂WS

N̄H

H+1 (33), the

sampled robust two-stage relaxation R̂T
N1
H+1 (34) and the sampled robust P-stage relax-

ation R̂O
N1...NP−1
P,H+1 for a fixed collection of independently sampled values �̂

N1
1 , . . . , �̂

NH
N , the

following chain of inequalities holds true:

v(R̂WS
N̄H

H+1)≤v(R̂T
N1
H+1)≤ . . .≤v(R̂O

N1...NP−1
P,H+1 )≤ . . .≤v(R̂O

N1...NH
H+1 )≤v(ROH+1) . (36)

4 Numerical results: an inventorymanagement problem

In this section, to show the effectiveness of the proposed approach, we consider a prob-
lem from inventory management which was originally considered in Ben-Tal et al. (2005),
describing the negotiation of flexible contracts between a retailer and a supplier in the pres-
ence of uncertain orders from customers. In particular, we analyze the performance of the
approach proposed in this paper on simplified version discussed in Bertsimas et al. (2011)
and in Vayanos et al. (2012) (see Sect. 4.1) and on a modified version having non-linear
objective function and linear constraints (see Sect. 4.2). The problems derived from the
case studies have been formulated and solved under AMPL environment along with CPLEX
22.1.1.0 solver. Computations have been performed on a 64-bit machine with 32 GB of RAM
and an Intel Core i7-1065G7 CPU 1.30 GHz processor and on AMD EPYC 7302 16-Core
processor-based cluster with a base frequency of 3.00 GHz and 512 GB of RAM.

4.1 The piece-wise affine objective function case

The problem setting can be summarized as follows: A retailer received orders ξt at the
beginning of each time period t ∈ {1, . . . , H}, ξ

t
represents the demand history up to time

t . The demand needs to be satisfied from an inventory with filling level sinv
t by means of

orders xot at a cost dt per unit of product. Unsatisfied demand may be backlogged at cost
pt and inventory may be held in the warehouse with a per-unit holding cost ht . Lower and
upper bounds on the orders xot (xot and x̄ot ) at each period as well as on the cumulative
orders scot (scot and s̄cot ) up to period t are imposed. We assume that there is no demand
at time t = 1 and that the demand at time t lies within an interval centered around a
nominal value ξ̄t and uncertainty level ρ ∈ [0, 1] resulting in a box uncertainty set as follows:
� = XH

t=1

{
ξt ∈ R : ∣∣ξt − ξ̄t

∣∣ ≤ ρξ̄t
}
. Denoting with xct the retailer’s cost at stage t , the

problem with Cumulative Order Constraints (COC) can be modeled as a convex problem of
the following form, having piece-wise affine convex objective function and linear constraints:
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Table 1 Input data for the
inventory management problem

Parameters of the Problem COC t = 1 t = 2

(pt , dt , ht ) (11,1,10) (11,1,10)

sinv
1 0

(xot , x̄
o
t ) (0, ∞) (0, ∞)

scot 47 134

s̄cot 94 248

ξ̄t = 100
(
1 + 1

2 sin
(

π(t−2)
6

))
75 100

ROH+1(COC) : min
xot ,xct ,s

co
t ,sinv

t

[
xc1 + max

ξ∈�

∑
t∈T

xct+1(ξ t
)

]
(37a)

s.t. xc1 ≥ d1x
o
1 + max

{
h1s

inv
1 ,−p1s

inv
1

}
(37b)

xct+1(ξ t
) ≥ dt+1x

o
t+1(ξ t

) +
+max

{
ht+1s

inv
t+1(ξ t

),−pt+1s
inv
t+1(ξ t

)
}

, t = 1, . . . , H−1 (37c)

xcH+1(ξ H
) ≥ max

{
hH+1s

inv
H+1(ξ H

),−pH+1s
inv
H+1(ξ H

)
}

(37d)

sinv
2 (ξ

1
) = sinv

1 + xo1 − ξ1 (37e)

sinv
t+1(ξ t

) = sinv
t (ξ

t−1
) + xot (ξ t−1

) − ξt , t = 2, . . . , H (37f)

sco2 (ξ
1
) = sco1 + xo1 (37g)

scot+1(ξ t
) = scot (ξ

t−1
) + xot (ξ t−1

) , t = 2, . . . , H (37h)

xo1 ≤ xo1 ≤ x̄o1 , sco1 ≤ sco1 ≤ s̄co1 (37i)

xot ≤ xot (ξ t−1
) ≤ x̄ot , scot ≤ scot (ξ

t−1
) ≤ s̄cot , t = 2, . . . , H + 1 .(37j)

The objective function (37a) corresponds to minimizing the worst-case cumulative cost.
Constraints (37b)–(37d) define the stagewise costs xct+1(ξ t

), t = 1, . . . , H while constraints
(37e), (37f) and (37g), (37h) respectively define the dynamics of the inventory level and
cumulative orders. Finally, constraints (37i), (37j) denote the lower and upper bounds on the
instantaneous and cumulative orders. Notice that the decision process is non-anticipative.

We remark that the considered numerical problem is such that the optimal solution of the
original multi-stage robust optimization problem can be assessed: This allows to evaluate the
performance of the scenario tree based approach.

We consider specific instances of problem ROH+1(COC) as summarized in Table 1 under
the assumption of two-stage (H = 1) and three-stage (H = 2) and uncertainty levelρ = 30%
meaning that for a given value v, the uncertainty set is [v(1−ρ), v(1+ρ)]. The data presents
some slight modifications of the data presented in Vayanos et al. (2012).

We define optimality gaps of the scenario problem R̂O
N1...NH
H+1 (COC) as:

optimali t y gap := v(R̂O
N1...NH
H+1 (COC)) − v(ROH+1(COC))

v(ROH+1(COC))
. (38)
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Table 2 Vertices of � for the
inventory management problem
in the two-stage (H = 1) and
three-stage (H = 2) cases

Vertex �1

1 52.5

2 97.5

Vertex �1 �2

1 52.5 70

2 52.5 130

3 97.5 70

4 97.5 130

We note that the optimality gap in (38) can be computed, since problem ROH+1(COC)

can be solved exactly by using a scenario tree that consists of the vertices of the polytopic
uncertainty set � reported in Table 2 (see Bertsimas et al. 2011).

To assess the performance of our approach,we compute the empirical violation probability
V̂t (T̂ N1,...,NH ) at stage t = 1, . . . , H of the solution of a given scenario tree T̂ N1,...,NH

associated with the scenario problem R̂O
N1...NH
H+1 (COC), defined as:

V̂t (T̂ N1,...,NH ) :=
1000∑
i=1

1
(
v(T̂ N1,...,Nt+1,...,NH

i ) − v(T̂ N1,...,NH )
)

1000
, t = 1, . . . , H , (39)

where T̂ N1,...,Nt+1,...,NH
i , i = 1, . . . , 1000 is a new scenario tree with one new independent

scenario ξ
(Nt+1)
t from �t with respect to the tree T̂ N1,...,NH and

1 (α) :=
{
1 if α > 0
0 otherwise ;

notice that the extended tree T̂ N1,...,Nt+1,...,NH
i contains

∏H
j=t+1 N j new independent scenar-

ios belonging to the sub-tree generated by the new scenario ξ
Nt+1
t at stage t . In the two-stage

case the extended tree T̂ N1+1
i contains only one new independent scenario extracted from

�1.
The numerical results are obtained as follows:

– we fix a confidence level of β = 0.01 for the two-stage case and β = 0.1 for the
three-stage case;

– we select the target violation probability ε = 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,
0.2, 0.3;

– we compute the corresponding sample size N∗
1 = 1

ε
e

e−1 (ln
1
β

+ n1 + 1) and N∗
2 =

N∗2
1
ε

e
e−1 (ln

1
β

+ n2 + 1).

– we solve 100 instances of problem R̂O
N∗
1 ...N∗

H
H+1 each based on a different scenario tree

T̂ N∗
1 ,...,N∗

H ;
– for each instance, we compute the optimality gap given in formula (38) and empirical

violation probability given in formula (39);
– we compute statistics over 100 instances.

First, we evaluate the performance of the sample-based approximation R̂O
N∗
1

2 (COC) in the

two-stage case (H = 1). Figure 4 displays the optimality gaps of problem R̂O
N∗
1

2 (COC) with
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Table 3 Number of scenarios
N∗
1 , constraints and variables for

decreasing values of ε (%) in the
two-stage case (H = 1) for the
inventory management problem

ε (%) N∗
1 # of const. # of var.

30 35 420 246

20 53 636 372

10 105 1260 736

5 209 2508 1464

1 1045 12540 7316

0.5 2090 25080 14631

0.1 10450 125400 73151

0.05 20899 250788 146294

Fig. 4 Optimality gaps for R̂O
N∗
1

2 (COC) (boxes and whiskers) for decreasing values of ε for the two-stage
(H = 1) case

respect to RO2(COC) for different values of violation probability ε (%) ranging from 30%
down to 0.05%. The number of scenarios N∗

1 , constraints and variables of the corresponding
optimization models are reported in Table 3.

From the results shown in Fig. 4we can observe that the variance of R̂O
N∗
1

2 (COC) decreases
substantially as ε decreases as well as the optimality gaps passing from −4.4% (in average)
to −10−5%. The distribution of the empirical violation probability as function of ε is plotted
in Fig. 5, for the two-stage case. As expected, as ε decreases, the violation converges to 0.
We also note that the empirical violation probability is smaller than ε in all the considered
cases.

Finally, Fig. 6 shows the average solver time (dashed lines) and the number of scenarios

(solid lines) for problem R̂O
N∗
1

2 (COC) as a function of Log(1/ε). In particular, they are
considerably lower than those used in Vayanos et al. (2012), where the number of scenarios
depends on the size of the basis and on the number of decision variables at each stage. On the
other hand, we should remark that the number of variables used in our approach is larger, due
to the introduction of sample-dependent certificates (or second-stage decision variables).
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Fig. 5 Empirical violation probability for R̂O
N∗
1

2 (COC) (boxes and whiskers) for decreasing values of ε for
the two-stage (H = 1) case

Fig. 6 Mean solver times (dashed line) and number of scenarios (solid line) as a function of Log(1/ε) for

problem R̂O
N∗
1

2 (COC) in the two-stage (H = 1) case

Table 4 Number of scenarios at first period N∗
1 , at second period N∗

2 and in total N̄2, constraints, variables
and average CPU time (in seconds) for ε = 30, 20 (%) in the three-stage case (H = 2) for the inventory
management problem

ε (%) N∗
1 N∗

2 N̄2 # of const. # of var. average CPU time

30 23 12003 276069 1380488 828304 1586

20 35 41691 1459185 7296140 4377700 42149.7
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Fig. 7 Optimality gaps for R̂O
N∗
1 N

∗
2

3 (COC) (boxes and whiskers) for decreasing values of ε for the three-stage
(H = 2) case

Fig. 8 Empirical violation probabilities V̂1(T̂ N∗
1 N

∗
2 ) (on the left) and V̂2(T̂ N∗

1 N
∗
2 ) (on the right) for

R̂O
N∗
1 N

∗
2

3 (COC) for decreasing values of ε for the three-stage (H = 2) case

Secondly,we evaluate the performanceof the sample-based approximation R̂O
N∗
1 N

∗
2

3 (COC)

in the three-stage case (H = 2). The number of scenarios N∗
1 , N

∗
2 and N̄2, constraints and

variables of the correspondingoptimizationmodelswith averageCPU timeover 100 instances
are reported in Table 4 for ε = 20% and 30%. Notice that if the dimension of the sampled
model is too large, decomposition techniques can be applied to speed up the computation.
However this is out of the scope of this paper. Results shows that the average solver time to

solve problem R̂O
N∗
1 N

∗
2

3 (COC) pass from 1586 CPU seconds (with ε = 30%) with a scenario
tree with N∗

1 = 23 and N∗
2 = 12003 to 42149.7 CPU seconds (with ε = 20%), for a tree

with N∗
1 = 35, N∗

2 = 41691 and N 2 = N∗
1 N

∗
2 = 1459185 scenarios.

From the results shown in Fig. 7 we can observe that the optimality gaps of R̂O
N∗
1 N

∗
2

3 (COC)

decrease as ε decreases passing from −0.03% (in average) when ε = 30% to −0.02% when
ε = 20%.

The distribution of the empirical violation probabilities V̂1(T̂ N∗
1 N

∗
2 ) and V̂2(T̂ N∗

1 N
∗
2 ) as

function of ε are plotted in Fig. 8, for the three-stage case. We note that both the empirical
violation probabilities are always smaller than ε. Results on V̂1(T̂ N∗

1 N
∗
2 ) and V̂2(T̂ N∗

1 N
∗
2 )

show that as ε decreases from 30% to 20%, both the empirical violation probabilities decrease
passing from an average value of 6.8% to 5% and of 0.04% to 0%, respectively. Results also
show that V̂1(T̂ N∗

1 N
∗
2 ) is always larger than V̂2(T̂ N∗

1 N
∗
2 ).
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Fig. 9 Optimality gaps for R̂T
N∗
1

3 (COC) (boxes and whiskers) for decreasing values of ε for the three-stage
(H = 2) case

4.1.1 Bounds for the inventory management with cumulative orders constraints

In this section, we evaluate possible relaxations to problem ROH+1(COC) as described in
Sect. 3. In particular we consider the multi-stage wait-and-see problem RWSH+1(COC) for
problem ROH+1(COC), and the robust two-stage relaxation problem RTH (COC) where the
non-anticipativity constraints are relaxed in stages 2, . . . , H . Again, we remark that for the
case at hand these two problems can be computed exactly by considering only the vertices of
�. Similarly to formula (38), we define optimality gaps of the problem RWSH+1(COC) as:

(optimali t y gap)RWSH+1(COC) := v(RWSH+1(COC)) − v(ROH+1(COC))

v(ROH+1(COC))
, (40)

and in the same way for RTH+1(COC).
The optimality gap of RWS3(COC) turned out to be equal to −68%, passing from an

objective function value of 725.35 for RO3(COC) to 227.5; consequently the Robust Value
of Perfect Information RVPI3((COC)) is 497.85.

The optimality gap ofTP3(COC) turned out to be equal to−39%, passing fromanobjective
function value of 725.35 for RO3(COC) to 439.64.

We now compute the optimality gaps by using the scenario approach. Figure 9 shows that

the optimality gaps of R̂T
N∗
1

3 (COC)with respect to RO3(COC) slightly decrease as ε decreases
passing from −44% (in average) to −43%. Notice that the best optimality gap which can be

attained by the sampled two-stage relaxation R̂T
N∗
1

3 (COC) is given by the two-stage relaxation
itself RT3(COC) i.e., −39%.

The distribution of the empirical violation probability V̂1(R̂T
N∗
1

3 ) as function of ε is plotted

in Fig. 10, for the three-stage case.We note that the empirical violation probability V̂1(R̂T
N∗
1

3 )

is always smaller than ε and it decreases as ε decreases from 30% to 0.1%, passing from an
average value of 6.6% to 0.06%.On the other hand, the empirical violation probability at stage

2, V̂2(R̂T
N∗
1

3 ), is equal to 1, independently on the value of ε showing the inappropriateness
of the two-stage relaxation consisting in just one scenario per sub-tree at stage two.

Finally Fig. 11 presents the average solver time (solid line) and the number of scenarios
(dashed line). We again note that the number of required scenarios is considerably smaller
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Fig. 10 Empirical violation probabilities V̂1(R̂T
N∗
1

3 ) for the two-stage relaxation R̂T
N∗
1

3 (COC) for decreasing
values of ε for the three-stage (H = 2) case

Fig. 11 Mean solver times (solid lines) and number of scenarios (dashed lines) as a function of Log(1/ε) for

problem R̂T
N∗
1

3 (COC) for the three-stage (H = 2) case

than the one corresponding to the sampled robust problem R̂O
N∗
1 N

∗
2

3 allowing us to solve the

approximated problem R̂T
N∗
1

3 in a reasonable amount of time (4 CPU seconds in the case of
β = 0.1, ε = 0.1% and N∗

1 = 6807) at expenses of larger optimality gaps.

4.2 The non linear objective function case

In this section, we consider a modified version of the problem ROH+1(COC) presented
in Section 4.1. Specifically Eq. (37b), (37c) and (37d) are replaced by the following ones,
penalizing positive inventories in stages t = 1, . . . , H in a quadratic way:

xc1 ≥ d1x
o
1 + max{h1(sinv

1 )2,−p1s
inv
1 } (41a)

xct+1(ξ t
) ≥ dt+1x

o
t+1(ξ t

)+
+max

{
ht+1(s

inv
t+1(ξ t

))2,−pt+1s
inv
t+1(ξ t

)
}

, t = 1, . . . , H−1 (41b)

xcH+1(ξ H
)≥ max

{
hH+1(s

inv
H+1(ξ H

))2,−pH+1s
inv
H+1(ξ H

)
}

. (41c)

123



Annals of Operations Research

Fig. 12 Empirical violation probability for R̂O
N∗
1

2 (NCOC) (boxes and whiskers) for decreasing values of ε

for the two-stage (H = 1) case

This can be justified by the fact that more inventory needs new costly storage space. The
resulting optimization problem ROH+1(NCOC) has a non linear convex objective function,
linear constraints and non-anticipative decision process. Notice that the method presented in
Georghiou et al. (2019) is not applicable in this case.

We consider the same instances reported in Table 1 under the assumption of two-stage
(H = 1), three-stages (H = 2) and uncertainty level ρ = 30%.

To assess the performance of our approach, we compute the empirical violation probability
given in Eq. (39), following the same procedure described in Sect. 4.1. The number of
scenarios N∗

1 and N∗
2 are reported in Tables 3 and 4.

The distribution of the empirical violation probabilities for the sample-based approxima-

tions R̂O
N∗
1

2 (NCOC) and R̂O
N∗
1 N

∗
2

3 (NCOC) as function of ε are plotted in Figs. 12 and 13
for the two-stage and the three stage cases, respectively. As before, we note that the empir-
ical violation probability is smaller than ε in all the considered cases even if slightly larger
than in the linear case presented in Sect. 4.1, and as ε decreases, it converges to 0. Further-
more, in the three-stage case, the box-plots confirm that V̂1(T̂ N∗

1 N
∗
2 ) is always larger than

V̂2(T̂ N∗
1 N

∗
2 ). In conclusion, the results show that the approach works well also for a generic

convex optimization problem.

5 Conclusions

In this paper probabilistic guarantees for constraint sampling in multi-stage convex robust
optimization problems have been proposed. A sampled-based problem taking into account
the non-anticipativity of the decision process has been considered. For this approach, which
avoids the conservative use of parametrization through decision rules, a bound on the proba-
bility of violation of the randomized solution and a proof of convergence have been provided.
Chains of lower bounds by relaxing the non-anticipativity constraints and sampling are also
discussed. The considered approach is general, allowing convex objective functions, con-
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Fig. 13 Empirical violation probability V̂1(T̂ N∗
1 N

∗
2 ) (on the left) and V̂2(T̂ N∗

1 N
∗
2 ) (on the right) for

R̂O
N∗
1 N

∗
2

3 (NCOC) (boxes and whiskers) for decreasing values of ε for the three-stage (H = 2) case

vex constraints and the choice of arbitrary uncertainty sets. Because we use a worst-case
approach, the numbers for needed sample sizes are prohibitively large for computational
tractability for problems that have more than just two or three time periods. Despite this, we
believe that our results can be useful for problems with such small number of time periods,
and it sheds some light on the challenge for problems with more time periods. However,
our numerical results show that the empirical violation probabilities are much smaller than
their predetermined values used in the calculation of the sample sizes both in the case of a
piece-wise affine objective function and convex non linear objective function. Moreover, for
the first time in the literature we distinguish between violations at different stages. It was
observed that violation in earlier stages are more probable than in later ones. It was also
observed that for a three stage problem with 2-stage relaxation, the approximation provides
good decisions at stage 1, but at stage 2 the violation probability is always 1, independently of
the chosen ε. This shows that such a relaxation may be inappropriate for later stage decisions.

It is possible that the upper bounds derived in the paper could be improved significantly by
exploiting special problems structures and decomposition techniques. This deserves a further
investigation that will be addressed in future researches.

Appendix A Proof of Theorem 2.2

Proof Let v(RO2) = −∞. Fix any γ ∈ R. Then there is a x1 ∈ Feas such thatR(x1) = −∞,
meaning that there are functions ξ1 
→ x2(ξ1) such that:

sup
ξ1∈�1

{c�
2 (ξ1)x2(ξ1) : x2(ξ1) ∈ X2(x1, ξ1)} ≤ γ − ν ,

where ν = c�
1 x1 < ∞. Notice that:

Feas = {x1 ≥ 0 : Ax1 = h1; ∀ξ1 ∈ �1 there exists a x2(ξ1) ∈ X2(x1, ξ1)} .

Thus γ together with (x1, ξ1 
→ x2(ξ1)) is feasible for RwC2 and since γ is arbitrary,
v(RwC2) = −∞. The same argumentation shows that v(RwC2) = −∞ implies that
v(RO2) = −∞.

Suppose now that v(RO2) = ∞. This means that either the first-stage problem or at least
one second-stage problem is infeasible and this implies and is implied by the fact that RwC2

is infeasible.
It remains to show what happens in the case−∞ < v(RO2) < ∞. In case the the optimal

value is attained, let (x1, ξ1 
→ x2(ξ1))be in the solution set ofRO2, then (x1, γ, ξ1 
→ x2(ξ1))
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Fig. 14 Left: A fan with 2 paths. Right: The pertaining tree using the same data has 22 = 4 paths

is feasible for RwC2, iff γ ≥ v(RO2) and it is in the solution set of RwC2, if γ = v(RO2).
Conversely, if a (γ, x1, ξ1 
→ x2(ξ1)) is feasible for RwC2, then (x1, ξ1 
→ x2(ξ1)) is feasible
for RO2 and v(RO2) ≤ γ . The optimal γ equals v(RwC2). ��

Appendix B Difference between the path-oriented approach and the
tree structuredmodel

Example Consider a three-stage problem (H = 2) with two sampled points ξ
(1)
1 , ξ

(2)
1 ∈ �1

and two sampled points ξ
(1)
2 , ξ

(2)
2 ∈ �2. In Fig. 14, the path-oriented problem as in Vayanos

et al. (2012) and our tree-structured problem are depicted for illustration.

W.l.o.g. we set A = I ; h1 = 0 and therefore x1 = 0 and T1(ξ1) = 0. Set

c ji := c j (ξ
(i)
j−1), i = 1, 2; j = 2, 3

Tji := Tj (ξ
(i)
j ), i = 1, 2; j = 2

Wji := Wj (ξ
(i)
j−1), i = 1, 2; j = 2, 3

h ji := h j (ξ
(i)
j−1), i = 1, 2; j = 2, 3

x ji := x j (ξ
(i)
j ), i = 1, 2; j = 2, 3 .

We consider a problem including equality and inequality constraints, which can be brought
to the form (21) by introducing slack variables:

min (max (c21x21, c22x22) + max (c31x31, c32x32))

s.t. W21x21 = h21

W22x22 = h22

T21x21 + W31x31 ≤ h31

T22x22 + W32x32 = h32

T21x21 + W32x32 = h32 (B1)

T22x22 + W31x31 ≤ h31

x ji ≥ 0, i = 1, 2; j = 2, 3 . (B2)
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If one argues pathwise then there are only two paths: (ξ
(1)
1 , ξ

(1)
2 ) and (ξ

(2)
1 , ξ

(2)
2 ) and the

constraints (B1) and (B2) disappear.
For the concrete choice consider:

(W21,W22,W31,W32) = (1, 1, 1, 1)

(T21, T22) = (1, 1)

(h21, h22, h31, h32) = (1, 2, 2, 2) .

One can see that the path-oriented problem without constraints (B1) and (B2) is feasible,
while the tree-structured problem including these two constraints is infeasible. Therefore the
tree-structured problem may detect violation earlier than the path-oriented problem since we
allow violation to occur at every stage by adding a new point from ξ

Nt+1
t ∈ �t and not only

sampling a complete new path
(
ξ

(N+1)
1 , . . . , ξ

(N+1)
H

)
as is done in Vayanos et al. (2012).

Appendix C Proof of convergence

Proof of Lemma 2.1

Proof We prove that for every fixed ξt ∈ �t

P

{
lim

Nt→∞ min
ξ

(i)
t ∈�̂

Nt
t

‖ξ (i)
t − ξt‖ > 0

}
= 0.

Suppose that this assertion is wrong. Then there exist η > 0 and ε > 0 such that

P

{
lim

Nt→∞ min
ξ

(i)
t ∈�̂

Nt
t

‖ξ (i)
t − ξt‖ ≥ η

}
> ε.

Let Bη be the open ball with center ξt and radius η. Since P has a density bounded from
below, 0 < P(Bη) = δ (say) with δ > 0. Now, by independence sampling,

P{ξ (1)
t /∈ Bη, . . . , ξ

(Nt )
t /∈ Bη} = (1 − δ)Nt .

Choosing Nt such large that (1− δ)Nt < ε leads to a contradiction. The argument is true for
every fixed rational ξt ∈ �t and therefore for the union of the exeptional null sets. Since the
rationals are dense in �t , this implies the assertion of the Lemma. ��
Proof of Proposition 2.2

Proof For the sake of simplicity we give the proof for the three-stage problem, i.e. we assume
that H = 2. The proof of the general case is analogous. The optimization problem (21) can
be written as follows:

RO3 := min
x1,γ1

c1(x1) + γ1

s.t. Ax1 = h1, x1 ≥ 0

Q1(x1, ξ1) ≤ γ1, ∀ξ1 ∈ �1 , (C3)

where the function Q1(x1, ξ1) can be written as

Q1(x1, ξ1) := min
x2,γ2

c2(x2, ξ1) + γ2

s.t. T1(ξ1)x1 + W2(ξ1)x2(ξ1) = h2(ξ1)
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Q2(x2, ξ2) ≤ γ2, ∀ξ2 ∈ �2

x2 ≥ 0 , (C4)

with

Q2(x2, ξ2) := min
x3

c3(x3, ξ2)

s.t. T2(ξ2)x2 + W3(ξ2)x3 = h3(ξ2)

x3 ≥ 0 . (C5)

Now let �̂
N1
1 = {ξ (i1)

1 : i1 = 1, . . . , N1} resp. �̂N2
2 = {ξ (i2)

2 : i2 = 1, . . . , N2}, be indepen-
dent random scenarios from of �1 resp. �2. We set:

R̂O3 := min
x1,γ1

c1(x1) + γ1

s.t. Ax1 = h1, x1 ≥ 0

Q̂1(x1, ξ1) ≤ γ1, ∀ξ1 ∈ �̂
N1
1 , (C6)

where the function Q̂1(x1, ξ1) can be written as

Q̂1(x1, ξ1) := min
x2,γ2

c2(x2, ξ1) + γ2

s.t. T1(ξ1)x1 + W2(ξ1)x2 = h2(ξ1)

Q2(x2, ξ2) ≤ γ2, ∀ξ2 ∈ �̂
N2
2

x2 ≥ 0 , (C7)

with

Q2(x2, ξ2) := min
x3

c3(x3, ξ2)

s.t. T2(ξ2)x2 + W3(ξ2)x3 = h3(ξ2)

x3 ≥ 0 . (C8)

as before.
Notice that the functionsQ2 are identical for the original problem and the sampled prob-

lem. We show that the functions Q̂t (xt , ξt ), t = 1, 2 are continuous in xt and ξt . We recall
that the function (c, X) 
→ minx∈X c(x) is continuous in c and X, where c comes from a
family of continuous functions and X are compact sets, if we measure the distances for c
by the supremum norm and for X by the Hausdorff-distance. Consider the compact poly-
hedrons X3(x2, ξ2) = {x3 ≥ 0 : W3(ξ2)x3 = h3(ξ2) − T2(ξ2)x2}. The fact that W3(ξ2) has
maximal rank for all ξ2 implies that the extremals are continuous in W3(ξ2) as well as in the
r.h.s. h3(ξ2) − T2(ξ2)x2. Therefore, the extremals are continuous in ξ and in x . This implies
that (x2, ξ2) 
→ X3(x2, ξ2) is continuous in Hausdorff metric. Consequently Q2(x2, ξ2) is
continuous in both arguments and since both x2 and ξ2 lie in a compact set, it is uniformly
continuous, that is:

sup
‖x2‖≤K

| sup
ξ2∈�2

Q2(x2, ξ2) − sup
ξ2∈�̂

N2
2

Q2(x2, ξ2)| → 0 (C9)

almost surely as N2 → ∞.
Now consider the function Q̂(x1, ξ1). As in the previous case, the extremals of

X2(x1, ξ1) = {x2 ≥ 0 : W2(ξ1)x2 = h2(ξ1) − T1(ξ1)x1} are continuous in x1 and ξ1.
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Together with (C9) this implies that both Q1 and Q̂1 are continuous in x1 and ξ1 and there-
fore:

sup
‖x1‖≤K

| sup
ξ1∈�1

Q1(x1, ξ1) − sup
ξ1∈�̂

N1
1

Q̂N2
1 (x1, ξ1)| → 0 (C10)

almost surely as min(N1, N2) → ∞.
The function Q2(x2, ξ2) is uniformly continuous in ξ2 and x2. Therefore for ε > 0 there

is an η > 0 such that ‖ξ12 − ξ22 ‖ ≤ η implies that |Q2(x2, ξ12 ) − Q2(x2, ξ22 )| ≤ ε. Thus by
the previous Lemma:

max
ξ2∈�2

Q2(x2, ξ2) − max
ξ2∈�̂

N2
2

Q2(x2, ξ2) → 0 .

The same argument applies also to the function Q1(x1, ξ1). ��

Appendix D Proof of Lemma 2.2

Proof

P

{
K∑
i=1

Zi ≥ z

}
≤ P

(
K⋃
i=1

{Zi ≥ z/K }
)

≤ KP{Zi ≥ z/K }.

This inequality is sharp: To see this, consider a discrete probability space having K > 1
atoms {ω1, . . . , ωK }, each with same probability P{ωi } = 1/K . On ωi define the random
variables Z1, . . . , ZK as

Zi = (z + K − 1)/K ; Z j = (z − 1)/K for j = i .

Then the Zi have all identical distributions and
∑

i Zi = z. Consequently

P

{
K∑
i=1

Zi ≥ z

}
= 1 = K · (1/K ) = K · P{Zi ≥ z/K }.

��

Appendix E Proof of Proposition 3.1

Proof Since in RWSH+1 the non-anticipativity constraints are relaxed, we get the inequality

(31). More formally, denoting by f
[(

x1(ξ H
), . . . , xH+1(ξ H

)
)

, ξ
H

]
in a compact way the

objective function and constraints of problem (29), we can write:

RWSH+1 : sup
ξ
H

min
(x1(ξH

),...,xH+1(ξH
))
f
[(

x1(ξ H
), . . . , xH+1(ξ H

)
)

, ξ
H

]
.

For every realization, ξ
H
, we have the relation:

f
[(

x̃1(ξ H
), . . . , x̃H+1(ξ H

)
)

, ξ
H

]
≤ f

[(
x∗
1 , . . . , x

∗
H+1(ξ H

)
)

, ξ
H

]
,

123



Annals of Operations Research

where
(
x∗
1 , . . . , x

∗
H+1(ξ H

)
)
denotes an optimal solution to the ROH+1 problem (21), and(

x̃1(ξ H
), . . . , x̃H+1(ξ H

)
)
denotes the optimal solution for each realization of ξ

H
. Taking

the supremum of both sides yields the required inequality. ��
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