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Abstract
Cooling energy demand in buildings is rapidly increasing as climate warms. Current methods of
estimating and predicting residential cooling demand are primarily based on daily temperature,
which neglects intraday temperature variations. To determine whether large-scale cooling demand
is substantially affected by intraday temperature variations, we conduct a thorough comparison
between variable degree days (VDDs) derived from daily temperature data with variable degree
hours (VDHs) derived from hourly temperature data during the summer seasons in the United
States. The results imply that incorporating intraday variations in temperature will have substantial
impacts on cooling estimation and prediction. A comparison of the historical (1990–2014) VDD
and VDH calculated from ERA5 temperature data reveals that US summer cooling demand
estimated from hourly temperature is 29%–45% higher than those estimated from daily
temperature, with differences exceeding 60% when hourly solar radiation is considered. This
occurs because the hourly calculations captures the ‘hot hours’ of the mild days. Future scenario
analysis, using the NASA Earth Exchange Global Daily Downscaled Projections, indicates that
under the medium greenhouse gas emissions pathway (SSP2-45), US summer VDH and VDD are
expected to increase by approximately 45% and 100% by the late century (2081–2100). This
suggests that, daily-based predictions generally project cooling demand growth at twice the rate of
hourly-based predictions, as the daily method accounts for increases in both high and low
temperatures regardless of whether they exceed the baseline, while the hourly method, with its finer
temporal resolution, includes only temperatures that surpass the baseline. Such effects are seen
across most areas of the US. Our analysis underscores the significance of incorporating temperature
data at higher temporal resolution in estimating and predicting cooling demand, which is essential
for effectively implementing various measures to achieve energy conservation and climate goals.

1. Introduction

Energy demand for space cooling has become the
fastest-growing component of energy consumption
in buildings (IEA 2018). This demand is commonly
fulfilled with electric fans and air conditioning (AC)
systems, and as such, the escalating cooling demand

is contributing increasingly to the demand for elec-
tricity (Dell et al 2014, McFarland et al 2015) and
resulting in a wide range of impacts. Such impacts
include bringing enormous strain on current power
systems (Denholm et al 2012), generating higher
emissions (Abel et al 2017, Isaac and van Vuuren
2009, Meier et al 2017), and increasing the risk of
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adverse health impacts associated with poor air qual-
ity (Abel et al 2018). To manage the rapid growth
of cooling demand, actions must be taken on the
demand and supply sides (IPCC 2018, Mundaca et al
2019). On the demand side, efforts should be made
to develop passive solutions for buildings (Bhamare
et al 2019) and to improve the efficiency of cooling
systems, like AC, to curb energy demand growth (IEA
2018, Chen et al 2020). On the supply side, a widely
discussed measure is the decarbonization of the elec-
tricity sector, from generators (IEA 2022) to power
systems (Denholm and Hand 2011, Denholm et al
2012). Effective implementation of these measures
requires a thorough understanding of future cooling
demand (Denholm et al 2012).

A widely used method for estimating large-scale
cooling demand is the cooling degree-day (CDD)
measure (CIBSE 2006). TheCDDmeasures the extent
to which the daily average temperature exceeds a
predefined baseline temperature, which is gener-
ally considered the threshold above which cooling
is required. Thus, CDD serves as a valuable indic-
ator for evaluating the climate-driven cooling energy
demand. This metric has been used to assess the
escalating cooling demand globally (Miranda et al
2023), as well as in different regions, including North
America (Shen 2017, Rastogi et al 2019, Chidiac et al
2022, Gesangyangji et al 2024), Europe (Frank 2005,
Olonscheck et al 2011, Spinoni et al 2018, Jankovíc
et al 2019, Ramon et al 2020) and Asia (Rosa et al
2014, Shi et al 2021, Ukey andRai 2021,Muslih 2022).

Where the CDD measure treats each day as an
entity and overlooks the intra-day temperature vari-
ations, an alternative measure–cooling degree hour
(CDH), offers a more comprehensive perspective
(CIBSE 2006). The CDH, calculated on hourly tem-
peratures, captures the hourly variation of tem-
perature and, importantly, the daily extreme con-
ditions (Masson-Delmotte et al 2013, Vose et al
2017). The role of hourly-level cooling demand is
frequently acknowledged and explored in empirical
studies to investigate the impacts of set point adjust-
ments in individual buildings (De Chalendar et al
2023), simulating peak demand and energy savings
(Stern and Spencer 2017), and determining the the-
oretical thermal characteristics of specific building
components (Vallejo-Coral et al 2019). These studies
often focus on testing specific techniques or examin-
ing more detailed, micro-level aspects of cooling
demand. In contrast, metrics like CDH are more
commonly applied in large-scale studies to evaluate
broader patterns and trends of climate-driven cooling
demand, as demonstrated in research conducted in
China (Shi et al 2021), Turkey (Oktay et al 2011), Italy
(Salata et al 2022), and European countries (Castaño-
Rosa et al 2021).

Given the similar applicability of CDH and CDD
metrics but their differing temporal resolutions,

a thorough comparison between the two would
be valuable for understanding and determining
whether the building’s cooling demand is substan-
tially affected by intraday temperature variations.
To date, only a few studies have made the com-
parison (Cox et al 2015, Castaño-Rosa et al 2021).
Results from (Castaño-Rosa et al 2021) demonstrated
that CDH outperformed CDD overall in predict-
ing cooling demands in European countries and
exhibited a higher sensitivity in detecting smaller
changes that CDD failed to capture. Similar findings
are reported in an empirical study by the National
Renewable Energy Laboratory (NREL), which sug-
gests that hourly-based AC efficiency measures offer
greater precision than annual measures in capturing
actual energy savings and costs (Stern and Spencer
2017). Cox et al also investigated differences in cool-
ing demand estimated from annual and hourly tem-
peratures in Gentofte, Copenhagen, and Denmark
(Cox et al 2015). They used both the degree-day
method and dynamic simulations and found that the
differences (between hourly and annual scenarios)
can be up to 4%, primarily resulting from some cool-
ing hours being overlooked by the annual scenarios.

To this end, this study aims to enhance our under-
standing of how intraday temperature variations
influence the estimation and projection of cooling
demand at a national scale, particularly in large coun-
tries like the US, characterized by high cooling con-
sumption. With a focus on the US residential sector,
our research unfolds in two distinct phases. We first
compare summer cooling demand estimated from
daily and hourly temperature and solar radiation
for the historical scenario (1991–2015) to study the
effects of intraday variations in these climate vari-
ables on cooling estimation. Subsequently, we com-
pare changes in the future cooling demand computed
from daily and hourly temperatures to investigate the
potential influence of temperature change on sum-
mer cooling prediction. For the future scenarios, we
consider mid- (2041–2060) and late-century (2081–
2100), under the medium pathway of future green-
house gas emissions (shared social-economic path-
way, SSP2-45).

Focusing on the climate-driven cooling demand,
we use variable degree-days and degree-hours (VDDs
and VDHs) (Al-Homoud 2001) as indicators. The
VDD and VDH share a similar definition with the
CDD and CDH, except that the baseline temperature
is arbitrarily fixed for CDD and CDH but is allowed
to vary across time and geographic areas in VDD and
VDH (see table 2). In fact, using a fixed baseline tem-
perature has been recognized as a primary limitation
in CDDmetrics, because building heat gains fluctuate
over time and across areas (Huang andGurney 2016).
VDD and VDH approaches effectively address that
limitation, and therefore, hold the potential to yield
a more realistic estimation of cooling demand.
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The methodology for calculating VDD draws
from the Cooling and Heating Global Energy
Demand model (CHILLD), developed by the
International Institute for Applied Systems Analysis
(IIASA) (Mastrucci et al 2021). Nonetheless,
Mastrucci et al did not introduce VDH in their study,
so we downscaled the VDD calculation to VDH cal-
culation by converting the daily climate variables,
including temperature and solar radiation, into an
hourly scale. Unlike the daily-scale temperatures
that can be sourced directly from climate models
(Semenov and Stratonovitch 2010) and used for
VDD calculation, the granular hourly data required
for VDH calculations demands additional computa-
tional efforts, like statistical downscaling of monthly
or daily temperature to an hourly scale (Belcher et al
2005, Oktay et al 2011, Gesangyangji et al 2022).
Alternatively, depending on the specific research
question, local climate variables can be dynamic-
ally simulated at fine temporal and spatial resolution
using regional climate models (Shi et al 2021, Salata
et al 2022). For example, sub-daily climate projec-
tions that thoroughly incorporate the impacts of the
urban environment were developed by (Georgescu
et al 2018) and have been applied in relevant stud-
ies in the US (Krayenhoff et al 2018). Additionally,
open-source tools, like the R package Helios (Zhao
et al 2024) and Python package tell (McGrath et al
2022), which align with the Global Change Analysis
Model for theUnited States are available formodeling
the impacts of climate change on energy demand, but
with some limitations:Helios calculates degree-hours
on a fixed balance temperature, and tell supports ana-
lysis at the state level. In this study, we developed a
recalling method to produce future hourly temper-
atures from historical observations and future daily
projections. This method builds upon and optim-
izes our previous approach (Gesangyangji et al 2022).
Detailed explanations are provided in the subsequent
section. By using globally accessible datasets, our
method opens the door to applying the rescaling
technique worldwide, thereby addressing the ongoing
challenges associated with generating high temporal-
resolution temperature projections.

2. Data andmethods

2.1. Overview: calculation of VDD and VDH
The calculation of VDD and VDH is based on the
approach used in the CHILLD model developed by
IIASA. The model follows three steps to calculate
large-scale residential energy demand: (1) calculat-
ing baseline temperature that incorporates heat gains
from various heat sources, such as internal heat gains
and solar radiation, as well as generalized building
thermal characteristics that affect solar heat gains;

(2) calculating variables degree days which is the
key climate indicator used to estimate climate-driven
cooling demand; (3) calculating final energy demand
by involving other drivers, like population, housing
characteristics, and cooling systems.

Computation of VDD and VDH is based on the
first two steps of the CHILLDmodel, as illustrated by
equations (1) and (2). It starts with determining the
baseline temperature Tbal (◦C) from the indoor set-
point temperature Tsp (◦C), heat gain from solar heat
sources gsol (W) and internal heat sources gint (W),
and heat transfer coefficient by transmission Htr and
ventilationHve (W ◦C−1). Subsequently, the baseline
temperature and outdoor temperature Tout (◦C) are
used to compute VDD and VDH (◦C) for a given
time,

Tbal = Tsp −
gsol + gint
Htr +Hve

(1)

VDD or VDH =
N∑
t=1

(Tout −Tbal)
+
. (2)

Our study, delving into the effects of intraday
fluctuations in climate variables, focuses on two key
factors: gsol and Tout. Daily mean solar radiation and
temperature are used for the calculation of VDD,
while hourly solar radiation and temperature are used
for VDH. The relevant climate datasets and meth-
odologies are presented in the subsequent sections.
The non-climate variables used in the equations (1)
and (2) are listed in table 1. These values were
retained as originally provided in the CHILLDmodel
because they have proven applicability and are not the
primary focus of this study. For a detailed explora-
tion of the variables in the CHILLD model and their
origins, we refer readers to (Mastrucci et al 2021) for
further insights.

2.2. Solar radiation
To calculate heat gain from solar heat source gsol (W),
hourly mean surface downward short-wave radiation
flux (GHI, also known as global horizontal irradi-
ance, W m−2) and hourly mean surface direct short-
wave radiation flux (DIR_H, W m−2) were derived
for1991 to 2015 from the ERA5 dataset (Hersbach
et al 2023). Figure 1 depicts the solar data processing
workflow. GHI and DIR_H are processed using the
Python package ‘pvlib’ (Holmgren et al 2018) and the
decomposition method introduced by (Zhang et al
2021) to calculate direct (DIR) and diffuse (DIF)
components of solar radiation on horizontal (H) and
vertical (V) surfaces. Direct components on a vertical
surface were computed at different orientations (east,
north, south, and west) to consider the variation in
solar gain caused by the changing position of the sun
(Wang and Xu 2006), and then averaged to determine
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Table 1. Non-climate variables.

Tsp (
◦C) gint (W)

Htr (W
◦C−1)

Hve (W
◦C−1)Closed window Open window

26 2.14 0.5 1.5 2.1128

Figure 1. Solar data processing workflow. Components are categorized by direction: blue for horizontal (_H) and green for
vertical (_V). GHI represents hourly global horizontal irradiance; DIR_N is direct normal irradiance. DIR_H, DIF_H, DIR_V,
and DIF_V are the direct (DIR) and diffuse (DIF) components of solar radiation on horizontal (_H) and vertical (_V) surfaces,
respectively.

the overall direct components. The diffuse compon-
ents were considered isotropic, so the flux incident on
a vertical surface is considered half of the flux incident
on a horizontal surface.

The ERA5 data were provided on a spatial res-
olution of 0.25◦ × 0.25◦ and were aggregated to
0.5◦ × 0.5◦ to ensure consistency with spatial resol-
ution of CHILLD. The process in figure 1 was applied
to each grid cell and for each hour of the period span-
ning from 1991 to 2015. The results were then aver-
aged over the days and years to determine the hourly
pattern of total radiation in horizontal and vertical
directions for June, July, and August, and used for
calculating heat gain from transparent elements like
windows and the opaque surface like roofs. The cal-
culation of heat gains follows the methods outlined
by (Mastrucci et al 2019), with the detailed formula
and explanation provided in the section 1 of supple-
mentary materials.

2.3. Temperature
While historical temperature data is readily avail-
able from various sources at both hourly and daily
scales, future temperature projections are typically
provided only on a daily scale. To address this, we
generated future hourly temperature data using a res-
caling method, as detailed in the following sections.
This method represents an enhancement of our pre-
vious approach (Gesangyangji et al 2022). Whereas
the earlier method was limited to the eastern US due
to data availability constraints, the improved version
utilizes globally available datasets, allowing it to be
applied across the contiguous US and other regions
worldwide.

(1) Data
For the historical scenario, we used hourly temperat-
ure data from the ERA5 dataset (Hersbach et al 2023)
spanning from 1991 to 2015. For future scenarios, we
obtained projected Tmax and Tmin from the NASA
Earth Exchange Global Daily Downscaled Projects
(NEX-GDDP-CMIP6) (Thrasher et al 2012, 2022)
for mid- (2041–2060) and late-century (2081–2100),
under the RCP4.5. Both ERA5 and NEX-GDDP data
provided on a spatial resolution of 0.25◦ × 0.25◦ were
aggregated to 0.5◦ × 0.5◦ to ensure consistency with
spatial resolution of CHILLD.

NEX-GDDP provides downscaled products from
over 30 global climate models (GCMs), which were
debiased on observations using the bias correction
spatial disaggregation method (Thrasher et al 2012).
We selected nine GCMs that were found to demon-
strate the highest fidelity in simulating the present
climate in North America (Almazroui et al 2021),
and then narrowed them down to five based on our
focused research period and scenarios (some mod-
els do not have complete data for selected scen-
arios and years). The five models used are GFDL-
ESM4,ACCESS-CM2,MPI-ESM1-2-HR, EC-Earth3,
and NorESM2-MM. In this analysis, VDD and VDH
were calculated for each of the five models to pre-
serve the potential variations between models and
then were averaged to yield a mean value. Hourly and
spatial patterns of the VDH from the five selected
models were compared and found to have good con-
sistency (supplementary material, section 2).

(2) Rescaling method
The updated rescalingmethod is presented in figure 2.
It uses ERA5 hourly temperatures and Tmax and Tmin
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Figure 2. Schematic diagram of the method used to produce future hourly temperatures. This process was implemented on every
single grid cell and every single hour of the selected period.

to compute the fractional diurnal ranges (aihour) for
days of the historical period (equation (3)). These
fractional relationships are then applied to projected
Tmax and Tmin to produce future hourly temperature
profiles (equation (4)),

aihour =
(
Tihour −Tminiday

)
/
(
Tmaxiday −Tminiday

)
(3)

Tihour = aihour ×Tmaxiday +(1− aihour)×Tminiday.
(4)

The first step produces fractional diurnal ranges
(aihour) from ERA5 data, for every single hour dur-
ing 1991–2015 per grid cell. Concurrently, temper-
ature bins were created for every 1 ◦C based on his-
torical daily mean temperature (Tmean) per grid cell.
Then, for each temperature bin, corresponding days
and fractional diurnal ranges (ad) were identified and
saved for later use. Please note that while aihour repres-
ents the fraction for a single hour, ad in figure 2 refers
to the pattern of fractional diurnal ranges for the day.
To ensure that each temperature bin was represent-
ative, bins with less than ten days were merged with
their nearest bin. This approach helped to reduce the
impact of abnormal extreme conditions. For instance,
if the number of days where the historical Tmean

exceeded 35 ◦C in a specific locationwas less than 10 d
during 1991–2015, then the bin for 35 ◦C would be
merged with the bin for 34 ◦C.

Thereafter, future Tmean was calculated from the
Tmax and Tmin of NEX-GDDP data and was used
to determine the corresponding temperature bin. In
this stage, we considered four possible scenarios for
a future day: (1) if the future Tmean corresponds to a
temperature bin, we randomly select an ad from the
current bin. (2) if the value of future Tmean exceeds

the upper boundary of the maximum bin which is
expected in the context of global warming, we ran-
domly select an ad from the maximum bin. (3) if the
value of future Tmean falls below the lower boundary
of the minimum bin, we randomly select an ad from
the minimum bin. (4) If none of the aforementioned
conditions are met, indicating that the specific value
of future Tmean has never occurred in the historical
scenario, in this case, we randomly select an ad from
the bin that is closest to the value of future Tmean.
Finally, the hourly temperature for a future day was
calculated through equation (4) using the Tmax and
Tmin and the corresponding fractional diurnal ranges.
This rescaling process was performed on each grid
cell for the entire US and for every single hour of the
historical and future scenarios to produce the hourly
temperature.

Finally, aforementioned processes provide hourly
heat gains and future hourly temperatures for every
single hour in each period and for each grid cell over
the US. These data were used to compute the grid-
ded VDH, which was then aggregated over the US for
selected period to represent US cooling demand of
the period. The calculation of VDD was based on the
same data sources, except that the data is on the daily
scale.

3. Results

3.1. Impacts of intraday variations of climate
variables on cooling estimation
To investigate the effect of intraday variations of
solar radiation and temperature, we compared histor-
ical daily cumulative cooling estimation over the US
under three cases (Case 1, 2, and 3 in table 2). We also
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Table 2. Characteristics of methods used for estimating daily cooling demand.

Variable name Method

Climate variables Graphic illustration
Solid lines: outdoor temperature
Dashed line: baseline temperatureSolar radiation Temperature

Case 0 CDD/CDH Cooling degree
days and hours

Not included Daily/hourly

Case 1 VDD Variable degree
days

Daily Daily

Case 2 MVDH1 Mean variable
degree-hours

Daily Hourly

Case 3 MVDH2 Mean variable
degree-hours

Hourly Hourly

show aCase 0 to differentiate theCDDandVDDmet-
rics. Case 0 accounts for temporal and spatial vari-
ation of outdoor temperature, while the variation of
solar radiation is not incorporated on either spatial
or temporal scales. In Cases 1–3, spatial variations
of solar radiation are considered, with distinctions in
how temporal variation of the two variables are incor-
porated. Case 1 considers solar radiation and temper-
ature on a daily scale and thus neglects their intra-
day variations. Case 2, using daily solar radiation and
hourly temperature, only takes into account the intra-
day variations of temperature while assuming homo-
genous effects of solar radiation for a given day. Case
3 uses hourly temperature and hourly solar radiation
to include variations of both variables throughout the
day. The three cases are calculated on VDD and VDH
methods. Since theVDD is given on a daily scale while
the VDH is on an hourly scale, VDHs of the day were
averaged to compute an MVDH (mean VDHs of the
day) to represent the daily estimation. Consequently,
the Case 1, Case 2, and Case 3 are represented by
VDD, MVDH1, and MVDH2, respectively, as illus-
trated in table 2.

3.1.1. Impacts of intraday variations of temperature
The cumulative daily cooling estimates for the US
during the summer months from 1991 to 2015 are
presented in figure 3. Comparisons between the
VDD (green bar) and MVDH1 (orange bar) high-
light the effects of intraday variations of temper-
ature. Specifically, the differences from the daily-
scale estimation (VDD) and hourly-scale estimation
(MVDH1) demonstrate that MVDH1 exceeds VDD
by 53%, 35%, and 38% in June, July, and August,
respectively. These figures suggest that using hourly

temperature data results in higher climate-driven
cooling estimation compared to daily temperature
data. Similar findings regarding the higher sensit-
ivity of hourly metrics have also been observed in
European countries. (Cox et al 2015, Castaño-Rosa
et al 2021).

While a positive effect is shown across most areas
of the US, it is most prominent in the western regions
(see figure 4’s second column). These western regions
typically have lower mean temperatures and signi-
ficant diurnal variations. Consequently, as shown in
figure 4’s first column, VDD tends to be zero as the
daily mean temperature is lower than the baseline
temperature. Conversely, MVDH1 can be above zero
as it takes into account the hot hours where the
temperature exceeds the baseline temperature. As an
illustrative example, we consider Garfield County,
Colorado, which is displayed in figure 7 and will be
discussed in section 2.

On the other hand, the hourly temperature has
a minimal impact on cooling estimates in southern
regions. This is because these areas often have higher
temperatures with smaller diurnal variations, and as
such, both daily mean and hourly temperatures are
above the baseline temperature. Thus, daily cooling
requirements estimated fromdailymean temperature
and from averaged hourly cooling needs are the same.
Orlando, Florida exemplifies this situation (figure 7).

However, interestingly, slight negative effects are
seen in southern coastal areas like Florida, where
using daily temperature leads to higher cooling estim-
ation. This can be attributed to the typical method
of calculating daily mean temperature. Specifically,
VDD uses the daily mean temperature calculated by
averaging the daily Tmax and Tmin, while theMVDH1

6
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Figure 3. Daily cumulative cooling demand over the US estimated for summer months during 1991–2015. The three bars
correspond to the three cases. Green: Case 1, variable degree days (VDD); Orange: Case 2, mean variable degree-hours with daily
solar radiation considered (MVDH1); Blue: mean variable degree-hours with hourly solar radiation considered (MVDH2).

Figure 4. Differences in daily cooling demand estimated from different approaches. The first column presents the baseline case of
summer cooling estimation calculated on VDD (Case 1, green bars in figure 1). The second column shows the effects of hourly
temperature (MVDH1—VDD, differences in orange bars and green bars in figure 1). The third column indicates the effects of
hourly solar radiation (MVDH2—MVDH3, differences in blue bars and orange bars in figure 3). The fourth column is the
co-effect of hourly solar radiation and hourly temperature (MVDH2—VDD, differences in blue bars and green bars in figure 1).

approach computes daily values yielded from aver-
aging all hourly temperatures of the day. For example,
in Miami, Florida, the average of the daily Tmax and
Tmin on a sample summer day is 28.6 ◦C, whereas
the average hourly temperature for the day is 27.6 ◦C.
This discrepancy raises questions about the repres-
entativeness of the mean daily temperature obtained
from Tmax and Tmin and highlights the importance
of incorporating hourly variation for a more rep-
resentative mean condition and a precise cooling
estimation.

3.1.2. Impacts of intraday variations of solar radiation
The effect of intraday variation of solar radiation is
presented by differences between MVDH1 (orange
bar) and MVD2 (blue bar) in figure 3. Compared
to the case where daily solar radiation is used, using
hourly solar radiation leads to a 24%–34% higher
cooling estimation. The overall effects are moderately
less than the effects of hourly temperature.

Spatially (see the third column of figure 4), the
positive effect is seen across the US, and the effects
are relativelymore pronounced in theWest. This phe-
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Figure 5. Left: graphic illustration of the future cooling changes predicted from the daily temperature changes (top) and hourly
temperature change (bottom). Right: future changes in the U.SS. cumulative VDD (green) and MVDH2 (blue), by mid-century
and late-century. The bottom bars are the historical values; the middle bars are the increase by mid-century; and the top bars are
the increase by late-century (relative to mid-century).

nomenon can be linked to the distribution of heat
gain from the solar heat source, particularly from ver-
tical solar radiation through transparent surfaces like
windows. The effect of solar radiation is considered
through the heat gain from the solar heat source and
is considered on the horizontal and vertical direction
(discussed in method section). Although horizontal
solar radiation shows a larger magnitude than ver-
tical solar radiation, heat gain from the vertical dir-
ection is typically greater, because it passes through
transparent surfaces like windows, which have higher
thermal transmittance. In contrast, horizontal solar
radiation usually hits opaque surfaces like roofs, res-
ulting in less heat gain. Hourly distribution of solar
radiation and corresponding heat gains are provided
in supplementary material (figure S.2).

3.1.3. Co-impacts of intraday variations of
temperature and solar radiation
The graphic illustration in table 2 (see Case 3) shows
that the effect of hourly solar radiation and hourly
temperature jointly peak during the daytime. As a
result, summer cooling demand estimated on hourly
solar radiation and hourly temperature is substan-
tially higher than that estimated from daily val-
ues. MVDH2 of summer months are all over 69%
higher than VDD, and the number is even doubled in
June.

Comparing the first and the fourth columns of
figure 2 shows that impacts of intraday variation of
the two climate variables are more pronounced in
areas with lower VDD, and vice versa. This suggests
that using daily climate conditions is likely to under-
estimate cooling demand in large parts of the US,
especially in areas with colder mean climate condi-
tions, such as the Rocky Mountain area. In warmer
places like south Texas and Florida, intraday variation

of temperature and solar radiation shows negligible
impact on cooling estimation.

3.2. Impacts of future temperature change on
cooling demand prediction
Temperature is known to be the primary climate
driver influencing future changes in large-scale cool-
ing demand (Rastogi et al 2019). Future daily temper-
ature projections are typically obtained by calculating
the mean of projected Tmax and Tmin given by GCMs.
This means that predicting cooling demand from the
projected daily temperature uniformly incorporates
changes in Tmax and Tmin. However, as illustrated in
the left panel of figure 5, despite the rapid increase
in Tmin or in nighttime temperatures, its impact on
the cooling demand remains a matter of inquiry. This
uncertainty arises because the new minimum tem-
perature in certain locations may remain below the
defined baseline temperature threshold for cooling
demand, suggesting no significant increase in cooling
requirements even under future warming scenarios.
For instance, if the baseline cooling threshold temper-
ature in Madison, Wisconsin, is 23 ◦C, future night-
time temperatures in summer—though predicted to
rise significantly from 15 ◦C to 16 ◦C—would remain
below this threshold. Consequently, no additional
nighttime cooling demand would be anticipated in
this scenario, despite the observed warming trend.

In this section, we compare the future changes
in VDD and MVDH2, denoted as ∆VDD and ∆
MVDH2, to investigate the potential influence of
future temperature change on cooling demand pre-
diction. Please note that the impact of future changes
in solar radiation is beyond the scope of this study,
so ∆MVDH1 is excluded in this section. To ensure
∆VDD and ∆ MVDH2 are led by temperature
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Figure 6. Spatial distribution of∆VDD and differences between∆VDD and∆MVDH2. Panels (a) and (c) correspond to the
mid-century and panels (b) and (d) correspond to the late-century. In panels (c) and (d), positive values indicate a larger∆
MVDH2 compared to∆VDD, suggesting that using MVDH2 leads to a faster rate of increase, while negative values suggest the
opposite effect.

changes, historical solar radiation was used for his-
torical and future scenarios.

As climate warms, VDD and MVDH2 is projec-
ted to increase throughout the 21st century (see right
panel of figure 5), with a larger increase in the first half
of the 21st century. The rise in cumulativeVDDby the
mid-century, ranging from 60% to 67%, are notice-
ably greater than the increase in MVDH2, which are
around 29% in all months. During the latter half of
the 21st century, the percentage increase of cooling
demand from both methods are under 23%, with
∆MVDH2 remain lower than∆VDD.

Spatial distribution of ∆VDD and differences
between ∆VDD and ∆MVDH2 is presented in
figure 6. The top two panels, indicating positive
∆VDD across the US, suggest an increased sum-
mer cooling demand in this country, with the most
increases in the Midwest, and the least increases in
the RockyMountain area. This spatial trend alignwell
with the summer CDD changes indicated by (Rastogi
et al 2019). When comparing∆VDD and∆MVDH2
(as shown in panels (c) and (d)) of figure 6), we
observe three distinct cases:∆VDDbeing either equal
to, larger than, or smaller than ∆MVDH2, but the

spatial pattern and magnitude of these differences
vary by months. In June, a slightly higher ∆VDD
(purple) is observed in the southern half of the US,
while a higher ∆MVDH2 (green) is shown in the
West, upper Midwest, and the Northeast region. In
July and August, the higher ∆VDD pattern extends
northward and is seen in most areas of the coun-
try, except for the Rocky Mountain region, where it
shows an even higher ∆MVDH2 instead (as green
gets darker). Although the Midwest region, especially
South Dakota and Nebraska see minimal differences
in June, these areas show the largest difference in July
and August. During these 2 months, the least differ-
ences are seen in some southern areas such as Texas
and Florida, and some northeast areas.

To gain insight into the factors contributing to the
differences in∆VDD and∆MVDH2, we select three
locations (as marked in figure 6) and investigate their
temperature pattern in August (figure 7). Omaha,
Nebraska exemplifies the regions with higher∆VDD
values, Garfield County in Colorado represents areas
with higher ∆MVDH2 values, and Orlando, Florida
serves as an indicator of regions where ∆VDD and
∆MVDH2 values are roughly equal.
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Figure 7. Daily and hourly temperature patterns for three selected locations and six random days in August. Changes in daily
temperatures and future hourly temperatures are referred to as the late-century scenario. Temperatures here are derived from a
single model, NorESM2-MM.

Results show that differences in ∆VDD and
∆MVDH2 can be attributed to the ‘valid increase’ in
hourly temperature. The ‘valid increase’ here refers
to the temperature rise that contributes to the cool-
ing demand by exceeding the baseline temperature.
Conversely, we use ‘insignificant increase’ to describe
the temperature rise that has no impact on cooling
demand.

In the case of Orlando, historical daily and hourly
temperatures are already consistently above the cor-
responding baseline temperature, so any future rise
in temperatures will contribute to the increase of
cooling. Thus, ∆VDD and ∆MVDH2 are about the
same. In Omaha, substantial temperature increases
are projected during both warmer hours (i.e. day-
time and Tmax) and colder hours (i.e. nighttime and
Tmin). When calculating the increase in daily tem-
perature, rises in both Tmax and Tmin are included,
resulting in increasing VDD that reflects the warm-
ing at both ends of the spectrum, regardless of
baseline temperature. However, in the calculation
of ∆MVDH2, the rise in colder temperatures (as

marked in figure 7) is deemed insignificant because
the future temperature remains under the baseline
temperature, rendering it inconsequential for cool-
ing requirements. Consequently, the increase in VDD
is higher than that in MVDH2. The opposite is true
in the case of Garfield County. Due to the relat-
ively lower mean temperature and high diurnal vari-
ations, cooling demand is not recognized on a daily
basis. However, hot hours where the temperature
reaching 30 ◦C highlight the necessity of cooling
in this location. In the future, despite the increases,
the daily mean temperature will remain below the
baseline temperature, resulting in no changes to
VDD. However, increases in the warm temperatures
(as marked in figure 7) will lead to growing cooling
demand, which is reflected by higher ∆MVDH2 in
figure 6.

The disparities between ∆VDD and ∆MVDH2,
along with their spatial fluctuations, underscore the
importance and necessity of incorporating temperat-
ure changes on a higher temporal scale when predict-
ing cooling demand. Failing to consider warming on
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hourly scale may lead to either an underestimation or
an overestimation of future cooling demand and may
further affect local and regional energy planning and
management.

4. Discussion

4.1. Main findings
This study aims to evaluate the impact of intraday
temperature variations on cooling estimation and
projection in the US residential sector. It begins by
comparing two coolingmetrics—VDDs andVDHs—
across the US during the summer months of the
historical period (1990–2014) to assess how cooling
demand calculated from daily temperature data com-
pares to that calculated fromhourly temperature data.
Then, the projected changes in VDD and VDH for
mid-century and late-century under the SSP245 scen-
ario are compared to explore the impacts of tem-
poral resolution of temperature data on future cool-
ing predictions.

The results suggest that incorporating intraday
temperature will result in higher cumulative cool-
ing demand in the US. Specifically, VDH-based daily
cumulative cooling estimate is 29%–45% higher than
VDD, and when combined with hourly solar radi-
ation, the increase can exceed 60%. These impacts
are particularly pronounced in the West. Our find-
ings, showing higher coolingmetrics fromVDHcom-
pared to VDD, align with EU-focused studies (Cox
et al 2015, Castaño-Rosa et al 2021). These studies
demonstrate that hourly-scale metrics can detect hot
hours that are often smoothed out in daily mean con-
ditions, resulting in higher cooling demand estim-
ates. The importance of hourly-scale estimation is
further supported by an empirical study from NREL
which shows that hourly-based AC efficiency meas-
ures provide greater precision than coarser temporal
measures in capturing actual energy savings and costs
(Stern and Spencer 2017).

Both VDD and VDH metrics indicate a rapid
increase in summer cooling demand throughout the
21st century, with the most increase in the Midwest,
as noted by (Rastogi et al 2019). However, the VDD
metric shows greater increases across most of the US
compared to theVDHmetric. Exceptions occur in the
Rocky Mountain area, where the results are reversed,
and in some southern areas, where bothmetrics show
similar changes. In the case where VDD increases
more rapidly than VDH, the additional increases in
VDD result from the inclusion of insignificant tem-
perature rises—those that increase but remain below
the baseline temperature and, therefore, do not con-
tribute to cooling—in the calculations. In the Rocky
Mountain area, VDD metrics can overlook substan-
tial increases in Tmax by averaging with low Tmin

values, and leading to an underestimation of cool-

ing needs. These differences further emphasize the
importance of incorporating temperature projections
with high temporal resolution in cooling predictions.

4.2. Sensitivity analysis
This study assumes that the indoor temperature in
the US is consistently maintained at 26 ◦C, a value
retained from the original CHILLD model and also
close to the optimal set point recommended by the
US.Department of Energy (78◦F or 25.6 ◦C) []. Given
the high sensitivity of cooling demand to set point
(Byers et al 2024), we included a sensitivity analysis
in the supplementary material (section 4) to exam-
ine how VDD and VDH respond to changes in set
point. Increasing the set point from 22 ◦C to 26 ◦C
leads to a decrease in both VDD and VDH, with VDD
droppingmore sharply, resulting in a larger difference
between the two metrics. In other words, our results
represent an upper bound for the difference between
VDD and VDH. However, regardless of the setpoint
temperature (the threshold), the VDH metric con-
sistently estimates higher cooling demand than VDD,
underscoring the effects of the temporal resolution of
temperature data in cooling demand estimation.

4.3. Limitations and avenues for further research
This study primarily focuses on temperature-driven
cooling demand. In reality, cooling demand is influ-
enced by a wide range of factors, including other cli-
mate variables, such as humidity (Maia-Silva et al
2020) and solar radiation (Li et al 2020), as well as
non-climate factors like population, behavior, and
building characteristics (Berrill et al 2021, Mastrucci
et al 2021). Here, we emphasize the effects of tem-
perature projection, the dominant driver in large-
scale cooling demand (Suckling and Stackhouse 1983,
Zhai and Helman 2019), but the impact of solar
radiation and humidity should be considered in
future works. Additionally, while generalized build-
ing thermal characteristics were included in calcu-
lating baseline temperatures, these were not treated
as direct drivers of cooling demand. A more realistic
cooling demand model should incorporate detailed
building attributes, such as housing size, cooling sys-
tem efficiency, operational hours, and other para-
meters. Furthermore, the impact of urbanization
should be considered, given its essential effects on
climate warming (e.g. urban heat island effects)
(Georgescu et al 2014), diurnal temperature variation
(Krayenhoff et al 2018), and cooling system usage
(e.g. increased building footprint and higher access-
ibility and usage of AC). For more realistic cooling
demand predictions in the US, future studies should
incorporate these factors at a finer spatial resolution,
utilizing high-resolution climate projections, such as
those produced by (Georgescu et al 2014).
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5. Conclusion

A reliable prediction of cooling demand is crucial for
implementing effectivemeasures on both the demand
and supply sides to achieve energy conservation and
climate goals. This study highlights the importance of
incorporating high temporal resolution temperature
data into large-scale cooling demand estimation and
prediction. Our findings indicate that, in the US, res-
idential cooling demand estimates based on hourly
temperature data are significantly higher than those
based on daily temperature data, however, the growth
rate of cooling demand based on hourly temperature
data is generally slower than that calculated fromdaily
temperature data.

Cooling demand is a complex process influ-
enced by numerous factors. While other drivers may
contribute to variations in cooling estimation, our
study highlights that temporal resolution is a critical
perspective for improving current cooling demand
models and achieving more accurate predictions.
Moreover, our methodology for generating high-
resolution temperature data and improving cooling
demand predictions is based on global datasets, mak-
ing it applicable worldwide and providing a valuable
framework for advancing effective energy and climate
planning across diverse regions.
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