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Neglecting future sporadic volcanic
eruptions underestimates climate
uncertainty

Check for updates

Man Mei Chim 1,7 , Thomas J. Aubry2, Chris Smith3,4 & Anja Schmidt 1,5,6

Most climate projections represent volcanic eruptions as a prescribed constant forcing based on
ahistorical average,whichprevents a full quantificationof uncertainties in climate projections. Herewe
show that the contribution of volcanic forcing uncertainty to the overall uncertainty in global mean
surface air temperature projections reaches up to 49% in 2029, and is comparable or greater than that
from internal variability throughout the 21st century. Furthermore, compared to a constant volcanic
forcing, employing a stochastic volcanic forcing reduces the probability of exceeding 1.5 °C warming
above pre-industrial level by at least 5% for high climate mitigation scenario, and enhances the
probability of negative decadal temperature trends by up to 8%. Intermediate to high climate
mitigation scenarios are particularly sensitive to the choice of future volcanic forcing implementation.
We recommend the use of either a stochastic approach or prescribed constant forcing levels that
sample volcanic uncertainty in future climate simulations.

Volcanic forcing of climate is an important natural driver of climate
variability that can lead to climate responses on decadal to multi-decadal
timescales1–4. Despite its importance in climate variability, the unpredictable
natureof volcanic eruptionsmakes it difficult to account for future eruptions
in climate projections.

The Coupled Model Intercomparison Project (CMIP) of the World
Climate Research Programme oversees the experimental protocol from
state-of-the-art global climate models and Earth System Models (ESMs)5.
Within CMIP, the ScenarioModel Intercomparison Project (ScenarioMIP)
provides climate projections to 2100 (or beyond) under a wide range of
potential future emissions scenarios ranging from very low to very high6.
ESM projections from ScenarioMIP are a critical line of evidence that
informs the Intergovernmental Panel on Climate Change (IPCC) Assess-
ment Reports7. For the climate projections of the most recent inter-
comparison project (CMIP6), ScenarioMIP recommended prescribing a
constant volcanic forcing with a magnitude equivalent to the 1850–2014
historical mean forcing values6. However, this approach has several lim-
itations: (1) it does not consider the sporadic nature of volcanic eruptions
and the variability of volcanic forcing in the future4,8; (2) it is biased by the
under-recording of small-magnitude eruptions prior to 1978, the start of the
satellite era8; (3) it poorly represents the long-term forcing of large-

magnitude eruptionswitha short timeperiodbetween1850 and2014, and it
does not account for eruptions larger in magnitude in terms of volcanic
sulfur dioxide (SO2) mass prior to 18504,8. Consequently, the constant
volcanic forcing approach does not allow for a full quantification of
uncertainties resulting from sporadic volcanic eruptions in climate projec-
tions. Therefore, the combined uncertainty in climate projections is larger
than can be expressed with the current CMIP6 ScenarioMIP design.

Hawkins and Sutton9 identify three primary sources of uncertainties in
climate projections, includingmodel uncertainty, scenario uncertainty, and
internal variability. Model uncertainty stems from the differences between
the responses of climate models to identical forcings. Scenario uncertainty
relates to different future anthropogenic emissions and warming pathways.
Internal variability refers to the decadal and sub-decadal fluctuations
around themean climate states due to internal natural processes such as the
El Niño-Southern Oscillation and Pacific Decadal Oscillation. Apart from
these three sources of uncertainties, recent studies using a stochastic forcing
approach show that natural forcings like volcanic eruptions can potentially
introduce large additional uncertainties in climate projections4,8. Bethke
et al.4 first demonstrate the importance of representing volcanic forcing
uncertainty in climate projections using a stochastic volcanic forcing
approach, inwhich they generate 60 forcingmembers by resampling from a
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2500-year ice core record. Building on this methodology, Chim et al.8

enhance the approach by considering eruptions of both large- and small-
magnitudes with an expanded dataset combining ice-core and satellite
observations spanning the past 11,500 years. Using the improved volcanic
forcing approach, Chim et al.8 show that CMIP6 ScenarioMIP very likely
underestimates the magnitude of future volcanic forcing and the associated
climate effects. However, the use of only four volcanic forcing scenarios in
Chim et al.8 and the biased eruption frequency-magnitude distribution in
Bethke et al.4 means that the contribution of uncertainty associated with
volcanic eruptions has not yet been fully quantified in climate projections.
These studies are limited to using a singlemodel and a single anthropogenic
forcing scenario due to the high computational cost of ESMs, which pre-
vents a full quantification of uncertainty contributions across different cli-
mate models, volcanic futures, and anthropogenic forcing scenarios.

Large-magnitude volcanic eruptions can cause sudden global surface
cooling that lasts for at least 1–2 years10. However, climate projections that
use a constant volcanic forcing cannot capture the sudden surface cooling
caused by large-magnitude volcanic eruptions. Not only do these large-
magnitude eruptions induce climate impacts, but can also pose threats to
agriculture and have long-lasting socio-economic impacts. For example, the
1815 Mt. Tambora eruption, which injected 56 Tg ± 9 Tg of SO2 into the

stratosphere according to the eVolv2k ice-core based volcanic emission
dataset11, led to a 0.8 °C drop in global surface temperature, regional cooling
up to 4 °Cover Europe, and suppressed rainfall over SoutheastAsia12–14. The
climatic changes of the 1815Mt. Tambora eruption caused crop failures and
famine across Europe, North America and China13,15. Ice core records from
Sigl et al.16 suggest that the chance of having an eruption with volcanic SO2

emissions at least as large as the 1815Mt. Tambora eruption is 16.5% in the
21st century. To assess the climate risks and socio-economic impacts of
these large-magnitude eruptions in the future, it is necessary to account for
the sporadic nature of volcanic forcing in climate projections.

Here, we isolate and quantify the contribution of volcanic uncertainty
in climate projections by simulating 1000 stochastic volcanic forcing sce-
narios using a simple volcanic aerosol model17,18 and the Finite-amplitude
Impulse Response (FaIR) climate model19,20. We generate stochastic volca-
nic SO2 emission scenarios from ice core and satellite records spanning over
the past 11,500 years and convert them to stochastic volcanic forcing sce-
narios (see Methods Sections “Design of stochastic volcanic emission sce-
narios”, “Aerosol optical properties and effective radiative forcing” and
“Simulation design”). We project global mean surface air temperature
(GMSAT) from 2015 to 2100 under three shared socio-economic pathways
(SSPs) representing very low (SSP1-1.9), intermediate (SSP2-4.5), and very

Fig. 1 | Contribution of volcanic forcing uncertainty to overall uncertainties in
global mean surface air temperature projections. a Projections of global mean
surface air temperature (GMSAT) anomalies relative to 1850–1900 fromFaIRmodel
simulations, applied with 10-yearmovingmean. The shaded regions show the 5th to

95th percentiles of the uncertainties. The boxplots show the near-term (2030–2050)
and long-term (2080–2100) mean GMSAT changes. b Annual mean fractional
contribution of the uncertainties from 2020 to 2100 for the 5th to 95th percentiles
(left) and 1st to 99th percentiles (right).
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high (SSP5-8.5) emissions scenarios. The FaIR model is calibrated to
emulate the climate response of a range of CMIP6 models and takes into
account the uncertainty of internal variability20 (seeMethods Section “FaIR
model description”). It shows excellent performance in simulating volcanic
cooling over the last 750 years as compared to tree ring-based
recontructions21. We assess the role of volcanic uncertainty in the prob-
ability of exceeding 1.5 °C, 2 °C and 3 °C warming thresholds, and the
probability of short-term surface cooling by 2100 (see Methods Section
“Calculation of uncertainties and probabilities”).

Our results show that the contribution to uncertainty associated with
volcanic forcing is comparable to that from internal variability on tem-
perature projections throughout the 21st century. Future stochastic volcanic
forcing reduces the probability of exceedingwarming thresholds (i.e., 1.5 °C,
2 °C and3 °C) to varying extents across the three SSPs. The standardCMIP6
approach using a constant volcanic forcing greatly underestimates the
probability of short-term surface cooling. The use of stochastic volcanic
forcing is necessary to assess the socio-economic impacts and risks of future
volcanic eruptions. We suggest an improved magnitude of volcanic forcing
in future ScenarioMIP iterations to account for the contributions fromboth
small-magnitude eruptions and larger-magnitude eruptions.

Results and discussion
Large contribution of volcanic forcing to uncertainties on tem-
perature projections
Figure 1 shows the projection of GMSAT anomalies relative to the
1850–1900 period simulated by the FaIR model and its uncertainties (see
Methods for uncertainty calculations). Volcanic uncertainty contributes
significantly to overall uncertainties in climate projections, accounting for
up to 33% (5th–95th percentile) in 2022 and 49% (1st-99th percentile) in
2029 of the total uncertainty in the initial 15 years (Fig. 1b). This con-
tribution is comparable to that of internal variability which accounts for up
to 34% (5th–95th percentile) and 29% (1st–99th percentile) in 2020. Vol-
canic forcing uncertainty ramps up in the initial 5–6 years before reaching
values representative of the true volcanically-drivenuncertainty onGMSAT
across our simulations. This ramp up is due to: i) the typical aerosol lifetime
of about 2–3 years; and ii) the timescale of the climate response to volcanic
forcing of about 5–10 years in FaIR21. Beyond the ramp up period, volcanic
forcing uncertainty systematically exceeds internal variability from year
2022 (5th–95th percentile) and year 2018 (1st–99th percentile) onwards.
Together, volcanic forcing and internal variability dominate projection
uncertainties for at least a decade, extending to 2033 (5th–95thpercentile) or
2038 (1st–99th percentile) (Fig. 1b). When accounting for volcanic uncer-
tainty, the 2030–2050 mean GMSAT changes are projected to be 1.5 °C
above 1850-1900 levels. The volcanic uncertainty has a distribution skewed
towards cooling,with a 5th–95thpercentile rangebetween1.2 °Cand1.6 °C,
and a 1st–99th percentile range between 0.7 °C and 1.6 °C (Fig. 1a).

Although volcanic eruptions are sporadic in nature, the volcanic
uncertainty remains constant in projections when averaged with a 10-year
moving mean (Fig. 1a). As scenario and climate uncertainties increase
significantly over time, their fractional contributions dominate the overall
uncertainties in the longer term (Fig. 1a, b). In the long-term future
(2080–2100), the mean GMSAT changes accounting for volcanic uncer-
tainty is projected tobe2.5 °Cwith a 5th–95thpercentile rangeof 2.2–2.6 °C,
and a 1st-99th percentile range of 1.8–2.6 °C relative to 1850–1900. By 2100,
the fractional contribution of volcanic uncertainty is estimated to be
between 4.0% (5th–95th percentile) and 8.0% (1st–99th percentile), com-
pared to 3.6% (5th–95th percentile) to 4.6% (1st–99th percentile) from
internal variability (Fig. 1b).

Stochastic volcanic forcing scenarios delay crossing 1.5 °C
Improving the representation of volcanic forcing with stochastic emission
scenarios reduces the probability of exceeding the 1.5 °Cwarming threshold
for all the three SSP scenarios in the near-term future (Fig. 2a).We find that
in the near-term future between 2030 and 2050, the differences in prob-
ability of 1.5 °C exceedance between projections using stochastic forcings

and historically-averaged forcing is 5–7% for SSP1-1.9, 4–10% for SSP2-4.5,
and 0–9% for SSP5-8.5 (Fig. 2b). The higher forcingmagnitude in stochastic
forcing compared to the historically-averaged forcing in CMIP6 Scenar-
ioMIP leads to, on average, a reduced probability of exceeding warming
thresholds. Our finding confirms the results in Chim et al.8, which on the
basis of three forcing scenarios and the UKESM climate model, suggested
that stochastic volcanic forcing scenarios lead to reduced GMSATs and
delay the crossing of the 1.5 °C, 2 °C and 3 °C warming thresholds by
2–7 years.

In the long term, warming levels in high-end SSP scenarios are
sufficiently high that the probability of exceeding 1.5 °C is 100% within
this century regardless of the implementation of stochastic volcanic
forcings. For our low-end SSP scenario (i.e., SSP1-1.9), our simulation
with stochastic volcanic forcings consistently reduces the probability of
crossing 1.5 °C by about 5% throughout the 21st century. The choice of
volcanic forcing implementation in climate projection is therefore par-
ticularly important for a low warming threshold of 1.5 °C and low-end
SSP scenarios (e.g., SSP1-1.9), which are expected to be an important
focus of CMIP7 ScenarioMIP22.

In contrast to the 1.5 °C warming threshold, the choice of volcanic
forcing implementation has a smaller effect on the probabilities of excee-
dance for higher warming thresholds of 2 °C and 3 °C, in particular for
SSP1-1.9 (Supplementary Figs. S1 and S2). The difference in probabilities of
exceedance is up to 1% for SSP1-1.9, and6-7% for SSP2-4.5 andSSP5-8.5 for
a warming threshold of 2 °C (Supplementary Fig. S1). As the low-end SSP
scenario has a lower level of warming, the effect of stochastic volcanic
forcing is smaller for SSP1-1.9 than the higher SSP scenarios.

Although inclusion of a stochastic volcanic forcing in future scenarios
reduces the likelihood of single years crossing 1.5 °C, compliance with Paris
Agreement thresholds should be assessed using long-term trends of the
anthropogenic component of warming23,24.

Increased likelihood of abrupt surface cooling using stochastic
volcanic forcings
Figure 3a and Supplementary Fig. S3 illustrate the probability of at least one
occurrence of a short-term (one-year and two-year) GMSAT reduction
greater than temperature thresholds between 0.1 °C and 0.9 °C by 2100. The
historically-averaged (constant) forcing approach, where GMSAT varia-
bility arises from internal variability but not volcanic forcing, under-
estimates the probability of one-year and two-year short-term cooling
(Fig. 3a and Supplementary Fig. S3). The peak global-mean surface cooling
of the 1991 Mt. Pinatubo eruption was about 0.29 °C (uncertainty range:
0.21–0.37 °C), calculated using the Volc2Clim tool25 (See Methods “Cal-
culation of uncertainties and probabilities”). There is a 50–70% chance
(depending on SSP scenarios) of having at least a one-year GMSAT
reduction of 0.3 °C by 2100 using stochastic forcings, as compared to a
5–15% chance using a historically-averaged forcing.

For a peak cooling greater than 0.45 °C, the probability is <1% in the
simulations with constant volcanic forcing, compared to a 35% to 45%
probability in simulations with stochastic volcanic forcing (Fig. 3a). For a
Mt. Tambora-like eruption with peak cooling of about 0.85 °C, historically-
averaged forcing gives a zero probability, while using a stochastic forcing
gives a probability of about 5%. Furthermore, defining short-termcooling as
the mean GMSAT reduction over two consecutive years exceeding specific
temperature thresholds reveals more pronounced differences between
constant and stochastic volcanic forcing approaches. While the constant
forcing approach results in a zero probability for two-year GMSAT
reduction greater than 0.25 °C for all three SSP scenarios, the stochastic
forcing approach indicates at least a 41% probability of reaching the 0.25 °C
temperature threshold. The probability of short-term cooling is lower in
weaker climate mitigation scenarios because higher rates of warming offset
some of the volcanic cooling.

The use of a constant volcanic forcing leads to a narrower distribution
of decadal temperature trend, underestimating the probability of both
extreme warm and cold periods (Fig. 3b). Bethke et al.4 show that the
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probability of the occurrences of negative decadal trends (<0 °C per decade)
increases from 10% for zero volcanic forcing, to more than 16% for sto-
chastic volcanic forcing for an intermediate future anthropogenic emission
scenario (Representative concentration pathway, RCP4.5). Our simulation
with a comparable future anthropogenic emission scenario (i.e., SSP2-4.5)
shows a slightly higher increase in the probability of negative decadal trends
from 10% for constant volcanic forcing, to 18% when accounting for sto-
chastic volcanic forcing (Supplementary Fig. S4), which agrees well with
Bethke et al.4 for the NorESM model and RCP4.5 scenario. The higher
probability ofnegativedecadal trends inour simulation likely arises fromthe
wider range of stochastic volcanic forcings and climate system uncertainties
used.Our results show that the probability of havingnegative decadal trends
is dependent on the future emission scenario. For instance, theprobability of
having negative decadal trends is similar (43–44%) between constant and
stochastic volcanic forcings for SSP1-1.9, and the probability increases from
1% to 6% for SSP5-8.5 (Supplementary Fig. S4). Our simulations using
constant volcanic forcing also overestimate the probability of warming
decadal trends exceeding 0.5 °C by 4–7% across the SSP scenarios.

In addition to surface cooling events, Supplementary Fig. S5 illustrates
the probability of at least one occurrence of a short-term GMSAT increase
greater than the temperature thresholds between 0.1 and 0.9 °C by 2100.
Despite leading to lower temperature projections, the simulations using
stochastic volcanic forcing increase the probability of short-term warming
occurrence than the constant volcanic forcing for the entire range of tem-
perature thresholds. Our results highlight that the use of a constant volcanic
forcing neglects abrupt warming and cooling events and leads to a bias in
GMSAT distribution as compared to using a stochastic volcanic forcing.

Improving future volcanic forcing in climate projections
Our model results show that stochastic volcanic forcing can lead to large
uncertainties on temperature projections, in particular during the initial
decades. However, to account for volcanic uncertainties in future climate
modelling experiments (i.e., CMIP), it is infeasible to simulate a thousand
stochastic forcing scenarios using the computationally expensive ESMs.

Figure 4 shows the probability density function of stratospheric aerosol
optical depth (SAOD) for the 1000 stochastic scenarios, and the corre-
sponding temperature projections under SSP2-4.5 for the 5th, 50th and95th
percentiles of the SAOD distribution. The 2015–2100 averaged GMSAT of
the constantmedian forcing is 0.03 °C lower than theCMIP6 forcing, which

is consistent with the results in Chim et al.8, but not as low as the values in
Chim et al.8 simulated by the UKESM1 climate model (between 0.08 and
0.12 °C). Thedifference inGMSATpotentially arises from thehigher SAOD
values in Chim et al.8 than our study (Fig. 4a), and the high climate sensi-
tivity in the UKESM1 model26. Supplementary Table S1 shows the time-
averaged SAOD values calculated using the idealised volcanic forcing
emulator, EasyVolcanicAerosol (EVA_H), andUKESM1 for the stochastic
scenarios simulated. In our study, the median of the 2015–2100 time-
averaged SAOD of the stochastic scenarios is 0.0138 (5th–95th percentile
range: 0.0072–0.0296), which is about 22% greater than the 1850–2014
mean value (0.0107) used in CMIP6 ScenarioMIP (Fig. 4a and Supple-
mentary Table S1). The median of 2015–2100 time-averaged SAOD in our
study calculated usingEVA_H is 45% lower than that simulated byUKESM
in Chim et al.8. The difference in the SAOD values can be explained by the
aerosolmodel sensitivity to volcanic forcing.Clyne et al.27 demonstrated that
for a Mt. Tambora-like eruption, UKESM1 simulates a higher SAOD than
EVA,with EVA_H simulating slightly lower SAOD than EVA, in particular
for extratropical eruptions18. The FaIR model, calibrated with the CMIP6
model results and constrained to the assessment of climate sensitivity in
AR620,28, is expected to simulate a smaller GMSAT response in the median
compared to UKESM1, which exhibits higher climate sensitivity. Supple-
mentary Fig. S6 demonstrates that when FaIR is calibrated with UKESM1,
the GMSAT responses between the two models become comparable. Last,
Fig. 4a also shows the mean SAOD value of the CMIP7 dataset accounting
for small-magnitude eruptions. The CMIP7 1850–2014 mean SAOD
(0.014) is the same as themedian of our stochastic scenarios, and 27% larger
than the CMIP6 1850-2014 mean SAOD (0.011).

The current forcing approach in ScenarioMIP underestimates the cli-
mate uncertainty arising from future volcanic eruptions (Fig. 1), which
potentially lead to biased mean climate in projections. We find that the
GMSATprojectionof themedianof the stochastic scenarios is comparable to
that of the constant median forcing of the SAOD distribution (Fig. 4b). This
shows that the use of a constant volcanic forcing equivalent to the 50th
percentile of the SAODdistribution is a good estimation of themedian of the
future GMSAT projection across the 1000 stochastic scenarios. We do not
recommend a stochastic volcanic forcing approach in ScenarioMIP because
it is computationally expensive to implement for multiple ESMs and future
anthropogenic forcing scenarios. However, we suggest that the Reduced
Complexity Model Intercomparison Project could consider an experiment
witha largenumberof volcanic scenarios for full uncertaintyquantification29.
To improve the representation of volcanic forcing in climate projections, we
suggest future ScenarioMIP experiments prescribe a constant volcanic for-
cing that accounts for the contribution of small-magnitude eruptions, e.g., a
historically-averaged mean that considers the missing SO2 flux from small-
magnitude eruptions prior to 1978 (i.e., a 1850-2014 time-averaged value of
0.014 in theCMIP7dataset), or the50thpercentile of SAODdistribution (i.e.,
a 2015–2100 time-averaged value of 0.014) based on stochastic scenarios
resampled fromthe latest ice-core and satellite volcanic emission record.This
approach improves the magnitude of future volcanic forcing and the mean
climate state in climate projections. In order to quantify the contribution of
volcanic uncertainty on climate projections, we suggest modelling groups
perform projections with constant volcanic forcings at the 5th and 95th
percentiles of the SAOD distribution of the stochastic scenarios.

The recommendation of a constant volcanic forcing approach, however,
fails to fully account for climate variability and constrains our ability to fully
assess the distribution of GMSAT (Fig. 3, Supplementary Figs. S3 and S4) and
other key climate indicators4,8. The effects of large-magnitude eruptions are
not limited to surface temperature changes. Large-magnitude eruptions can
also pose a threat to infrastructure, agriculture, and energy supply30, which
themselves lead to socio-economic shocks and the potential for reduced
economic productivity that may feed back into emission scenarios and
eventually to climate projections, an effect not investigated in this study. The
use of stochastic volcanic forcings in climate models and projections is
necessary to allow the assessment of the abrupt climatic changes caused by
large-magnitude volcanic eruptions, and the associated climatic risks and

Fig. 2 | Probability of exceeding 1.5 °C with stochastic versus constant volcanic
forcing approaches. a Probability of scenarios exceeding 1.5 °C using stochastic
volcanic forcing (solid lines) and 1850–2014 mean historically-averaged forcing
(dotted lines) for SSP1-1.9, SSP2-4.5 and SSP5-8.5 scenarios. b The difference in
probability in exceeding 1.5 °C between the simulations with historically-averaged
(constant) forcing and stochastic volcanic forcing (seeMethods Section “Calculation
of uncertainties and probabilities”).
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socio-economic impacts. In addition, future climate warming modulates the
climate effects of volcanic sulfate aerosols via climate-volcano feedbacks31.We
encourage individual modelling groups to perform climate projection
experiments using a stochastic volcanic forcing approach similar to Bethke
et al.4 and Chim et al.8 to fully assess the climate and socio-economic feed-
backs associated with future volcanic eruptions.

In addition to future volcanic eruptions, the uncertainties associated
with other forcings, such as wildfires, on climate projections remains
unanswered. Future studies could apply the methodology developed in our
study to examine the uncertainties of these forcings on climate projections.

Methods
Design of stochastic volcanic emission scenarios
The stochastic volcanic sulfur dioxide (SO2) emission scenarios we use are
those described in detail in Chim et al.8 and we briefly summarise their
design here. Chim et al.8 generate an ensemble of 1000 scenarios spanning
the years 2015–2100 by independently resampling:

i. Small-magnitudeeruptions (<3TgofSO2) fromthe1979–2021satellite
record32, which captures stratospheric volcanic SO2 emissions from
eruptions of all magnitudes and is much longer than the typical return
period of small-magnitude eruptions (months to years).

ii. Large-magnitude eruptions (≥3 Tg of SO2) from the combined 9496
BCE to 1978CE ice-core records16 and the 1979–2021 satellite record32.

Chim et al.8 do not resample small-magnitude eruptions from the ice-
core record because injections much smaller than 10 Tg of SO2 are poorly
detected in ice cores. The maximum eruption size in the ice-core record
Chimetal.8 use is 378Tgof SO2, butwe expect thedataset to only reasonably
capture the frequency-magnitude distribution of eruptions injecting up to a
maximumof≃100Tgof SO2,with returnperiods less than1000yearswhich
is much shorter than the 11,500 years dataset coverage. The scenarios for
small- and large-magnitude eruptions are then combined into a single
scenario. Bothmagnitudes of eruptions significantly contribute to the long-
term volcanic forcing8.

The timing of each eruption is randomly resampledwithin 2015–2100.
The eruption location and injection height are that from the satellite record
if the eruption is resampled from this record. For eruptions resampled from
the ice-core record, the broad latitudinal region (i.e., southern extratropical,
tropical or northern extratropical) is inferred basedon the sulfate deposition
ratio between Greenland and Antarctica, and an exact volcano within these
regions is resampled from the Smithsonian Global Volcanism Program
Holocene Eruption database33. The injection height is either that recon-
structed fromthe geological recordor, in the vastmajority of caseswhere it is
unknown, it is assumed to be 25 km above sea level (the same as that of the
1991 eruption of Mt. Pinatubo34).

The result is an ensemble of 1000 scenarios for the mass, timing,
altitude and latitude of volcanic SO2 injection for 2015–2100. These

Fig. 3 | Probabilities of one-year and decadal temperature cooling trends with
and without stochastic volcanic forcing. a Probability of at least one occurrence of
one-year global mean surface air temperature (GMSAT) reduction greater than the

shown temperature thresholds for the three SSP scenarios. b Probability density
functions for decadal GMSAT trends (in °C per decade), calculated using a 10-year
moving window, for the three SSP scenarios.
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scenarios are consistent with state-of-the-art eruption inventory records in
terms of space-frequency-magnitude eruption distribution, and are expec-
ted to capture this distributionwell for eruptionmagnitudes smaller than on
the order of 100 Tg of SO2

8. Note that our scenarios ignore the potential
impacts of climate change on eruption distribution space-frequency-
magnitude35 or on the height at which volcanic plumes inject SO2 into the
atmosphere36.

Supplementary Fig. S7 shows the annual SO2fluxof the 1000 stochastic
scenarios. Based on the current volcanic SO2 emission records, the
1850–2014averagedvolcanic SO2flux ranges between0.77 to 0.86Tgof SO2

per year3,32,37,38, as compared to 1.44 Tg of SO2 per year for the median
stochastic scenario. The CMIP7 volcanic SO2 emission inventory, which
complements bipolar ice-core record pre-satellite era with the D4i high-
resolution Greenland record39 and geological records of small-magnitude
eruptions (Global Volcanism Programme Volcanoes of the World data-
base) has a 1850–2021 averaged volcanic SO2 flux of 1.0 Tg SO2 per year.
UKESM model simulations from Chim et al.8 showed that the 2015–2100
time-averaged SAOD ranged between 0.015 to 0.062 using the low-end
(2.5th percentile) and high-end (97.5th percentile) stochastic scenarios, as
compared to a value of 0.012 for a constant volcanic forcing following the
ScenarioMIP design.

SupplementaryFig. S8 shows thedistributionof the eruption location
for all the eruptions in the 1000 stochastic volcanic emission scenarios.
The ratio of southern extratropical: tropical: northern extratropical
eruptions for the median stochastic scenario is 0.04: 0.46: 0.5. In the
historical volcanic emission datasets that we used in this study, the
eruption location ratio is 0.06: 0.48: 0.46 for large-magnitude eruptions
(>3 Tg of SO2) and 0.05: 0.46: 0.50 for small-magnitude eruptions (<3 Tg
of SO2). Since the stochastic scenarios are resampled from the ice-core and
satellite-based volcanic emission datasets, it is expected that the ratio of
their latitudinal distribution is similar.

Supplementary Fig. S9 shows the distribution of eruption months/
season for the 1000 stochastic scenarios. The distributions are similar across
the four different categories of eruption months.

Out of the 1000 stochastic scenarios, there are 564 scenarios that
have at least one double-eruption event, which is defined as having two
large-magnitude eruption (>3 Tg of SO2) occurring within three years of
each other. If we consider eruptions with SO2 injection greater than 15
Tg of SO2, there are 71 scenarios that have at least one double-
eruption event.

Aerosol optical properties and effective radiative forcing
To obtain a 2015–2100 effective radiative forcing time series for each of our
volcanic emission scenarios, we first use the simple EVA_Hvolcanic aerosol
model18. EVA_H uses input SO2 injection parameters (mass, date, altitude
and latitude) to produce 4-D (latitude, altitude, time and wavelength)
aerosol optical properties. EVA_H is a simple box model where the stra-
tosphere is divided in three latitudinal and three altitude bands, and where
aerosol production, loss and transport processes are parameterized using
constant timescales18. It builds on Easy Volcanic Aerosol40, which was
extensively used in CMIP6 VolMIP41 and PMIP42. Unlike EVA, EVA_H
accounts for the role of volcanic injection latitude and altitude in deter-
mining aerosol optical properties. One of the main limitations is that
EVA_H overestimates the lifetime of sulfate aerosol produced by small-
magnitude volcanic eruptions43. However, given the large uncertainty in
interactive stratospheric aerosol models, simple models like EVA_H
represent a reasonable middle-ground estimate of the aerosol optical
property response to volcanic SO2 injection27. Furthermore, the model
simplicity makes it feasible to simulate 86,000 years (1000 stochastic sce-
narios from 2015 to 2100) of volcanic injections.

Using the global mean 550 nm stratospheric aerosol optical depth
(SAOD) time series from EVA_H, we then follow Marshall et al.17 to esti-
mate the global mean effective radiative forcing (ERF) as:

ERF ¼ �20:7× ð1� expð�ΔSAODÞÞ ð1Þ

whereΔSAOD is the difference between the globalmean 550 nmSAODand
its minimum over the historical period. The relationship shown in Eq. (1) is
calibrated using theUM‐UKCA interactive stratospheric aerosolmodelwith
an extensive set of stratospheric aerosol injection simulations,which includes
82 explosive eruptions with different eruption source parameters (i.e., SO2

emission, eruption latitude, and the emission height)17. The use of a non-
linear relationship better reflects the physical relationship expected between
radiative forcing and SAODas opposed to a linear relationship (e.g., Schmidt
et al.44). Equation (1) also leads to a forcing 20–25% smaller than the one
estimated in Intergovernmental Panel on Climate Change fifth assessment
report (IPCCAR5)45 for the same SAOD, primarily as a result of accounting
for rapid adjustments modulating the radiative forcing17. According to the
IPCC AR6, the radiative forcing of volcanic aerosols follows a linear
relationship of −20 ± 5W/m2 per unit of SAOD, which yields a magnitude
similar to that given by Eq. (1), particularly for smaller forcings28.

Fig. 4 | Globalmean surface air temperature projections under different constant
volcanic forcingmagnitudes. aProbability density function of the 2015–2100 time-
averaged mean stratospheric aerosol optical depth (SAOD) of the 1000 stochastic
scenarios. The CMIP6 ScenarioMIP 1850–2014 time-averaged SAOD mean value
(0.011) is denoted as red line. The CMIP7 1850–2014 time-averaged SAOD mean
value (0.014) is denoted as red dotted line; it is obtained from the CMIP7 version
2.0.0 dataset available on Earth System Grid Federation. The median (0.014) and
5th–95th percentile of the ranked SAOD across 1000 stochastic scenarios are

denoted as black line and grey shading, respectively. b Global mean surface air
temperature (GMSAT) anomaly (°C) relative to 1850–1900 under SSP2-4.5, applied
with 10-year moving mean. The blue line shows the median of the 1000-member
stochastic volcanic forcing, and the blue shading shows the range of 5th−95th
percentile with volcanic uncertainty only. The red line shows themedian of GMSAT
projection using theCMIP6 1850-2014 historicalmean forcing. The black lines show
the median of GMSAT projections for the 5th, 50th and 95th percentiles of the
SAOD distribution.
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Although the relationship between SAOD and ERF varies in time and
for instance with eruption latitude and season17, we use the same relation-
ship for all eruptions because we model 86-year eruption sequences as
opposed to individual eruptions for which we could use relationships spe-
cific to the eruption latitude or season considered17. Altogether, the
sequential use of EVA_H and Eq. (1) enable us to calculate the 2015–2100
globalmean volcanic aerosol ERF time series for each of the 1000 stochastic
emission scenarios used. As with the emission scenarios, we ignore the
potential impacts of climate change on volcanic aerosol processes and
resulting radiative forcing31. Supplementary Table S1 provides the ΔSAOD
and ERF values used in our simulations. Supplementary Fig. S6 shows the
comparison between the SAOD,ERF andGMSATprojections simulated by
FaIR and UKESM1.1 for three stochastic scenarios (at the 2.5th, 50.0th and
98.0th percentile, as in Chim et al.8) under SSP3-7.0.

FaIR model description
To calculate the 2015–2100 GMSAT for various volcanic and anthro-
pogenic forcing scenarios, we use the Finite-amplitude Impulse Response
(FaIR) model. FaIR is a reduced-complexity climate model that pro-
duces GMSAT projections from inputs of anthropogenic emissions and
effective radiative forcing19,46. FaIR includes emissions of 51 anthropogenic
emissions categories spanning the most important greenhouse gases and
aerosol and ozone precursor species. Natural forcings from solar variability
and volcanic activity are provided as external time series. In this studyweuse
FaIR version 2.1.419,20.

FaIR includes simplified representations of the carbon and methane
cycles, including carbon cycle feedbacks47 and the effect of chemically-active
greenhouse gases and short-lived climate forcers on methane lifetime48.
Concentrations of greenhouse gases other than CO2 and CH4 are modelled
with a single invariant atmospheric lifetime based on the most recent IPCC
assessment49,50. Effective radiative forcing from greenhouse gases is deter-
mined from well-established curve-fits to their concentrations42. Aerosol
and ozone effective radiative forcings are also modelled from precursor
emissions and their interactions as represented in CMIP6 models49,51–53.
Minor forcing categories such as surface albedo from land use change and
black carbon deposition on snow, contrails from aviation, and stratospheric
water vapour from methane oxidation are calculated from emissions or
concentrations of emitted species46.

When the internal variability is switched on in the FaIR model, the
model uses a stochastic internal variability which generates a stochastic
component of the total effective radiative forcing54. This is based on CMIP6
models, and we include the autocorrelation in internal variability therefore
simulating realistic fluctuations in GMSAT, such as clustering of warm and
cool years in the El Niño-La Niña cycle (to the extent that CMIP6 models
simulate these well).When the internal variability is switched off, themodel
reflects only directly forced effects (i.e., anthropogenic and natural forcings,
including the stochastic volcanic forcing), on GMSAT.

We produce a 1000-member ensemble of FaIR that samples the
uncertainty in climate response as calibrated against CMIP6 models and
constrained to observations of historical climate change (GMSAT
1850–2022, ocean heat content 1971–2022, year 2022 CO2 concentration
from Forster et al.55) and assessments of key climate metrics (equilibrium
climate sensitivity, transient climate response, direct, indirect and total
aerosol forcing) from the IPCC AR628. In this study we use fair-calibrate
v1.4.256. The calibration process ensures that all projections are historically
consistent and in line with (though sampling the full range of uncertainty
from) climate observations or the IPCC AR6. This calibration of FaIR uses
the CMIP6 historical and future SSP emissions from the Reduced Com-
plexity Model Intercomparison Project29,57. As the SSPs diverge from the
historical in 2014, we use SSP2-4.5 as the scenario to fill the 2015–2022
period in the calibration and for comparison to recent climate observations.
In this calibration dataset, we also follow the CMIP6 guidelines for
extending volcanic forcing beyond the end of the historical period for the
calibration, by ramping down the volcanic forcing in 2014 to the CMIP6
historical average over 10 years5.

As part of the sampling process of FaIR, we also sample the conversion
factor between SAOD and ERF from volcanic forcing, which has a 5–95%
uncertainty range of ±25%around the best estimate value58 which is applied
as a direct scaling factor to Eq. (1).

The FaIR model parameters are constrained using the historical
GMSAT observations between 1850 and 2022 from Forster et al.28,55. In the
calibration of the FaIR model, Smith et al.20 used two steps to constrain the
model projectionwith historical values. The first step is to compare the FaIR
ensemble members’ root mean squared (RMSE) difference in GMSAT
anomaly to the historical observed values, and reject the ensemblemembers
with a RMSE difference greater than 0.17 °C. The second step is to reweight
this first posterior to fit eight distributions of observed or assessed climate
indicators, including equilibriumclimate sensitivity (ECS), transient climate
response (TCR), 20-year average GMSAT anomaly (2003–2022 relative to
1850–1900), aerosol effective radiative forcing (direct, indirect and total),
CO2 concentration in 2022, and ocean heat content change (2020 relative to
1971), based on the observed and assessed climatemetrics taken from IPCC
AR628 for ECS, TCR and aerosol forcing, and the Indicators of Global
Climate Change 202255.

The same combination of EVA_H, the Marshall et al.17. ERF scaling
and FaIR calibration has been used in Verkerk et al.21. Verkerk et al.21

demonstrated that this modelling framework captures well the global mean
surface cooling in response to volcanic eruptions of the last 750 years.

Simulation design
We produced 1000-member simulations for 2015–2100 (sampling the
1000-member FaIR parameter ensemble) for various combinations of
future anthropogenic and volcanic forcing scenarios. For anthropogenic
forcing, we used the SSP1-1.9, SSP2-4.5 and SSP5-8.5 SSP scenarios6. For
volcanic forcing, we used:
1. The 1000 stochastic forcing scenarios generated from stochastic

emission scenarios using the EVA_H model and Eq. (1) (see Method
Sections “Design of stochastic volcanic emission scenarios” and
“Aerosol optical properties and effective radiative forcing”). Instead of
running each FaIR configuration for each volcanic forcing scenario,
which would have resulted in 1,000,000 simulations per SSP scenario,
we randomly pair a FaIR configuration to a stochastic volcanic forcing
scenario, effectively sampling the climate uncertainty and volcanic
forcing uncertainty simultaneously. We performed 1000 stochastic
volcanic forcing scenarios with internal variability switched on, and
1000 stochastic volcanic forcing scenarios with internal variability
switched off.

2. A control simulation with constant volcanic forcing scenario con-
sistent with the CMIP6 ScenarioMIP recommended protocol and our
modelling workflow, i.e., where the 2015–2024 global mean 550 nm
SAOD is linearly ramped from its 2014 value to a value equal to that of
the CMIP6 1850–2014 mean (0.010), and is then constant over
2025–2100. The corresponding forcing time series is calculated using
Eq. (1).

3. Three constant volcanic forcing scenarios sampling the lower-end,
middle-range andupper endof potential future emissions. Todo so,we
calculate using the 5th, 50th and 95th percentiles of the 2015–2100
mean global mean 550 nm SAOD distribution issued from our
1000 stochastic volcanic emission scenarios and EVA_H. The
corresponding SAOD values are 0.007, 0.014 and 0.030. We then
calculate volcanic forcing exactly as done for the case using the CMIP6
1850–2014 mean SAOD, including a 10-year ramp between the 2014
SAOD and the 2025–2100 constant SAOD value.

Calculation of uncertainties and probabilities
We calculated the four sources of uncertainties in climate projections as
follows:
1. Scenario uncertainty - calculated using the control simulation without

stochastic volcanic forcing and internal variability (no_volcanoes_fu-
ture.nc) across the three SSPs (SSP1-1.9, SSP2-4.5, SSP5-8.5).
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2. Model uncertainty - calculated using the control simulation without
stochastic volcanic forcing and internal variability (no_volcanoes_fu-
ture.nc) for one of the SSPs. The model uncertainty in our calculation
does not include the influence of internal variability.

3. Volcanic uncertainty - using model simulations without internal
variability, and calculated by the difference between the model simu-
lations with and without stochastic volcanic forcing (stochas-
tic_volcanoes.nc - no_volcanoes_future.nc).

4. Internal variability uncertainty - using model simulations without
stochastic volcanic forcing, and calculated by the difference between
the model simulations with and without internal variability (stochas-
tic_volcanoes_stochastic_climate.nc - stochastic_volcanoes.nc).

To calculate the probability of exceeding warming temperature
thresholds of 1.5 °C, 2 °C, and 3 °C, we calculated the number of stochastic
scenarios (over the 1000 members) that exceed the temperature threshold
for each year using the 30-year movingmean GMSAT values (as defined in
the IPCC report).

We defined “short-term one-year GMSAT reduction” as the occur-
rence of a future stochastic scenario with a one-year GMSAT reduction
greater than the temperature thresholds comparing to theprevious year, and
“short-term two-year GMSAT reduction” as the occurrence of a future
stochastic scenario with two consecutive years of GMSAT reduction of at
least 0.1 °C, and the two-year mean GMSAT changes greater than the
temperature thresholds. We calculated the probability of short-term
GMSAT reductions by counting the stochastic scenarios exceeding tem-
perature thresholds between−0.1 °C and−0.9 °C by 2100. The probability
is calculated by the difference between the FaIR model simulations with
stochastic volcanic forcing and internal variability (i.e., stochastic_volca-
noes_stochastic_climate.nc), and the FaIR model simulations without
stochastic volcanic forcing and with internal variability (i.e., no_future_-
volcanoes_stochastic_climate.nc). We estimated the peak global-mean
cooling of the 1991Mt. Pinatubo eruption (18 Tg ± 5 Tg of SO2 injection

25)
and 1815Mt. Tambora eruption (56 Tg ± 9 Tg of SO2 injection

11) using the
Volc2Clim webtool25. For the 1991 Mt. Pinatubo eruption, we assumed an
uncertainty of 5Tg of SO2 injection. For the 1815Mt. Tambora eruption,we
assumed an uncertainty of 9 Tg of SO2 (based on the evolv2k volcanic
emissiondataset). Theuncertainty estimate forTambora eruption is derived
from ice core fluxmeasurements and the uncertainties in transfer functions
used to convert these ice core fluxes to stratospheric SO2 injection values11.
We calculated the uncertainty range of the peak global-mean surface cooing
of the two eruptions using the Volc2Clim webtool with the uncertainty
range of SO2 injection stated above. We calculate the probability of at least
one occurrence of short-term GMSAT increase (Supplementary Fig. S5)
with a similar approach using temperature thresholds between 0.1 °C
and 0.9 °C.

We designed our methodology to examine how the volcanic uncer-
tainty related to explosive volcanic sulfur emissions affect climate projec-
tions. We did not resample the EVA_H and SAOD-ERF parameters (see
Methods Section “Aerosol optical properties and effective radiative for-
cing”) as we are not assessing the uncertainty in the conversion of volcanic
emission to volcanic forcing.

Data availability
The data used in this paper is available from the University of Cambridge
data repository: https://doi.org/10.17863/CAM.110898.

Code availability
FaIR v2.1.4 is available from https://github.com/OMS-NetZero/FAIR/tree/
v2.1.4 as zip archives, and installable from https://anaconda.org/conda-
forge/fair and https://pypi.org/project/fair/. The calibration version v1.4.2
produced for this study is available from https://doi.org/10.5281/zenodo.
13142999. The code to plot the main text and Supplementary Figs. is
available from https://github.com/maychim/Stochastic-volc-FAIR.

Received: 24 September 2024; Accepted: 12 March 2025;

References
1. Myhre, G. et al. Radiative forcing of the direct aerosol effect from

AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877
(2013).

2. Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B. & Phipps, S. J.
Separating forced from chaotic climate variability over the past
millennium. J. Clim. 26, 6954–6973 (2013).

3. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the
past 2,500 years. Nature 523, 543–549 (2015).

4. Bethke, I. et al. Potential volcanic impacts on future climate variability.
Nat. Clim. Change 7, 799–805 (2017).

5. Eyring, V. et al. Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization.
Geosci. Model Dev. 9, 1937–1958 (2016).

6. O’Neill, B. C. et al. The Scenario Model Intercomparison Project
(ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482
(2016).

7. Lee, J.-Y. et al. Future global climate: scenario-based projections and
near-term information. In:Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change (eds.
Masson-Delmotte, V. et al.) 553–672 (Cambridge University Press,
2021). https://doi.org/10.1017/9781009157896.006.

8. Chim,M.M. et al. Climate projections very likely underestimate future
volcanic forcing and its climatic effects. Geophys. Res. Lett. 50,
e2023GL103743 (2023).

9. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in
regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108
(2009).

10. Marshall, L. R. et al. Volcanic effects on climate: recent advances and
future avenues. Bull. Volcanol. 84, 54 (2022).

11. Toohey, M. & Sigl, M. Volcanic stratospheric sulfur injections and
aerosol optical depth from 500 BCE to 1900.Ce. Earth Syst. Sci. Data
9, 809–831 (2017).

12. Anchukaitis, K. J. et al. Influence of volcanic eruptions on the climate
of the Asianmonsoon region.Geophys. Res. Lett. 37, 2010GL044843
(2010).

13. Luterbacher, J. & Pfister, C. The year without a summer. Nat. Geosci.
8, 246–248 (2015).

14. Fasullo, J. T. et al. The amplifying influence of increased ocean
stratification on a future year without a summer. Nat. Commun. 8,
1236 (2017).

15. Gao, C., Gao, Y., Zhang, Q. & Shi, C. Climatic aftermath of the 1815
Tambora eruption in China. J. Meteorol. Res. 31, 28–38 (2017).

16. Sigl, M., Toohey, M., McConnell, J. R., Cole-Dai, J. & Severi, M.
Volcanic stratospheric sulfur injections and aerosol optical depth
during the Holocene (past 11 500 years) from a bipolar ice-core array.
Earth Syst. Sci. Data 14, 3167–3196 (2022).

17. Marshall, L. R. et al. Large variations in volcanic aerosol forcing
efficiency due to eruption source parameters and rapid adjustments.
Geophys. Res. Lett. 47, e2020GL090241 (2020).

18. Aubry, T. J., Toohey, M., Marshall, L., Schmidt, A. & Jellinek, A. M. A
New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator
(EVA_H): ComparisonWith Interactive Stratospheric Aerosol Models.
J. Geophys. Res. Atmos. 125, e2019JD031303 (2020).

19. Leach, N. J. et al. FaIRv2.0.0: a generalized impulse response model
for climate uncertainty and future scenario exploration.Geosci.Model
Dev. 14, 3007–3036 (2021).

20. Smith, C. J. et al. fair-calibrate v1.4.1: calibration, constraining and
validation of the FaIR simple climate model for reliable future climate
projections. Geosci. Model Dev. 17, 8569–8592 (2024).

https://doi.org/10.1038/s43247-025-02208-1 Article

Communications Earth & Environment |           (2025) 6:236 8

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.17863%2FCAM.110898&data=05%7C02%7Cmmc70%40universityofcambridgecloud.onmicrosoft.com%7Cc31865a0c9de48ba2f6208dcb07c6556%7C49a50445bdfa4b79ade3547b4f3986e9%7C1%7C0%7C638579295529084206%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0pjF21H0M5o32LNU0bUdM6bOmOlC88wbuU6yD3EhPqM%3D&reserved=0
https://github.com/OMS-NetZero/FAIR/tree/v2.1.4
https://github.com/OMS-NetZero/FAIR/tree/v2.1.4
https://anaconda.org/conda-forge/fair
https://anaconda.org/conda-forge/fair
https://pypi.org/project/fair/
https://doi.org/10.5281/zenodo.13142999
https://doi.org/10.5281/zenodo.13142999
https://github.com/maychim/Stochastic-VOLC-FAIR
https://doi.org/10.1017/9781009157896.006
https://doi.org/10.1017/9781009157896.006
www.nature.com/commsenv


21. Verkerk, M. et al. Using reduced-complexity volcanic aerosol and
climate models to produce large ensemble simulations of Holocene
temperature. EGUsphere 2024, 1–33 (2024).

22. van Vuuren, D. et al. The Scenario Model Intercomparison Project for
CMIP7. Preprint at https://doi.org/10.5194/egusphere-2024-3765
(2025).

23. Betts,R. A. et al. Approaching1.5 °C: howwill we knowwe’ve reached
this crucial warming mark? Nature 624, 33–35 (2023).

24. Forster, P. M. et al. Indicators of global climate change 2023: annual
update of key indicators of the state of the climate system and human
influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).

25. Schmidt, A., Aubry, T., Rigby, R., Stevenson, J. A. & Loughin, S.
Volc2Clim online tool. Zenodo https://doi.org/10.5281/ZENODO.
7602062 (2023).

26. Mulcahy, J. P. et al. UKESM1.1: development and evaluation of an
updated configuration of the UK Earth SystemModel.Geosci. Model
Dev. 16, 1569–1600 (2023).

27. Clyne, M. et al. Model physics and chemistry causing intermodel
disagreement within the VolMIP-Tambora Interactive Stratospheric
Aerosol ensemble. Atmos. Chem. Phys. 21, 3317–3343 (2021).

28. Forster, P.M. et al. TheEarth’senergybudget, climate feedbacks, and
climate sensitivity. In: Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change (eds.
Masson-Delmotte, V. et al.) 923–1054 (Cambridge University Press,
2021). https://doi.org/10.1017/9781009157896.009.

29. Nicholls, Z. R. J. et al. Reduced complexity model intercomparison
project phase 1: introduction and evaluation of global-mean
temperature response. Geosci. Model Dev. 13, 5175–5190 (2020).

30. Cassidy, M. & Mani, L. Huge volcanic eruptions: time to prepare.
Nature 608, 469–471 (2022).

31. Aubry, T. J. et al. Climate change modulates the stratospheric
volcanic sulfate aerosol lifecycle and radiative forcing from tropical
eruptions. Nat. Commun. 12, 4708 (2021).

32. Carn, S. Multi-Satellite Volcanic Sulfur Dioxide L4 Long-Term Global
Database V4 (MSVOLSO2L4 4), https://disc.gsfc.nasa.gov/datasets/
MSVOLSO2L4_4/summary (2022).

33. Global Volcanism Program. Volcanoes of the World, v.5. Global
Volcanism Program https://doi.org/10.5479/si.GVP.VOTW5-2022.5.0
(2022).

34. Fero,J.,Carey,S.N.&Merrill, J. T.Simulating thedispersalof tephra from
the1991Pinatuboeruption: Implications for the formationofwidespread
ash layers. J. Volcanol. Geotherm. Res. 186, 120–131 (2009).

35. Aubry, T. J. et al. Impact of climate change on volcanic processes:
current understanding and future challenges. Bull. Volcanol. 84, 58
(2022).

36. Aubry, T. J. et al. Impact of global warming on the rise of volcanic
plumes and implications for future volcanic aerosol forcing. J.
Geophys. Res. Atmos. 121, 13,326–13,351 (2016).

37. Neely, R. R. I. & Schmidt, A. VolcanEESM: Global volcanic sulphur
dioxide (SO2) emissions database from 1850 to present - Version 1.0.
NERCCentre for Environmental Data Analysis (CEDA) https://doi.org/
10.5285/76EBDC0B-0EED-4F70-B89E-55E606BCD568 (2016).

38. Sigl, M., Toohey, M., McConnell, J. R., Cole-Dai, J. & Severi, M.
HolVol: Reconstructed volcanic stratospheric sulfur injections and
aerosol optical depth for theHolocene (9500BCE to 1900CE). https://
doi.org/10.1594/PANGAEA.928646 (2021).

39. Fang, S.-W. et al. The role of small to moderate volcanic eruptions in the
early 19th century climate. Geophys. Res. Lett. 50, e2023GL105307
(2023).

40. Toohey, M., Stevens, B., Schmidt, H. & Timmreck, C. Easy Volcanic
Aerosol (EVA v1.0): an idealized forcing generator for climate
simulations. Geosci. Model Dev. 9, 4049–4070 (2016).

41. Zanchettin, D. et al. The Model Intercomparison Project on the
climatic response toVolcanic forcing (VolMIP): experimental design

and forcing input data for CMIP6. Geosci. Model Dev. 9, 2701–2719
(2016).

42. Jungclaus, J. H. et al. The PMIP4 contribution to CMIP6 – Part 3: The
last millennium, scientific objective, and experimental design for the
PMIP4 past1000 simulations. Geosci. Model Dev. 10, 4005–4033
(2017).

43. Vernier, J.-P. et al. The 2019 raikoke eruption as a testbed
used by the volcano response group for rapid assessment of
volcanic atmospheric impacts. Atmos. Chem. Phys. 24,
5765–5782 (2024).

44. Schmidt, A. et al. Volcanic radiative forcing from 1979 to 2015. J.
Geophys. Res. Atmos. 123, 12491–12508 (2018).

45. Myhre, G. et al. Anthropogenic and natural radiative forcing. In:
Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. (Cambridge University
Press, 2014). https://doi.org/10.1017/CBO9781107415324.018.

46. Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse
responseandcarboncyclemodel.Geosci.ModelDev.11, 2273–2297
(2018).

47. Millar, R. J. et al. Emission budgets and pathways consistent with
limiting warming to 1.5 °. C. Nat. Geosci. 10, 741–747 (2017).

48. Smith, C. J. &Mathison, C. Howmuchmethane removal is required to
avoid overshooting 1.5 °C? Environ. Res. Lett. 19, 074044 (2024).

49. Smith, C. J. et al. Energy budget constraints on the time history of
aerosol forcing and climate sensitivity. J. Geophys. Res. Atmos. 126,
e2020JD033622 (2021).

50. Hodnebrog, Ø. et al. Updated global warming potentials and radiative
efficiencies of halocarbons and other weak atmospheric absorbers.
Rev. Geophys. 58, e2019RG000691 (2020).

51. Smith, C. J. & Forster, P. M. Suppressed late‐20th century warming in
CMIP6 models explained by forcing and feedbacks. Geophys. Res.
Lett. 48, e2021GL094948 (2021).

52. Thornhill, G. D. et al. Effective radiative forcing from emissions of
reactive gases and aerosols – a multi-model comparison. Atmos.
Chem. Phys. 21, 853–874 (2021).

53. Thornhill, G. D. et al. Climate-driven chemistry and aerosol feedbacks
in CMIP6 Earth system models. Atmos. Chem. Phys. 21, 1105–1126
(2021).

54. Cummins, D. P., Stephenson,D. B. &Stott, P. A.Optimal estimation of
stochastic energy balancemodel parameters. J. Clim. 33, 7909–7926
(2020).

55. Forster, P. M. et al. Indicators of global climate change 2022: annual
update of large-scale indicators of the state of the climate system and
human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).

56. Smith, C. J. FaIR calibration data v1.4.2. Zenodo, https://doi.org/10.
5281/ZENODO.13142999 (2024).

57. Nicholls, Z. R. J. et al. Reduced complexity model intercomparison
project phase 2: synthesizing earth system knowledge for
probabilistic climate projections. Earths Fut. 9, e2020EF001900
(2021).

58. Smith, C. J. et al. The Earth’s energy budget, climate feedbacks, and
climate sensitivity Supplementary Material. In: Climate Change 2021:
The Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (Cambridge University Press, 2021).

Acknowledgements
M.M.C. is supported by the Croucher Foundation and The Cambridge
Commonwealth, European & International Trust through a Croucher
Cambridge International Scholarship, and the JosephNeedhamFoundation
for Science and Civilisation through a Joseph NeedhamMerit Scholarship.
M.M.C. and T.J.A. acknowledge support from the Camborne School of
Mines Trust International Travel Bursary and the Department of Earth and
Environmental Sciences of the University of Exeter. T.J.A. acknowledges

https://doi.org/10.1038/s43247-025-02208-1 Article

Communications Earth & Environment |           (2025) 6:236 9

https://doi.org/10.5194/egusphere-2024-3765
https://doi.org/10.5194/egusphere-2024-3765
https://doi.org/10.5281/ZENODO.7602062
https://doi.org/10.5281/ZENODO.7602062
https://doi.org/10.5281/ZENODO.7602062
https://doi.org/10.1017/9781009157896.009
https://doi.org/10.1017/9781009157896.009
https://disc.gsfc.nasa.gov/datasets/MSVOLSO2L4_4/summary
https://disc.gsfc.nasa.gov/datasets/MSVOLSO2L4_4/summary
https://disc.gsfc.nasa.gov/datasets/MSVOLSO2L4_4/summary
https://doi.org/10.5479/si.GVP.VOTW5-2022.5.0
https://doi.org/10.5479/si.GVP.VOTW5-2022.5.0
https://doi.org/10.5285/76EBDC0B-0EED-4F70-B89E-55E606BCD568
https://doi.org/10.5285/76EBDC0B-0EED-4F70-B89E-55E606BCD568
https://doi.org/10.5285/76EBDC0B-0EED-4F70-B89E-55E606BCD568
https://doi.org/10.1594/PANGAEA.928646
https://doi.org/10.1594/PANGAEA.928646
https://doi.org/10.1594/PANGAEA.928646
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.5281/ZENODO.13142999
https://doi.org/10.5281/ZENODO.13142999
https://doi.org/10.5281/ZENODO.13142999
www.nature.com/commsenv


funding from the Coupled Model Intercomparison Project International
Project Office (PO 4000136906) and the European Space Agency (Project
“Volcanic Forcing for CMIP”, contract number 4000145911/24/I-LR). C.S.
was funded by a NERC/IIASA Collaborative Research Fellowship (NE/
T009381/1) and Horizon Europe under Grant Agreements 101081369
(SPARCCLE) and 101081661 (WorldTrans).

Author contributions
T.J.A. and A.S. conceived the study with feedback from M.M.C. and C.S.
M.M.C. generated the stochastic volcanic emission scenarios. T.J.A.
performed the EVA_H runs to generate the stochastic volcanic forcing
scenarios. C.S. performed the FaIR model simulations. M.M.C. performed
the analysis and data visualisation. M.M.C. wrote the first draft of the article
with the contributions from T.J.A., C.S., and A.S. All the authors contributed
to the interpretation of the results and refinement of the article.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-025-02208-1.

Correspondence and requests for materials should be addressed to
Man Mei Chim.

Peer review informationCommunications Earth & Environment thanks the
anonymous reviewers for their contribution to the peer review of this work.
Primary Handling Editors: Mengze Li and Alireza Bahadori. A peer review file
is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s43247-025-02208-1 Article

Communications Earth & Environment |           (2025) 6:236 10

https://doi.org/10.1038/s43247-025-02208-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	Neglecting future sporadic volcanic eruptions underestimates climate uncertainty
	Results and discussion
	Large contribution of volcanic forcing to uncertainties on temperature projections
	Stochastic volcanic forcing scenarios delay crossing 1.5 °C
	Increased likelihood of abrupt surface cooling using stochastic volcanic forcings
	Improving future volcanic forcing in climate projections

	Methods
	Design of stochastic volcanic emission scenarios
	Aerosol optical properties and effective radiative forcing
	FaIR model description
	Simulation design
	Calculation of uncertainties and probabilities

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




