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Abstract: The identification of the orders of time series models plays a crucial role in their
accurate specification and forecasting. The Autocorrelation Function (ACF) is commonly
used to identify the order q of Moving Average (MA(q)) models, as it theoretically vanishes
for lags beyond q. This property is widely used in model selection, assuming the sample
ACF follows an asymptotic normal distribution for robustness. However, our examination
of the sum of the sample ACF reveals inconsistencies with these theoretical properties,
highlighting a deviation from normality in the sample ACF for MA(q) processes. As
a natural extension of the ACF, the Extended Autocorrelation Function (EACF) provides
additional insights by facilitating the simultaneous identification of both autoregressive and
moving average components. Using simulations, we evaluate the performance of q-order
identification in MA(q) models, which is based on the properties of ACF. Similarly, for
ARMA(p, q) models, we assess the (p, q)-order identification relying on EACF. Our findings
indicate that both methods are effective for sufficiently long time series but may incorrectly
favor an ARMA(p, q− 1) model when the aq coefficient approaches zero. Additionally, if
the cumulative sums of ACF (SACF) behave consistently and the Ljung–Box test validates
the proposed model, it can serve as a strong candidate. The proposed models should
then be compared based on their predictive performance. We illustrate our methodology
with an application to wind speed data and sea surface temperature anomalies, providing
practical insights into the relevance of our findings.

Keywords: time series analysis; autocorrelation function (ACF); white noise; moving
average; normality tests

1. Introduction
Time series data, defined by their ordered and sequential nature, are prevalent in

a wide range of disciplines, including economics [1–5], finance [6], medicine [7–9], cli-
mate science [10,11], and signal processing [12]. Effectively analyzing such data requires
an understanding of their intrinsic temporal relationships, which often pose significant
challenges. The Autocorrelation Function (ACF) plays a pivotal role in this context [13–24],
serving as a fundamental statistical tool to measure the degree of dependency between
observations separated by different time lags.

For time series consisting of uncorrelated observations, such as White Noise (WN),
the ACF values are zero at all non-zero lags. In contrast, for processes such as moving
average models of order q, denoted as MA(q), the ACF becomes zero for lags greater than q.
This distinctive property makes the ACF a valuable tool for identifying such underlying
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models. However, the significance of ACF extends far beyond the distinction of WN
or MA(q) processes. It can also reveal nonstationary structural components in the data,
such as trends [25–27] or periodic patterns [28]. Furthermore, the ACF is instrumental in
identifying long-memory behaviors as explored in studies like [29–33].

Importantly, the ACF is crucial in model validation, as it permits to assess the adequacy
of the residuals from fitted models. By examining the residuals’ ACF, researchers can
evaluate whether the chosen model adequately captures the series’ underlying dynamics.
The empirical distribution of the ACF therefore forms the basis for statistical inference in
time series analysis. Practical modeling decisions often rely on the theoretical expectations
of ACF behavior under different processes [16,23].

In this paper, we focus on MA(q) processes, whose ACF, calculated beyond lag q, is
theoretically expected to be asymptotically independent and converge to the same normal
distribution. This property is commonly leveraged in practice for identifying an MA(q)
model. However, regardless of the observed time series, the sum of all the ACFs of the
sample is constant, equal to − 1

2 [22]. In this work, we investigate the sum of the sample
ACFs for an MA(q) process to demonstrate that this property contradicts the asymptotic
normality of the ACF.

Numerous studies have emphasized the practical importance of Hassani’s − 1
2 -

Theorem and its integration into time series analysis and model development (e.g., [34–37]).
The implications of this remarkable consistency are profound, particularly for building and
analyzing time series models [38–40]. For recent investigations into the significance of the
sample ACF in the context of Hassani’s theorem, see [41–43]. Specifically, in our previous
work [44], we analyzed the impact of Hassani’s − 1

2 -Theorem on validating ARIMA(p, d, q)
processes using the Box–Pierce and Ljung–Box tests. Our results indicated that the succes-
sive ACFs of the residuals cannot be regarded as Gaussian realizations. As a consequence,
both the Box–Pierce and Ljung–Box tests exhibit limitations: the former tends to be overly
conservative, while the latter appears excessively liberal. To address these issues, we
propose considering successive cumulative sums of ACF (SACF) as an alternative method
to detect misspecified ARIMA models.

In this paper, we investigate the theoretical and empirical properties of the ACF and
its cumulative sums for MA(q) processes, not for their residuals. The primary goal is to
examine the disparities between the theoretical expectations and the empirical behavior of
these statistical measures. Our results reveal significant deviations from normality in the
sample ACF beyond certain lags, even in MA(q) processes of various lengths and under
different underlying WN assumptions, whether Gaussian or non-Gaussian. These find-
ings challenge traditional assumptions regarding ACF normality in time series modeling,
particularly for MA(q) identification.

Furthermore, we investigate the Extended Autocorrelation Function (EACF) and its
utility in identifying the orders p and q of Autoregressive Moving Average (ARMA(p, q))
models. As an extension of the ACF, the EACF provides additional information by facilitat-
ing the simultaneous identification of both autoregressive and moving average components.
In its recursive construction, the ACFs of the regressive part are computed, and are expected
to behave as for an MA(q) process. Since the order q of an MA(q) process is theoretically
identifiable based on the normality of the sample ACF beyond lag q, this study calls for
a re-evaluation of the existing methodologies. We use simulated data to find out whether
the procedures for identifying the q-order of an MA(q) or the (p, q)-orders of an ARMA(p, q)
model are reliable.

The primary objective of this paper is to examine the extent to which the ACF devi-
ates from normality and assess its consequences for model identification. By conducting
extensive simulations and applying our methodology to real-world data, we aim to refine
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existing order selection procedures and propose improvements to conventional statistical
approaches. This study not only contributes to the theoretical understanding of ACF
properties but also provides practical insights for time series practitioners.

The paper is organized as follows. Section 2 introduces the standard methods used
for modeling time series, with a particular focus on the definition and properties of the
Autocorrelation Function, both theoretical and empirical. Within this section, we describe
the asymptotic behavior of ACF estimators in the context of MA(q) processes and derive
a practical rule for identifying the lag q in MA(q) models. We also introduce EACF esti-
mators and derive a practical rule for identifying the lags p and q in ARMA(p, q) models.
We also explore the asymptotic behavior of the cumulative sums of ACF (SACF) in MA(q)
processes. Additionally, Hassani’s − 1

2 -Theorem is revisited, and its contradictions with
several results in Section 2 are highlighted, raising questions about the normality of the
sample ACF itself. To assess the practical implications of these theoretical findings, we
conduct extensive numerical simulations in Section 3. These experiments aim to quantify
deviations from normality in sample ACF estimators and evaluate their impact on order
selection methods. In particular, we test whether traditional ACF-based model identi-
fication techniques remain reliable when the underlying assumptions are not met. The
results highlight significant deviations from normality, primarily due to the pronounced
non-normality of SACFs. In this section, we also evaluate the performance of the q-order
identification method on simulated MA(2)-series, showing that it is highly influenced by
the value of the a2 coefficient. When this parameter approaches zero, the method tends to
suggest an MA(1) model instead. Section 4 extends these experiments to ARMA(p, q) mod-
els, investigating the accuracy of the Extended Autocorrelation Function (EACF) method.
We simulate ARMA(1,2) and ARMA(2,2) processes to assess for the reliability of the (p, q)-
orders identification, based on EACFs. Section 5 applies the methodology to a real-world
dataset of wind speed measurements in New York, illustrating the practical implications
of the findings. Finally, Section 6 highlights the potential impact of our results on model
selection strategies, particularly in cases where deviations from normality may influence
order estimation.

2. Theoretical Background
2.1. Autocorrelation Functions (ACFs)

For any square-integrable stationary process (Zt)t, we can consider its theoretical
Autocorrelation Function (theoretical ACF)

ρ(h) = cor(Zt+h, Zt) , h ∈ Z. (1)

Note that by definition, we have ρ(0) = 1. The most important example of stationary
time series is White Noise (WN), denoted by (Et)t and defined as independent and identi-
cally distributed variables, with IE(Et) = 0 and IE(E2

t ) < ∞. Then, its theoretical ACF is
null for any lag h ̸= 0. For more complex models such as MA(q) processes, the theoretical
ACF vanishes beyond lag q as stated in the following Proposition:

Proposition 1.

Let Et be WN with IE(E2
t ) = σ2. We consider the MA(q) process

Zt =
q

∑
k=0

ak Et−k, where a0 = 1 .
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Then, ρ(h) =

 σ2 ∑
q−|h|
k=0 ak ak+|h|

∑
q
k=0 a2

k
if |h| ≤ q

0 if |h| > q .

For a given realization (z1, · · · , zn), and a fixed value of h = 1, · · · , n− 1, let us define
the sample ACF

ρ̂(h) =
∑n−h

j=1 (zj+h − z) (zj − z)

∑n
j=1(zj − z)2 , h = 1, · · · , n− 1 . (2)

Once again, by definition, we have ρ̂(0) = 1. Note that ρ̂(h) can be computed for any
time series, whereas the theoretical ACF ρ(h) are only defined for stationary series. We also
consider the associated estimator Ξ̂(h), called the ACF estimator, defined in the same way
as in Equation (2), by replacing the observed values zj by the random variables Zj. ACF
estimators satisfy the following fundamental property.

Theorem 1.
Let Et be WN with IE(E4

t ) < ∞. We consider the associated MA(q) process

Zt =
q

∑
k=0

ak Et−k, where a0 = 1 .

Let us denote by L the convergence in distribution, by tv the transpose of vector v, and by 0H the
null H-vector. Then,

√
n
(t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(H))−mH

) L−−−−−→
n→+∞

NH( 0H , VH) ,

where mH = t(m1, · · · , mH) satisfies

mr = ρ(r) , for 1 ≤ r ≤ min(q, H)

= 0 , for q + 1 ≤ r ≤ H when H > q ;

and where VH is a symmetric H × H-matrix, with terms vi,j given by Bartlett’s formula [45]:

vi,j =
∞

∑
k=1

(ρ(k + i) + ρ(k− i) − 2 ρ(i) ρ(k))× (3)

∞

∑
k=1

(ρ(k + j) + ρ(k− j) − 2 ρ(j) ρ(k)).

Theorem 1 is a particular case of Theorems 7.2.1. or 7.2.2. in [16]. And we can explicitly
define several terms of the covariance matrix.

Proposition 2.

Let us introduce

ν0 = 1 + 2
q

∑
h=0

ρ(h)2 , (4)

νr = 2
q−r

∑
h=0

ρ(h) ρ(h + r) , for 1 ≤ r ≤ q (5)

= 0 , for r > q .
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Then {
vi,i+r = νr if 1 ≤ i ≤ min(q, H) , q− i + 1 ≤ r ≤ H − i

vi,i+r = νr if q + 1 ≤ i ≤ H , 0 ≤ r ≤ H − i ,

and when H > q,
vq,q = ν0

(
1 + 2 ρ(q)2

)
− 8 ρ(q)2 .

In other words, the first terms (vi,j)1≤i≤q, 1≤j≤q are computed from Equation (3), which
does not simplify further. However, for indices where either i > q or j > q, the matrix
takes on a specific form with only q + 2 distinct values. The diagonal elements are given
by ν0, the first off-diagonal elements, positioned at |i − j| = 1, which take the value ν1.
Similarly, the second off-diagonal elements, for which |i− j| = 2, are equal to ν2, and so
forth. More generally, the elements at |i − j| = k are equal to νk for k ≤ q. Beyond the
q-th off-diagonal, all elements are zero, reflecting the truncation of the theoretical ACF
beyond lag q. As an example, the covariance matrix associated to the H-vector of the ACF
estimators of an MA(2) process is made explicit in Appendix A.1.

Finally, Theorem 1 states that the vector of the ACF estimators is asymptotically
multivariate Gaussian. Let us denote by

(
AH(µ, Σ)

)
the property that

t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(H)) is asymptotically multivariate Gaussian with the expectation that
the H-vector µ, and with covariance matrix Σ

n , is symmetric and definite-positive.

2.2. Identification of Order q in an MA(q) Model

From Theorem 1 and Proposition 2, we have the following:

• When h ≥ q + 1,
√

n Ξ̂(h) L−−−−→
n→∞

N (0, ν0). (6)

As a consequence, if (Zt)t is an MA(q) process, then ∀ h ≥ q + 1, and for a large n,

we should observe that ρ̂(h) ∈ J :=
[
−1.96

√
ν0
n ; 1.96

√
ν0
n

]
.

• When h = q,
√

n
(
Ξ̂(q)− ρ(q)

) L−−−−→
n→∞

N
(
0, vq,q

)
. (7)

As a consequence, if (Zt)t is an MA(q) process, then for a large n,

we should observe that ρ̂(q) ∈
[

ρ(q)− 1.96
√

vq,q
n ; ρ(q) + 1.96

√
vq,q
n

]
. We recall that

one of the essential characterizations of the order q of an MA(q) process is that its ACF
ρ(q) is non-zero.

In practice, the thresholds provided by Equations (6) and (7) are unknown, but they
can be estimated by replacing ρ(h) by ρ̂(h).

Lemma 1.

Let us set

λ̂(h) = 1 + 2
h

∑
k=1

ρ̂(k)2 . (8)

Then, we have
λ̂(h) −−−−−→

n→+∞
ν0 , for h ≥ q . (9)

Proof. By convergence of ρ̂(h) towards ρ(h) for any h ≤ q, it is obvious that λ̂(q) ap-
proaches ν0 when n is large. But this is also true for λ̂(h) whatever h ≥ q, since ρ̂(k) tends
towards 0 when k > q.
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Proposition 3.

We suggest to identify the order q of an MA(q) process with the following procedure:

(i) For any h such that 1 ≤ h ≤ n
4 ,

check if ρ̂(h) lies in the interval Ĵh :=

−1.96

√
λ̂(h)

n
; 1.96

√
λ̂(h)

n

.

(ii) A candidate q̂ for order q is the last lag h with |ρ̂(h)| > 1.96

√
λ̂(h)

n
.

We provide a graphical R-function of this procedure on our website. It is called acfMA().

Proof.

• If n is sufficiently large, when h > q, we have

|ρ̂(h)| < 1.96
√

ν0

n
≃ 1.96

√
λ̂(h)

n
, so that ρ̂(h) ∈ Ĵh.

• When h = q, from Proposition 1, we have ρ(q) = σ2 aq

∑
q
k=0 a2

k
̸= 0.

Then, for sufficiently large n, we have

either ρ(q) > 1.96
√

vq,q

n
+ 1.96

√
λ̂(q)

n
, if aq > 0,

or ρ(q) < −1.96
√

vq,q

n
− 1.96

√
λ̂(q)

n
, if aq < 0,

implying in both cases that ρ̂(q) /∈ Ĵq.

The use of adjusted significance thresholds, instead of the traditional [−1.96/n, 1.96/n],
accounts for the cumulative variance of residual autocorrelations in MA(q) models. This
correction reduces the false detections of MA orders by incorporating the actual error
structure. As a result, it improves the robustness of order selection, particularly for small
sample sizes.

2.3. Identification of Orders (p, q) in an ARMA(p, q) Model

An Autoregressive Moving Average model of order (p, q), denoted ARMA(p, q), is
defined as

Zt = b1Zt−1 + b2Xt−2 + · · ·+ bpZt−p + Et − a1Et−1 − · · · − aqEt−q, (10)

where b1, . . . , bp are the autoregressive (AR) coefficients, a1, . . . , aq are the moving average
(MA) coefficients, and Et is a White Noise process with mean zero and variance σ2. Iden-
tifying the correct orders (p, q) of an ARMA(p, q) model is critical for effective modeling
and forecasting.

The standard Autocorrelation Function (ACF) is a valuable tool for identifying the
order of an MA(q) process, as it exhibits a well-defined cutoff property: the ACF of an MA(q)
model vanishes for lags greater than q. However, for Autoregressive Moving Average
(ARMA(p, q)) processes, the ACF alone is insufficient for order identification. Indeed, the
ACF of the ARMA(p, q) process does not exhibit a clear-cut truncation. Instead, it follows
an exponential or damped sinusoidal decay pattern, making it difficult to directly infer the
presence and order of the moving average or autoregressive components.
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One practical approach is to use the Extended Autocorrelation Function (EACF), which
extends the traditional Autocorrelation Function (ACF). By iteratively computing residual
autocorrelations after removing autoregressive effects up to a given lag p, the EACF allows
for the simultaneous identification of both p and q in an ARMA(p, q) model.

2.3.1. Principle of the EACF

Proposition 4. The EACF method is introduced in [46] recursively as follows:

1. First, for each candidate AR order k, the series is regressed linearly on its k lagged values:

Zt = β
(k,0)
1 Zt−1 + β

(k,0)
2 Zt−2 + · · ·+ β

(k,0)
k Zt−k + ϵ

(k,0)
t .

Here, the coefficients β
(k,0)
1 , . . . , β

(k,0)
k are estimated by ordinary least squares, and the residuals

ϵ̂
(k,0)
t are derived. Next, we iterate the regressions, including the successive residuals:

Zt =
k

∑
l=1

β
(k,j)
l Zt−l +

j

∑
i=1

α
(k,i)
i ϵ̂

(k,j−i)
t−i + ϵ

(k,j)
t .

2. Let us compute the extended residuals W(k,j)
t = Zt −∑k

l=1 β
(k,j)
l Zt−l . The Extended Autocor-

relation Function (EACF) is defined as

r(k)j = ρ
W(k,j)

t
(j).

If Zt is an ARMA(p, q) process, then W(p,q+h)
t is an MA(q) process, ∀h ≥ 0. Consequently,

r(p)
q ̸= 0 and r(p)

q+h = 0, ∀h ≥ 1.

3. We suggest to test the significance of the EACF r(k)j referring to the thresholds

±1.96

√√√√ λ̂
W(k,j)

t
(j)

n
,

where λ̂
W(k,j)

t
, defined in Equation (8), uses the sample ACFs of the process (W(k,j)

t )t.

4. The EACF matrix is constructed, with value r(i−1)
j in the cell of coordinates (i, j). Each cell is

marked as “o” if the autocorrelation is within the thresholds or “×” if it exceeds the thresholds.

The steps in the algorithm for calculating the EACF are given in Appendix B.

2.3.2. Interpretation of the EACF Matrix

In the EACF matrix, rows correspond to p (AR orders) and columns to q (MA orders),
where p and q indices start at 0. Let us denote by τ(p, q) the EACF, related to orders p and q,
computed at row i = p + 1 and column j = q + 1. Then, τ(p, q) = r(p)

q+1. The identification
of the underlying (p, q) orders is based on locating the upper-left corner of the largest
triangle of “o”s in the EACF matrix. This corner corresponds to the simplest ARMA(p, q)
model that adequately explains the time series structure. This approach ensures both
parsimony and accuracy in model selection. Table 1 illustrates the expected EACF for an
ARMA(1,1) process.



Stats 2025, 8, 19 8 of 38

Table 1. Expected EACF for an ARMA(1,1) process.

MA
0 1 2 3 4 5

AR
0 x x x x x x
1 x o o o o o
2 x x o o o o
3 x x x o o o
4 x x x x o o
5 x x x x x o

2.3.3. Remark on the Adjusted Thresholds in Step 3)

In the computation of the Extended Autocorrelation Function (EACF) suggested in
Proposition 4, the introduction of the correction factor λ̂

W(k,j)
t

(j) plays a crucial role in

refining the selection of ARMA orders. Indeed, it allows for a more accurate estimation
of significance thresholds by accounting for dependencies within the time series. This
adjustment ensures that the statistical evaluation of autocorrelation coefficients properly
reflects the structure of the data rather than assuming independence.

2.4. Normality of the Sum of Sample Autocorrelation Functions (SACF)

Let us define the partial sum of the sample ACF values (SACF),

S sample
ACF (H) =

H

∑
h=1

ρ̂(h) , (11)

and in the same way, we will call the SACF estimator and denote by S estim.
ACF (H), the

sum of the associated ACF estimators. At any lag H, the associated SACF is a linear
transformation of the random vector t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(H)). It is well known that any
linear transformation of a multivariate Gaussian vector remains Gaussian. More precisely,
we have the following proposition.

Proposition 5.
Let Y = t(Y1, · · · , Yr) be a multivariate Gaussian vector, with distribution Nr(µ, Σ), where µ is
a r-vector and Σ is an r× r-matrix, symmetric, and definite positive.
Then, for any matrix A in Rp×r, we have

A t(Y1, · · · , Yr) ∼ Np(A µ , A Σ tA) .

Note that Σ being symmetric and definite positive implies that A Σ tA is also sym-
metric and definite positive. Since the vector of the H first SACF estimators is a linear
transformation of the random vector t(Ξ(1), Ξ(2), · · · , Ξ(H)) with a matrix AH being a
squared and unitary lower-triangular matrix, then we obtain the following Theorem.

Theorem 2.
Let Et be WN with IE(E4

t ) < ∞. We consider the associated MA(q) process

Zt =
q

∑
k=0

ak Et−k, where a0 = 1 .

√
n
(

t(S estim.
ACF (1), S estim.

ACF (2), · · · , S estim.
ACF (H))− µ

H

) L−−−−−→
n→+∞

NH(0H , WH) ,
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where µ
H

= t(µ1, · · · , µH) satisfies

µr =
r

∑
h=1

ρ(h) , for 1 ≤ r ≤ q

=
q

∑
h=1

ρ(h) , for q ≤ r ≤ H ;

and where the terms of WH are wi,j =
i

∑
k=1

j

∑
l=1

vk,l .

Proof. Note that we take AH as the unitary lower-triangular H × H-matrix, satisfying
det(AH) = 1. Then, from Cholesky’s decomposition, WH = AH

tAH is a positive definite
matrix. So, we can apply Proposition 5.

Let us denote by
(
SH(µ, Σ)

)
the property that t(S estim.

ACF (1), S estim.
ACF (2), · · · , S estim.

ACF (H))

is asymptotically multivariate Gaussian with expectation the H-vector µ, and with co-
variance matrix Σ

n , symmetric and definite positive. From Theorem 2, if n is large,(
SH(µ

H
, WH)

)
is satisfied.

2.5. Contradiction with Normality Property

By the definition of parameters νr in Proposition 2, for k ≥ q, we have

wk,k =
k

∑
i,j=1

vi,j =
q

∑
i,j=1

vi,j + (k− q)

(
ν0 + 2

q

∑
r=1

νr

)
.

If
(
Sn−1(µ

n−1
, Wn−1)

)
were true (with q ≤ n− 1), we would obtain for n large,

S estim.
ACF (n− 1) ∼ AN

(
q

∑
h=1

ρ(h),
∑

q
i,j=1 vi,j

n
+

n− q− 1
n

(
ν0 + 2

q

∑
r=1

νr

))

∼ AN
(

q

∑
h=1

ρ(h), ν0 + 2
q

∑
r=1

νr

)
. (12)

where the symbol ∼means “follows the distribution” and AN means “asymptotically Gaus-
sian”. But [22] proved that if n ≥ 2,

S sample
ACF (n− 1) = − 1

2
, (13)

for any stationary time series, so, in particular, for MA(q) processes. Actually, note that this
result holds true for any time series with n ≥ 2, even for the nonstationary ones. Since a
Gaussian variable N (µ, σ2) can be equal to the constant value − 1

2 , only if µ = − 1
2 and in

the degenerate case σ2 = 0, Equations (12) and (13) imply that
q

∑
h=1

ρ(h) = − 1
2

ν0 + 2
q

∑
r=1

νr = 0 .
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But

ν0 + 2
q

∑
r=1

νr = 1 + 2
q

∑
h=1

ρ(h)2 + 4 ∑
k<l

ρ(k) ρ(l)

= 1 + 2

(
q

∑
h=1

ρ(h)

)2

+ 4
n−1

∑
h=1

ρ(h)

= 1 + 2×
(
− 1

2

)2
− 2 = − 1

2
̸= 0 .

Consequently, Equations (12) and (13) are contradictory. As a consequence, the
Property

(
SH(µ

H
, WH)

)
does not hold for H = n − 1, and then, neither does(

An−1(mn−1, Vn−1)
)
.

However, let us suppose that
(
An−2(mn−2, Vn−2)

)
is true. In particular, t(Ξ̂(1), Ξ̂(2),

· · · , Ξ̂(n − 2)) is supposed to be asymptotically Gaussian multivariate. Since from
Equation (13) we have

Ξ̂(n− 1) = − 1
2
−

n−2

∑
h=1

Ξ̂(h) . (14)

Then, by the definition of Gaussian vectors, t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(n− 1)) would also
have an asymptotic multivariate distribution:

t(Ξ̂(1), Ξ̂(2), · · · , Ξ̂(n− 2), Ξ̂(n− 1)) ∼ AN n−1

(
m′n−1;

V′n−1
n

)
,

with m′n−1 = mn−1 − t
(

0, · · · , 0,−1
2

)
and

V′n−1 =



v1,1 v1,2 · · · v1,n−2 −
n−2

∑
j=1

v1,j

v2,1 v2,2 · · · v2,n−2 −
n−2

∑
j=1

v2,j

...
...

...
...

...
...

vn−2,1 vn−2,2 · · · vn−2,n−2 −
n−2

∑
j=1

vn−2,j

−
n−2

∑
i=1

vi,1 −
n−2

∑
i=1

vi,2 · · · −
n−2

∑
i=1

vi,n−2 −
n−2

∑
i=1

n−2

∑
j=1

vi,j



.

But this matrix is not definite positive since (1, · · · , 1) V′n−1
t(1, · · · , 1) = 0. Thus,(

An−2(mn−2, Vn−2)
)

is not true either. Actually, Theorem 1, being an asymptotical result,
needs H to remain lower than n− 1 so that H

n converges to 0. For instance, [47] recom-
mends to take a sufficiently long time series (n ≥ 40) and to consider only H ≤

√
n. So

(AH(mH , IH)) should be true until H ≤
√

n. And so Theorem 2 should also hold for
H ≤

√
n.
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3. Numerical Results for Simulated MA(q) Processes
To investigate the normality of the sample ACF and of the SACF, we simulate

NS = 5000 MA(2) processes with the equation

Zt = Et +
1
2
Et−1 + a2 Et−2 ,

where (Et)t is either a Gaussian or an Exponential WN, with length n = 500. Note that
it suffices to consider standard White Noise processes. Indeed, from the definitions of
theoretical and sample ACFs, given in Equations (1) and (2), dividing the underlying
process (Et)t by its standard deviation does not alter the ACF values. In each simulation,
sample ACF and SACF values are computed for lags h = 1, . . . , n− 1. To test for normality,
we employ the Shapiro–Wilk test [48] and verify the results using the Lilliefors (compos-
ite Kolmogorov–Smirnov) normality test [49], which yields consistent outcomes. Unlike
Shapiro–Wilk and Lilliefors tests, which assess sample normality regardless of the expecta-
tion and variance values, Kolmogorov–Smirnov’s test [50,51] allows direct comparison to
the theoretical distributionN (µ, σ2), where µ and σ2 can be computed from the parameters
used for simulations. This approach provides a comprehensive evaluation of normality in
the simulated sample ACF and SACF values.

We successively consider two distinct values for coefficient a2: first a2 = 1
2 and next

a2 = 1
10 . The main difference between these MA(2) processes is the proximity of their

associated ρ(2) value with 0, and so their ability to be confounded with an MA(1) process.
In Appendix A.2, we detail the relationship between the coefficient aq of an MA(q) process
and the ACF value ρ(q).

3.1. Normality of Ξ̂(h) at a Fixed Lag h

For MA(2) processes, the Ξ̂(h) variables are not supposed to be independent, unless
they involve indexes i and j such that j− i > q = 2. Furthermore all the Ξ̂(h) variables
are not identically distributed. Consequently, we cannot test the normality of the set
ρ̂(1), · · · , ρ̂(H), for a fixed simulation. We only test the normality of the NS values ρ̂(h), at
a fixed lag h. At a given lag h, the Kolmogorov–Smirnov test evaluates the fit of Ξ̂(h) to
the Gaussian distribution N

(
ρ(h), vh,h

n

)
, while the Shapiro–Wilk test directly assesses its

normality. Figure 1 displays the p-values from the Kolmogorov–Smirnov test applied to
NS = 200 and NS = 5000 simulations of MA(2) processes with a2 = 1

2 and length n = 500.
For comparison, Figure 2 presents the p-values from the Shapiro–Wilk test. Similar analyses
are conducted for MA(2) processes with a2 = 1

10 , with very similar results, included in the
Supplementary Materials.

The upper panels of Figure 1 indicate that Ξ̂(h) fits well with the Gaussian distribu-
tion N

(
ρ(h), wh,h

n

)
as expected from Theorem 1, even for lags h much greater than

√
n.

However, the bottom panels demonstrate that as the number of simulations increases,
Ξ̂(h) increasingly deviates from this specific normal distribution. This behavior reflects
the asymptotic nature of Theorem 1, which ensures that Ξ̂(h) approximates the distribu-
tion N

(
ρ(h), vh,h

n

)
for large n. Its slight departure from this distribution is more easily

detectable with a great number of simulations.
Nevertheless, focusing on the Gaussian behavior of the ACF estimators Ξ̂(h), Figure 2

highlights a robust normality pattern, especially when the underlying WN is Gaussian. In
this case, Shapiro–Wilk tests almost never reject the normality hypothesis, regardless of the
lag h < n− 2, even with an extensive number of simulations (NS = 5000). Conversely, for
an underlying Exponential WN, the normality property rapidly deteriorates as the number
of simulations increases.
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Figure 1. p-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
ρ(h), vh,h

n
)
, for any

fixed lag h varying from 1 to n− 1. The involved normality test is Kolmogorov–Smirnov’s. The left
column concerns MA(2) driven by a Gaussian WN, whereas the right one deals with the Exponential
WN process. The length of the simulated WN process is n = 500. In the top figures, the number
of simulated MA(2) processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents h =

√
n.

Figure 2. p-values when testing for the normality of the NS values of ρ̂(h), for any fixed lag h varying
from 1 to n− 1. The involved normality test is Shapiro–Wilk’s. The left column concerns MA(2)
driven by a Gaussian WN, whereas the right one deals with the Exponential WN process. The length
of the simulated WN process is n = 500. In the top figures, the number of simulated MA(2) processes
is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%,
while the blue-dotted vertical line represents h =

√
n.
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From Figures 1 and 2, it can be inferred that the lack of adequacy of Ξ̂(h) with the
distribution N

(
ρ(h), vh,h

n

)
is partly due to its asymptotic nature. This explains its more

pronounced deviation under Exponential WN. However, the issue also stems from a
misspecification of the expectation and variance, as the normality behavior is preserved for
Gaussian WN. In fact, Ξ̂(h) may be asymptotically Gaussian, but with either µ ̸= ρ(h) or
σ2 ̸= vh,h

n . Consequently, we find that the condition (AH(m, V)) does not hold.

3.2. Normality of SACF

To assess the normality of SACFs at a given lag H, we analyze the NS computed values
of S sample

ACF (H). Figure 3 shows the p-values from the Shapiro–Wilk test applied to NS = 200
and NS = 5000 simulations of MA(2) processes with a2 = 1

2 and length n = 500. Similar
tests are also conducted on MA(2) processes with a2 = 1

10 , yielding comparable results, as
documented in the Supplementary Materials. In Figure 3, the sum of sample ACF values
S sample

ACF (H) deviates significantly from normality for nearly all lags H, except possibly for
the first few lags when the underlying WN is Gaussian or when the number of simulations
is relatively low. Moreover, Kolmogorov–Smirnov tests confirm that S sample

ACF (H) does not

align with the theoretical distribution N
(

∑H
h=1 ρ(h), wH,H

n

)
at any lag H, regardless of the

nature of the underlying WN (Gaussian or Exponential) or the number of simulations. This
departure from N

(
∑H

h=1 ρ(h), wH,H
n

)
can be attributed to earlier findings that Ξ̂(h) does

not fully converge to a Gaussian distribution with µ = ρ(h) and σ2 =
vh,h

n . Thus, Figure 3
clearly indicates that none of the variables S estim.

ACF (H) may follow a Gaussian distribution.

This implies that
(
SH(µ, Σ)

)
cannot hold true, irrespective of µ and Σ. Consequently,

the Gaussianity of the vector t(Ξ̂(1), · · · , Ξ̂(H)) is also called into question. Indeed, if(
AH(µ, Σ)

)
were true,

(
SH(µ, Σ)

)
would also be.

Figure 3. p-values when testing for the normality of the NS values of S sample
ACF (H), for any fixed lag H

varying from 1 to n− 1. The involved normality test is Shapiro–Wilk’s. The left column concerns
MA(2) driven by a Gaussian WN, whereas the right one deals with the Exponential WN process.
The length of the simulated WN process is n = 500. In the top figures, the number of simulated
MA(2) processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line
represents 5%, while the blue-dotted vertical line represents H =

√
n.
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Consequently, from Figures 2 and 3, we conclude that at a fixed lag h, Ξ̂(h) is roughly
Gaussian, with µ ≃ ρ(h) or σ2 ≃ vh,h

n . But the vector t(Ξ̂(1), · · · , Ξ̂(H)) is not a Gaussian
vector. This brings into question the relevance of using ACF to identify the order q of
an MA(q) process.

3.3. Impact on q-Order Identification

The order-identification procedure described in Proposition 3 is very simple, but is it
really reliable? Indeed, it is based on the fact that the ACF estimator Ξ̂(h) asymptotically
follows a normal distribution N

(
ρ(h), vh,h

n

)
, for any lag h ≥ q, whereas we show in

Section 3.1 that this property is not guaranteed, especially for MA(q) processes with an
exponential underlying WN.

In our procedure, the thresholds defining Ĵh are adapted to MA(q) processes, in

opposition to the classical ACF graphics that use the thresholds ±1.96
√

1
n . Thus, for

any lag h > q, every sample ACF value ρ̂(h) should belong to Ĵh, except in α = 5% of
the simulations led under the null hypothesis (generation of an MA(q) process). On the
contrary, ρ̂(q) should be larger (in absolute value) than the associated MA-threshold at that
given lag, when n is sufficiently large.

Here, for any simulated MA(2) process, we compute the associated MA-thresholds,
from h = 1 to n

4 . And we run the following steps:

Step 1. We check if ρ̂(3) ∈ Ĵ3 and compute the percentage of true diagnosis.
Step 2. We check if ρ̂(2) /∈ Ĵ2 and we compute the percentage of true diagnosis.
Step 3. Check if ρ̂(2) /∈ Ĵ2 and ρ̂(3) ∈ Ĵ3. And we compute the percentage of true

diagnosis (both properties must be satisfied).
Step 4. We compute the largest lag h such that ρ̂(h) /∈ Ĵh. We count each last-lag occurrence.

Table 2 gives the percentage of true diagnosis for Steps 1 to 3, when the underlying
WN is Gaussian, among NS = 5000 simulations. Simulations with an Exponential WN
give very similar percentages. As expected in Step 1, we obtain that the ρ̂(3) behaves
conveniently, except in 5% of the simulations, which conforms with type-I error. As
expected in Step 2, we obtain that the frequency of convenient ρ̂(2) behavior improves
when the time series length n increases. Moreover, the performance highly depends on the
a2 value. As expected in Step 3, the performance of the paired properties is smaller than
that of the singles.

Table 2. Percentage of true diagnosis among NS = 5000 simulations of an MA(2) process, when
checking Steps 1 to 3. The associated WN is Gaussian and the coefficient a2 is either a2 = 1

2 (left
column) or a2 = 1

10 (right column).

a2 = 1
2 a2 = 1

10

n 100 500 100 500
Step 1 94.3% 94.7% 96.7% 95.7%
Step 2 72.1% 100% 4.3% 27.6%
Step 3 71.2% 94.7% 3.8% 26.3%

In Figure 4, we study if the behaviors of ρ̂(2) and ρ̂(3) are compatible with what is
expected for simulations of MA(2) processes. Indeed, we plot the performance of Step
3 versus coefficient a2. It appears that when the coefficient a2 used in the simulations is
rather small, Step 3 has very poor reliability, and it is nearly optimal as soon as a2 > 0.25
when n = 500.

Finally, we illustrate the ability of our procedure to identify the underlying order
q = 2 used to simulate the MA(2) processes by studying Step 4. In Figure 5, we give the
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frequency of each last lag when n = 100, and in Figure A2 in Appendix C, we consider
n = 500. It appears that, whatever the distribution of the underlying White Noise, the
graphical diagnosis is relevant since in most of the simulations, the identified model is an
MA(2), as expected, when a2 = 1

2 . On the contrary, when a2 = 1
10 , the reliability of the

order-identification procedure seems disastrous. Indeed, the procedure rather suggests an
MA(1) process. Table 3 shows the number of times where the procedure suggests either the
correct MA(2) model or the MA(1) model, when a2 = 1

2 and a2 = 1
10 .

Table 3. Number of simulations, among NS = 5000 simulations of an MA(2) process, where the
procedure suggests either q̂ = 1 or q̂ = 2. The percentage of valid models, validated with the
Ljung–Box test, is added in brackets. When no MA(1) model has been suggested by the procedure, a
“-” symbol has been placed between the brackets. The associated WN is Gaussian and coefficient a2 is
either a2 = 1

2 (left column) or a2 = 1
10 (right column).

a2 = 1
2 a2 = 1

10

n 100 500 100 500
nb of q̂ = 1 (% valid.) 836 (28.0%) 0 (–) 3243 (92.4%) 339 (95.2%)
nb of q̂ = 2 (% valid.) 2967 (96.4%) 709 (96.9%) 176 (91.5%) 150 (96.7%)

Figure 4. Percentage of simulations with ρ(2) out of interval Ĵ2 and with ρ(3) inside interval Ĵ3 as
described in Proposition 3, among NS = 5000 simulations of MA(2) processes. Coefficient a2 varies
from 0 to α as defined in Appendix A.2. The left column concerns simulated MA(2) processes with
an underlying Gaussian WN, whereas the right one deals with Exponential WN. In the top figures,
we simulate MA(2) processes with length n = 100, and with n = 500 in the bottom. The green circle
points for a2 = 1

10 , whereas the blue square points for a2 = 1
2 .
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But perhaps the procedure has the right behavior in the end, meaning that an MA(1)
model is better suited to most of these series with a2 = 1

10 than an MA(2) model. For each
simulation, we estimate an MA(1) model and an MA(2) model. To assess the quality of these
models, we calculate the information criteria (the Akaike information criterion AIC [52],
its small-sample equivalent AICc [53,54], and Bayesian Information Criterion BIC [55])
and prediction criteria (RMSE and MAPE, where the training set consists of observations
1 to n− 1 and the test set corresponds to the final observation n). Finally, we use a two-
tailed Student’s paired t-test of equality of means to test the equality of each criterion
between model MA(1) and model MA(2). Tables A1 and A2 in Appendix D contain the
p-values of these tests. When the p-value is less than the nominal risk α = 5%, we indicate
which model is significantly better (with respect to the criterion under consideration);
otherwise, we indicate a symbol of equality because neither model is better or worse
than the other. Table A1 shows the results when we consider simulations for which our
procedure suggests an MA(1) model, while Table A2 considers simulations for which our
procedure suggests an MA(2) model. Table A2 shows that when an MA(2) model has
indeed been suggested by our procedure, the MA(1) model is not preferred for any of the
criteria. On the contrary, the MA(2) model is significantly preferable, for all information
criteria, and for the RMSE prediction criterion when a2 = 1

2 . For its part, Table A2 shows
that when an MA(1) model has been suggested by our procedure, while we have simulated
an MA(2) process, the MA(1) model shows significantly better quality for several criteria.
Specifically, when a2 = 1

10 , and the series is short (n = 100), all information criteria and
the MAPE prediction criterion are significantly better for the suggested MA(1) model,
and the RMSEs are equivalent. When the series is longer (n = 500), the MA(1) model
remains preferable for the BIC and MAPE criteria, but the underlying MA(2) model is more
compatible with the data in terms of the AIC and AICc criteria. When a2 = 1

2 , the MA(1)
model is rarely suggested on MA(2) simulations (see Table 3), unless the series is short. In
these rare cases, the MA(1) model still has a significant advantage in terms of the MAPE
prediction criteria. In conclusion, the MA(2) model estimated on an MA(2) simulation
generally offers significantly better quality than an MA(1) model, unless a2 is close to zero
and the MA(1) model is suggested by our procedure on this simulation.

We recall that when constructing an ARMA(p, q) model, the Ljung–Box test must be
applied to the residuals of the estimated model [13,14,56], and calculated mainly for h
ranging from p + q + 1 to H = n/4 as suggested by [16]. Note that other upper bounds
for h are suggested in other papers, such as H = min

(
20, n

4
)

[57], H = ln(n) [3], and more
explicit bounds obtained form simulation procedures [58]. Furthermore, tests at fixed lag h
are not independent and provide p-values ph, which do not all lead to the same conclusion.
Here, we automatically consider that the model is validated by the Ljung–Box tests if
pn/4 ≥ 0.05 and if 80% of the ph values are also ≥0.05. In Table 3, we obtain that when
a2 = 1

10 , almost 95% of the models suggested by the procedure are valid, whether it is an
MA(1) or an MA(2) model. But when a2 = 1

2 , the MA(1) model is either not suggested by
the procedure (when n is sufficiently large), or it is mainly not validated by Ljung–Box (less
than 30%). This means that when the time series length is small, the procedure might err in
suggesting an underestimated model. But in this case, the Ljung–Box validation test can
detect that such a model is not suitable.
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Figure 5. Frequency of q̂, the last lag h such that ρ̂(h) lies out of interval Ĵh, as described in Proposition 3,
for NS = 5000 simulations of MA(2) processes of length n = 100. The left column concerns simulated
MA(2) processes with an underlying Gaussian WN, whereas the right one deals with Exponential WN.
In the top figures, we simulate MA(2) processes with a2 = 1

2 , whereas we use a2 = 1
10 in the bottom.

The magenta-colored bar highlights the theoretical convenient order q = 2.

4. Numerical Results for Simulated ARMA(p, q) Processes
We simulate the ARMA(p, q) series to investigate the identification of orders p and

q using EACF as presented in Section 2.3. We simulate NS = 5000 ARMA(p,2) processes
(p = 1, 2) associated to a Gaussian WN, with length n = 500:

ARMA(1,2) Zt −
3
4

Zt−1 = Et +
1
2
Et−1 +

1
2
Et−2

ARMA(2,2) Zt −
1
2

Zt−1 +
3
4

Zt−1 = Et +
1
2
Et−1 +

1
2
Et−2 .

For any simulated ARMA(p,2) process, we compute the associated EACF τ(k, l) for
k = 0, 1, · · · , 5 and l = 0, 1, · · · 10 and we run the following steps:

Step 1. We check if τ(p, 2) = “o” and we compute the percentage of true diagnosis.
Step 2. We check if τ(p, 1) = “x” and we compute the percentage of true diagnosis.
Step 3. We check if both τ(p, 1) = “x” and τ(p, 2) = “o” and we compute the percentage

of true diagnosis (both properties must be satisfied).
Step 4. We identify the upper-left corner of the first largest triangle (with lowest order p) of

“o”s in the EACF matrix, computed with p ranging from 0 to 5 and q from 0 to 10.

We recall that the classification as either “o” or “x” is based on the comparison of τ(p, 1)
(respectively, τ(p, 2)) values with their associated thresholds. The thresholds, introduced
in Section 2.3, are derived under the assumption of EACF normality. By the recursive
construction of the EACF matrix, if the underlying process follows an ARMA(p, q) model,
then τ(p, h) are Gaussian for h ≥ q− 1. In this study, we simulate ARMA(p, 2) processes
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with p ∈ {1, 2}. Consequently, τ(p, 1) and τ(p, 2) are expected to follow a Gaussian
distribution. Since these two terms of the EACF are pivotal in our methodology, we assess
their normality using the Shapiro–Wilk test. Figure 6 demonstrates that for short time series
(n = 100), normality is not satisfied. However, for sufficiently long series (n = 500), the
normality assumption holds for τ(p, 2) even under a large number of simulations, whereas
τ(p, 1) loses its Gaussian behavior more rapidly.

Figure 6. p-values when testing for the normality of τ(p, 1) and τ(p, 2), for NS simulated ARMA(p,2)
processes, where Ns varies from 100 to 5000. The involved normality test is Shapiro’s. The left
graphic concerns ARMA(1,2) simulations, whereas the right one deals with ARMA(2,2). The length
of the simulated ARMA(p, q) processes are either n = 100 (dotted lines) or n = 500 (solid lines). The
red-dotted horizontal line represents 5%.

Table 4 gives the percentage of true diagnosis for Steps 1 to 3, when simulating
NS = 5000 ARMA(p,2) processes, with a Gaussian underlying WN. The high percentage of
true diagnosis in Step 1, confirms that τ(p, 2) mainly behaves conveniently, but its error
rate seems far enough from the expected 5% type-I error. In Step 2, we obtain that the
frequency of convenient τ(p, 1) behavior improves when the time series length n increases.
As expected in Step 3, the performance of the paired properties is smaller than the singles.

Table 4. Percentage of true diagnosis among NS = 5000 simulations of a ARMA(p,2) process, when
checking Steps 1 to 3. We have p = 1 in the left columns and p = 2 in the right one. The associated
WN is Gaussian.

ARMA(1,2) ARMA(2,2)

n 100 500 100 500
Step 1 88.1% 84.3% 94.3% 90.0%
Step 2 73.7% 100% 56.1% 100.0%
Step 3 64.8% 84.3% 53.9% 90.0%

Finally, we evaluate whether the discrepancy between the theoretical and empirical
properties of the pivotal EACF terms τ(p, 2), and particularly τ(p, 1), affects the accuracy
of the procedure described in Section 2.3 for identifying the p and q orders. To this end,
we simulate Ns = 5000 ARMA(p, 2) processes, first with a length of n = 100, and then
with n = 500. For each simulation, we compute the EACF matrix and identify the vertex
corresponding to the largest triangle of “o”. In Figure 7, we display the percentage of
occurrences for all possible orders (ϕ, q), where ϕ ranges from 0 to 5 and q ranges from 0
to 10. Despite the suboptimal properties of τ(p, 1), the procedure outlined in Section 2.3
performs remarkably well in identifying the p and q orders of an ARMA(p, q) model.
Specifically, it predominantly identifies the true orders p and q of the underlying model
used for the simulations.
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Figure 7. Percentage of occurrences of orders (ϕ, q), identified as the vertex corresponding to the
largest triangle of “o” among Ns = 5000 simulations. The darker the box, the higher the occurrence.
Each row corresponds to a fixed value of ϕ, ranging from 0 to 5, while each column corresponds to a
fixed value of q, ranging from 0 to 10. The top panels represent simulations of ARMA(1,2) models,
while the bottom panels correspond to ARMA(2,2) models. The lengths of the simulated ARMA(p, 2)
processes are either n = 100 (left panels) or n = 500 (right panels).

5. Illustration on Meteorological Data
5.1. Wind Speed Data

We consider the wind speed in miles per hour at 7 h and 10 h at La Guardia Airport,
in New York, every day from 1 May 1973 to 30 September 1973. This time series of length
n = 153 is available from the airquality dataset in R. See Figure 8 (left) for its evolution.
As illustrated in Figure 8 (right), our procedure suggests q̂ = 3, even if ρ̂(1) lies out the
interval Ĵ1. Note that, to illustrate the accuracy of our procedure, we do not just construct
the MA(3) model but also WN, MA(1), and MA(2) models. In order to verify if WN and the
MA(q) candidate models are valid, we check the behavior of their residuals, by plotting
their ACF (Figure 9) and also their standardized SACF (Figure 10) as suggested in [44].

In Figure 9, it appears that the ACFs of the residuals are compatible with WN for all
the MA(q) models, for q = 0, 1, 2, 3. When q = 0, plotting the ACFs of the residuals of
an MA(0) model reduces to plotting the ACF of the series itself. Observing at most 3 out of
38 ACFs outside the thresholds adapted to WN is not incompatible with the hypothesis that
the series is WN, insofar as it can be observed with a probability of 0.296. In Figure 10, we
observe very different behaviors from the standardized SACF. If the SACF of the residuals
in the MA(3) model is compatible with a good model fit, this is much less clear for MA(1)
and MA(2) models. And the SACFs of the simplest model MA(0) show that the WN model
cannot fit the data. We recall that when the standardized SACFs calculated on the residuals
of an adjusted model fall outside the associated thresholds, the proposed model might be
under-calibrated [44]. This is confirmed with Ljung–Box tests, applied from lags H = q + 1
to n

4 ≃ 38. Indeed, Figure 11 shows that MA(1), MA(2) and MA(3) models are valid,
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whereas the WN model is totally inaccurate for the wind speed data. Indeed, it still retains
some dependency.

Figure 8. Wind speed evolution (left) and ACF with h varying from 1 to n
4 ≃ 38 (right). In the left

figure, the blue-dotted horizontal lines represent the classical thresholds −1.96/
√

n and 1.96/
√

n,
whereas the red dashed-line represents the corrected thresholds of Ĵh, dedicated to identifying
an MA(q) model, as detailed in Proposition 3.

Figure 9. Sample ACF of the residuals from the MA(q) model constructed on wind speed data, with h
varying from 1 to n

4 . Order q is either equal to 0 (top left), 1 (top right), 2 (bottom left), or 3 (bottom
right). The blue-dotted horizontal lines represent the thresholds −1.96/

√
n and 1.96/

√
n.

Moreover, note that if we try to build an MA(4) model, it appears to be a valid model
as shown by the ACF and SACF computed on its residuals and by Ljung–Box test (see
Figure A3 in Appendix E). Indeed, in [44], from simulations, we observe that over-calibrated
models produce graphical diagnoses similar to those obtained with the residuals of the
underlying model used to produce the series. But the simplification procedure (as described
in [16] Equation (8.8.2)), applied on the MA(4) model, leads to an MA(3) model, the model
suggested by our procedure in Proposition 3.
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Figure 10. Standardized SACF of the residuals from the MA(q) model constructed on wind speed
data, with H varying from 1 to n

4 . Order q is either equal to 0 (top left), 1 (top right), 2 (bottom
left), or 3 (bottom right). The blue-dotted horizontal lines represent the thresholds −1.96/

√
n and

1.96/
√

n.

Figure 11. p-values when using Ljung–Box’s test on the residuals associated to an MA(q) model.
Order q is either equal to 0 (top left), 1 (top right), 2 (bottom left) or 3 (bottom right). Ljung–Box’s
test is computed successively for all lags H = q + 1, · · · , 38, with degree of freedom H − q. The
red-dotted horizontal line represents 5%.
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Finally, we compare the reliability of the valid models, in terms of information criteria
such as AIC and BIC [52,55] and in terms of prediction criteria (RMSE and MAPE). To
compute the predictive criteria, we employ a rolling-window cross-validation approach.
Given a time series of length n, we use a fixed training window comprising the first 90%
of the available observations (from observation 1 to 138). The models are trained on this
window and then used to forecast the next observation (h = 1). The window is then shifted
forward by one time step, discarding the oldest observation and incorporating the next
available data point. This process is repeated until all possible predictions are generated.
At each iteration, the forecasted value is compared with the actual observation, allowing
for the computation of error metrics such as the Root Mean Squared Error (RMSE) and
the Mean Absolute Percentage Error (MAPE). In Table 5, it appears that the MA(3) model
suggested by our procedure is the best model among the MA(q) models with 1 ≤ q ≤ 4,
both on information and prediction criteria.

Let us also fit an ARMA(p, q) model on these data, using the EACF procedure. Here is
the EACF matrix:

AR/MA
0 1 2 3 4 5 6 7 8 9 10

0 x x x o o o o o o o o
1 x o x o o o o o o o o
2 x x x o x o o o o o o
3 x x o o o o o o o o o
4 x x x o o o o o o o o
5 x o o x o o o o o o o

Table 5. Comparison of models quality between the suggested MA(3) model, and other models
MA(0), i.e., WN, MA(1), MA(2), and MA(4). For each criterion, we have bolded the value correspond-
ing to the best model, i.e., the MA(3) for almost all the criteria.

MA(1) MA(2) MA(3) MA(4)
RMSE 3.43 3.42 3.19 3.26
MAPE 27.66 27.70 24.80 25.98

AIC 810.93 812.47 807.18 807.76
AICc 811.09 812.74 807.59 808.33

BIC 820.02 824.59 822.33 825.94

As illustrated in Table 1, the candidate p and q orders correspond to the upper left
vertex of the largest observed zero triangle. Unfortunately, empirical EACFs rarely provide
a structure as clear as that expected theoretically from an ARMA(p, q) process. It therefore
makes sense to consider several candidate models. Here, the EACF procedure suggests
either an ARMA(0,3), an ARMA(2,5), an ARMA(3,2), or an ARMA(4,4) model. Note that
no model of the form ARMA(1, q) can be suggested from the EACF matrix, notably because
τ(2, 4) =“x”. It is interesting to see that the EACF-based procedure recommends the MA(3)
model as the MA(q) model, which corresponds to the best MA(q) model as justified above
in Table 5.

In Table 6, we compare the MA(3) model with the ARMA(2,5), ARMA(3,2), ARMA(4,4)
models suggested by the EACF matrix and with an ARIMA(3,1,1) model, suggested by
an automated procedure (auto.arima R-function from package forecast [24,59]). Note
that for any candidate model, we check its validity as seen in Figures A4–A6 in Appendix E.
This step is crucial, especially when using an automated procedure, based in particular on
optimizing the BIC criterion since it often leads to invalid models [60]. Regarding the model
selection criteria, in Table 6, we obtain that the MA(3) model minimizes the information criteria
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AIC, AICc, and BIC, favoring it as the most parsimonious option that balances goodness of fit
and model complexity. But for predictive accuracy, the ARMA(4,4) model achieves the lowest
RMSE (2.97), indicating the best overall fit to the data in terms of minimizing squared errors.
It also has the smallest MAPE error (24.43), which suggests a good relative accuracy. Hence, if
the predictive accuracy is the primary concern, ARMA(4,4) may be chosen, and for a trade-off
between fit and complexity, the MA(3) model is recommended. Both MA(3) and ARMA(4,4)
models are the models suggested by our model selection procedures, based respectively on
ACF and EACF and described in Propositions 3 and 4.

Table 6. Comparison of models quality between the models ARMA(2,5), ARMA(3,2), ARMA(4,4),
suggested by our procedure described in Proposition 4, based on the EACF matrix; an ARIMA(3,1,1)
model, suggested by an automated procedure; and the MA(3) model, suggested by the ACF pro-
cedure, defined in Proposition 3. For each criterion, we have bolded the value corresponding to
the best model.

EACF AUTOMATED ACF
ARMA(2,5) ARMA(3,2) ARMA(4,4) ARIMA(3,1,1) MA(3)

RMSE 3.18 3.29 2.97 3.29 3.19
MAPE 25.68 26.53 24.43 26.04 24.80

AIC 807.76 809.90 808.96 807.82 807.18
AICc 809.02 810.68 810.51 808.23 807.59
BIC 835.03 831.12 839.27 822.94 822.33

5.2. Temperature Anomalies

Since the industrial revolution, the burning of fossil fuels, deforestation, and other
anthropogenic activities have significantly increased atmospheric concentrations of carbon
dioxide (CO2), methane (CH4), and other greenhouse gases. These emissions enhance the
natural greenhouse effect, leading to rising global temperatures, shifts in climate patterns,
and increasing frequency of extreme weather events.

To assess the extent and impact of climate change, long-term temperature records
are essential. The study of temperature anomalies—deviations from a defined base-
line—provides a crucial metric for detecting trends in global and regional climate variations.
We analyze historical sea surface temperature (SST) from multiple sources, including ship-
based and buoy measurements (ICOADS), autonomous ocean profiling floats (Argo), and
satellite-derived sea ice concentration datasets (HadISST2 and NCEP) [61]. In Figure 12
(left), we plot the long-term evolution of SST anomalies (with reference period 1880–1970).
The temperature data for the period 1850–1880 are characterized by higher variability
and lower reliability due to limited spatial coverage and methodological inconsistencies.
During this early period, the number of observation stations is significantly lower, leading
to potential biases and regional gaps in the dataset. Furthermore, measurement techniques
and data homogenization methods are less developed, contributing to increased uncer-
tainty. For these reasons, this period is excluded from the model to ensure robustness and
reliability in the analysis.
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Figure 12. Sea Surface Temperature anomalies (left) and sample ACF with h varying from 1 to 100
(right). In the left figure, the blue-dotted horizontal lines represent the classical thresholds −1.96/

√
n

and 1.96/
√

n.

The ACF of the data given in Figure 12 (right), reveals a clear seasonal structure,
indicating periodic dependencies. To confirm the presence of seasonality, we apply the
Canova–Hansen (CH) test [62], which suggests the need for seasonal differencing at lag
12. To identify a model for the seasonally differenced series, in Figure 13, we plot its ACF
(left), dedicated to identifying an MA(q) model, and its partial ACF (right), dedicated
to identifying rather an AR(p) model. On the one hand, from the sample ACF with our
corrected thresholds, we can suggest an MA(36) model. Note that the non-corrected
thresholds would lead to a much greater q-order, reflecting spurious correlations. On the
other hand, the sample partial ACF cannot identify clearly an AR(p) model. To stay with a
reasonable number of parameters, we consider an AR(36) model. However, we observe
that PACFs decrease exponentially as they oscillate, which is characteristic of an MA(q)
process. Note that these oscillations point to lag h = 13, and especially to lag multiples of
12, potentially suggesting a SARMA model. Combining both sample ACF and partial ACF,
we can suggest a SARIMA(13,0,0)(0,1,3) [12] model for SST anomalies. Finally, we compute
EACF on the seasonally differenced series to identify an additional model:

AR/MA
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 x x x x o o x o o x x x x x x o o o o o o
1 x o o o o o o o o o o x x o o o o o o o o
2 x x o o o o o o o o o x o o o o o o o o o
3 x x x o o o o o o o o x x o o o o o o o o
4 x x x o o o o o o o o x x x o o o o o o o
5 x x x o o o o o o o o x x x x o o o o o o
6 x x x o o o o o o o o x x x x x o o o o o
7 x x x x x o o o o o o x x x o x o o o o o
8 x x x o x o o o o o o x x x o x o o o o o

AR/MA
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0 o o x o o o o x o o x x x x x x o o o o
1 o o x o o o o o o o o o o o x o o o o o
2 o o x o o o o o o o o o o o x o o o o o
3 o o x o o o o o o o o o o o x o o o o o
4 o o x o o o o o o o o o o o x o o o o o
5 o o x o o o o o o o o o o o x o o o o o
6 o o x o o o o o o o o o o o x x o o o o
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7 o o x o o o o o o o o o o o x o o o o o
8 o o o o o o o o o o o o o o x o o o o o

Figure 13. Sample ACF (left) and partial ACF (right) of the seasonally differenced series constructed
on SST anomalies, with h varying from 1 to 100. The blue-dotted horizontal lines represent the
thresholds −1.96/

√
n and 1.96/

√
n. The red dashed-line represents the corrected thresholds of Ĵh,

dedicated to identifying an MA(q) model, as detailed in Proposition 3.

The EACF is rather difficult to interpret, as it does not clearly distinguish a large
triangle composed of “o”. But note that all values of τ(p, 11), τ(p, 23) and τ(p, 35) are
significantly non-zero. Moreover, we checked that all EACF τ(p, q) are null when 1 ≤ p ≤ 8
and 41 ≤ q ≤ 100. In other words, the ACF of the extended residuals W(p,q)

t (q) are
significantly non-zero when q = 12, 24, and 36, again suggesting a SARMA model. If
we omit the EACF values at these particular orders, we detect a triangle of “o” which
suggests an ARMA(1,1) model. All together, this provides SARIMA(1,0,1)(0,1,3)[12] as
a candidate model.

We check the validity of all the candidate SARIMA(p, 0, q)(0,1,Q)[12] models previously
identified by computing Ljung–Box tests p-values from lags H = max(p, 12Q) + 1 to 100
(Figure 14). MA(36), SARIMA(13,0,)(0,1,3)[12], and SARIMA(1,0,1)(0,1,3)[12], the models
produced by our procedures, are all valid models but AR(36) is not.

Figure 14. p-values when using Ljung–Box’s test on the residuals from SARIMA(p, 0, q)(0,1,Q)[12]
models identified on SST anomalies data, with H varying from H = max(p, 12Q) + 1 to 100. Orders
(p, q)(Q) are either equal to (0, 36)(0) (top left), (36, 0)(0) (top right), (13, 0)(3) (bottom left) or
(1, 1)(3) (bottom right). The red-dotted horizontal line represents 5%.
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Finally, in Table 7, we compare the quality of all the models either with informa-
tion criteria and prediction criteria. All the models suggested by our procedures pro-
vide accurate models, the best ones being the SARIMA(13,0,0)(0,1,3)[12], derived from
ACF and PACF and the SARIMA(1,0,1)(0,1,3)[12], derived from EACF. In Figure 15 (top),
we compute the forecasts with the best models. Criteria and forecasts provided by the
SARIMA(0,0,0)(0,1,0)[12] and SARIMA(36,0,0)(0,1,0)[12] models on the seasonally differ-
enced series are also given as a comparison (Table 7 and Figure 15-bottom). It is interesting
to see that the models generated by our procedures reveal global warming [63,64], while
models SARIMA(0,0,0)(0,1,0)[12] and SARIMA(36,0,0)(0,1,0)[12] completely miss the point.

Table 7. SARIMA(p, 0, q)(0,1,Q)[12] models identified on SST anomalies data by our procedures, with
other models. SARIMA(p, 0, q)(0,1,Q)[12] models are denoted by (p, q)(Q). For each criterion, we
have bolded the value corresponding to the best models.

ACF ACF & PACF EACF Others
(0,36)(0) (13,0)(3) (1,1)(3) (0,0)(0) (36,0)(0)

RMSE 0.31 0.31 0.31 0.38 0.46
MAPE 331.0 309.1 312.4 360.8 363.7

AIC 777.7 757.9 753.3 925.9 1573.6
AICc 777.4 758.5 753.4 928.6 1573.6
BIC 958.7 842.5 783.2 1109.9 1576.2

Figure 15. Forecasts on the period 1970–2020, with prediction intervals at levels 80% (grey)
and 95% (lightgrey), compared with the observed data. Forecasts are computed with the
SARIMA(13,0,0)(0,1,3)[12] model (top-left), with the SARIMA(1,0,1)(0,1,3)[12] model (top-right),
with the SARIMA(36,0,0)(0,1,0)[12] model (bottom-left) and with the SARIMA(0,0,0)(0,1,0)[12] model
(bottom-right).
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6. Discussion
The Autocorrelation Function (ACF) provides a powerful framework for identifying

the order q of MA(q) models. Its theoretical foundation relies on the convergence properties
of the sample ACF to its asymptotic Gaussian distribution as derived from Theorem 1.

In this paper, we investigate the normality of sample ACFs, calculated from the real-
izations of an MA(q) process. We observe that Ξ̂(h) generally exhibits Gaussian behavior
as anticipated by Theorem 1, even for lags h significantly larger than

√
n. However, slight

deviations from this distribution are more pronounced for Exponential WN processes,
suggesting a potential influence of their asymptotic properties. Additionally, we note a
mismatch between Ξ̂(h) and the distribution N

(
0, vh,h

n

)
, which may stem from misspec-

ifications in the expectation and variance. This observation implies that while Ξ̂(h) may
converge to a Gaussian distribution, the convergence could involve a mean µ ̸= 0 or vari-
ance σ2 ̸= vh,h

n . Moreover, we demonstrate that even when the underlying WN is Gaussian,

the sum of sample ACFs, Ssample
ACF (H), deviates from normality for most lags H, except

possibly for the smallest lags. This finding indicates that the vector
(
Ξ̂(1), · · · , Ξ̂(H)

)
is

unlikely to follow a Gaussian distribution, highlighting the need for caution when applying
Theorem 1. Fortunately, the procedure for q-order identification, as outlined in Proposi-
tion 3, relies solely on the normality of Ξ̂(h) at fixed lags h and does not depend on the
normality of the vector

(
Ξ̂(1), · · · , Ξ̂(H)

)
. However, this procedure assumes that Ξ̂(h)

behaves as N
(

0, vh,h
n

)
for any h > q. As a result, the accuracy of the procedure warrants

careful consideration.
We simulate time series generated by MA(2) process with several values of parameter

a2, and we use the procedure detailed in Proposition 3 to identify an order q̂ for a candidate
MA(q̂) model. The procedure does not have perfect efficiency, especially when the length
of the time series is not large enough, and may therefore propose a q̂-order that is not the
underlying q-order. On the one hand, the case where the procedure suggests a more general
MA(q̂) model than the underlying MA(q) model, i.e., with q̂ > q, may generally present no
major problem. Indeed, all internal data correlations are taken into account. In addition, in
the modeling approach, we next try to simplify the model, using likelihood-based criteria,
and may approach the underlying order q. On the other hand, when the order q̂ of the
model is underestimated, i.e., when q̂ < q, it may not take sufficient account of the internal
correlations of the data, leading to a poorly performing model. We have shown in [44] that
the under-specification of a model generally leads Ljung–Box not to validate the model,
when applied to the residuals, and so such models should not be considered.

Moreover, we obtain that the value of the parameter aq plays a major role in the choice
of the order q̂. Indeed, if the underlying parameter aq is far from 0, the procedure does not
struggle to identify the order q. But if the parameter aq is close to zero, the procedure will
tend to propose the order q− 1. We also observe that Ljung–Box’s test is more likely to
validate the MA(q− 1) model if the aq parameter is close to 0. In this case, an MA(q− 1)
model may correspond better to the data obtained, at least in terms of some information or
prediction criteria.

Furthermore, we also study the identification of the orders p and q of an ARMA(p, q)
process, using the Extended Autocorrelation Function (EACF). The procedure for identi-
fying p and q orders, detailed in Section 2.3, relies on the Gaussian behavior of τ(p, h) for
h > q. Focusing on ARMA(p,2) simulations, we explore the behavior of pivotal EACF terms
τ(p, 1) and τ(p, 2) under various conditions. Through extensive simulations of ARMA(p, 2)
processes, we observe that these terms exhibit approximately Gaussian behavior as pre-
dicted by Theorem 1. However, deviations from normality are more pronounced in shorter
time series (n = 100), particularly for τ(p, 1). For longer time series (n = 500), the normality
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of τ(p, 2) is generally maintained, whereas τ(p, 1) displays a loss of Gaussian properties
more rapidly.

Additionally, the application of our methodology to real-world data such as wind
speed data and sea surface temperature anomalies, demonstrates that our procedures
suggest valuable candidate models, which have to be explored.

In conclusion, the procedure presented in Proposition 3 (respectively, Section 2.3) is
a valuable tool for identifying the q-order of the MA(q) process (resp., the q-order of the
MA(q) process). It is particularly effective for longer time series. But any ARMA(p̂, q̂)
suggested model should be complemented with model validation techniques, such as
the Ljung–Box test. Additionally, the final model selection process should incorporate
comparisons with other candidate models, using criteria like RMSE, MAPE, AIC, and BIC
to identify the best model for forecasting purposes.

7. Conclusions
This study provides new insights into the limitations of standard ACF-based method-

ologies for time series model identification. By rigorously evaluating the normality of ACF
estimators, we demonstrate that widely used statistical assumptions do not always hold.
Indeed, while ACF estimates at fixed lags generally follow a Gaussian distribution, the
joint behavior of ACF estimates does not conform to a multivariate normal distribution.
This is clearly highlighted when computing the Sum of Sample Autocorrelation Functions
(SACFs). This challenges the validity of standard statistical tests or model-identification
methods relying on these assumptions. Then, we tested whether traditional ACF-based
model identification techniques remain reliable when underlying assumptions are not met.
In particular, we evaluated the performance of existing methods for identifying MA(q)
and ARMA(p, q) orders, including threshold-based approaches for MA(q) models and the
Extended Autocorrelation Function (EACF) for ARMA(p, q) models. Our findings suggest
that these methods remain useful for sufficiently large sample sizes but may suffer from
systematic biases when the moving average parameter approaches zero. In such cases, our
study reinforces the need to complement model selection with residual diagnostics, such as
the Ljung–Box test or their SACF examination. Thus, we refined existing order selection
procedures and proposed improvements to conventional statistical approaches. This study
not only contributes to the theoretical understanding of ACF properties but also provides
practical insights for time series practitioners.
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Appendix A. Details About MA(2) Processes

Appendix A.1. Terms vi,j

Given Proposition 2, the covariance matrix associated with the H-vector of the ACF
estimators of an MA(2) process has the following form:

v1,1 v1,2 ν2 0 0 · · · 0 0 0

v2,1 v2,2 ν1 ν2 0 · · · 0 0 0

ν2 ν1 ν0 ν1 ν2 · · · 0 0 0

0 ν2 ν1 ν0 ν1 · · · 0 0 0

...
...

...
...

...
...

0 0 0 0 0 · · · ν0 ν1 ν2

0 0 0 0 0 · · · ν1 ν0 ν1

0 0 0 0 0 · · · ν2 ν1 ν0



.

Terms vi,j are computed thanks to Bartlett’s formula, expressed in Equation (3). For
more simplicity, we can also use the property given in [16] in Equation (7.2.6):

vi,j = cov

(
∞

∑
k=1

(ρ(k + i) + ρ(k− i) − 2 ρ(i) ρ(k))Uk ;

∞

∑
l=1

(ρ(l + j) + ρ(l − j) − 2 ρ(j) ρ(l))Ul

)
,

where (Uk)k are iid N (0, 1) random variables. Thus,

v1,1 = 1 + 2 ρ(2)2 − 3 ρ(1)2 + 2 ρ(2) + 4 ρ(1)4 − 8 ρ(1)2 ρ(2) + 4 ρ(1)2 ρ(2)2

v2,2 = 1 + 2 ρ(1)2 − 3 ρ(2)2 + 4 ρ(1)2 ρ(2)2 + 4 ρ(2)4 − 4 ρ(1)2 ρ(2)

v1,2 = 2 ρ(1) − 2 ρ(1) ρ(2) − 4 ρ(1) ρ(2)2 + 4 ρ(1) ρ(2)3 + 4 ρ(1)3 ρ(2) − 2 ρ(1)3 .

We use these values when we apply the Kolmogorov–Smirnov test.

Appendix A.2. Relationship Between aq and ρ(q)

Let (Zt)t be an MA(q) process defined by

Zt =
q

∑
k=0

ak Et−k ,

where a0 = 1 and (Zt)t is a WN. Then, we know that ρ(h) = 0, ∀ |h| ≥ q, and

ρ(q) =
aq

∑
q
k=0 a2

k
̸= 0 .
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In our simulations, we take q = 2, a1 = 1
2 , and we choose a2 ̸= 0. In particular,

ρ(2) =
a2

5
4 + a2

2
.

In Figure A1, we display ρ(2) versus a2. The closer a2 is to 0, the closer ρ(2) is to 0
also. Let us denote α =

√
5

2 ≃ 1.12. When a2 = −α, then ρ(2) reaches its minimum value,

equal to −
√

5
5 . And symmetrically, when a2 = α, then ρ(2) reaches its maximum value,

equal to
√

5
5 . In our simulations, we choose a2 = 1

10 , which is rather close to 0 and a2 = 1
2 ,

which is further, and leads to a greater value of ρ(2).

Figure A1. ρ(2) versus a2. The values of a2 leading to the minimal and the maximal values of ρ(2),
−α and α are written in red. Red vertical lines are plotted at these coordinates. The green circle points
for a2 = 1

10 , whereas the blue square points for a2 = 1
2 . Moreover, we have shaded the range of the

a2 parameters used to study the impact of this coefficient on the ability to identify the order q of
simulated MA(2) processes.

Appendix B. Implementation Details About EACF

EACF function has been implemented in the R language, available on the project web-
site: www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfMA/SacfMA.
html (accessed on 19 February 2025).

We provide details about its implementation in Algorithms A1 and A2.

www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfMA/SacfMA.html
www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.SacfMA/SacfMA.html
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Algorithm A1 Computation of extended autocorrelation function coefficients.

1: Input: Matrix m of residual coefficients, autocovariances cov1, maximum autoregressive

order nar, number of columns ncol, lag count count, total covariances ncov, centered

series z, lagged matrix zm

2: Output: Vector of EACF coefficients and correction factor λm

3: Initialize vectors:

eac f ← 0 of size (nar + 1)

λm ← 1 of size (nar + 1)

4: Compute first coefficient:

eac f [1]← cov1[ncov + count]

5: for i ∈ [[1, nar]] do

6: Compute transformed residuals:

temp←
[
z[−(1 : i)] zm[−(1 : i), 1 : i]

]
·
[

1

−m[1 : i, i]

]

7: Compute EACF coefficient:

eac f [i + 1]← acf(temp, lag.max = count)[count + 1]

8: Compute correction factor λm:

λm[i + 1]← 1 +
count+1

∑
j=2

acf(temp)[j]2

9: end for

10: Output: Return (eac f , λm)
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Algorithm A2 Extended Autocorrelation Function for ARMA(p,q) order selection.

1: Input: Time series z, maximum orders ar_max and ma_max
2: Output: Symbol matrix identifying (p, q) orders
3: Initialization:
4: ar_max ← ar_max + 1
5: ma_max ← ma_max + 1
6: nar ← ar_max− 1, nma← ma_max
7: ncov← nar + nma + 2
8: nrow← nar + nma + 1
9: ncol ← nrow− 1

10: Center the series: z← z−mean(z)
11: Construct lag matrix:
12: for i ∈ [[1, nar]] do
13: Store z lagged by i in zm
14: end for
15: Compute autocovariance function:

cov1← acf(z)

16: AR Model Estimation:
17: for i ∈ [[1, nar]] do
18: Fit an AR model of order i:

m1[:, i]← ar.ols(z, order = i)

19: end for
20: Moving Average (MA) Computation:
21: Initialize empty matrices: eac f m and λm

22: for i ∈ [[1, nma]] do
23: Perform recursive update on m1:

m2← reupm(m1)

24: Compute EACF coefficients and λm:

(eac f m[:, i], λm[:, i])← ceascf(m2, cov1, nar, ncol, i, ncov, z, zm)

25: Update m1← m2
26: end for
27: Compute Significance Thresholds:
28: for i ∈ [[1, nma]] do
29: Compute symbol matrix based on adjusted threshold:

symbol[:, i]←
{

“x′′, if |eac f m[:, i]| > 1.96 ·
√

λm[:, i]/length(z)

“o′′, otherwise

30: end for
31: Output:
32: Display the symbol matrix representing (p, q) order selections
33: Return (eac f m, ar_max, ma_max, symbol matrix)
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Appendix C. Impact on Order-Identification for Simulations of MA(2) Processes of
Length n = 500

Figure 5 gives the frequency of each last lag when n = 100, and Figure A2 when
n = 500.

Figure A2. Frequency of q̂, the last lag h, such that ρ̂(h) lies out of interval Ĵh, as described in
Proposition 3, for NS = 5000 simulations of MA(2) processes of length n = 500. The left column
concerns simulated MA(2) processes with an underlying Gaussian WN, whereas the right one deals
with Exponential WN. In the top figures, we simulate MA(2) processes with a2 = 1

2 , whereas we use
a2 = 1

10 in the bottom. The magenta-colored bar highlights the theoretical convenient order q̂ = 2.

Appendix D. Comparison between MA(1) and MA(2) models estimated on MA(2)
simulations

Table A1. Comparison of models quality when the procedure suggests q̂ = 1. For any MA(2)
simulation where the procedure suggests q̂ = 1, MA(1) and MA(2) models are estimated. Prediction
criteria (RMSE and MAPE) and information criteria (AIC, AICc, and BIC) are compared with the
one-tailed Student’s paired t-test. When the null is rejected, the favored model, either MA(1) or
MA(2), is indicated. Otherwise, the “==” symbol is given. Moreover, we add the p-value in brackets.
When no MA(1) model has been suggested by the procedure, a “-” symbol has been used. The
associated WN is Gaussian and coefficient a2 is either a2 = 1

2 (left column) or a2 = 1
10 (right column).

a2 = 1
2 a2 = 1

10
Criteria n = 100 n = 500 n = 100 n = 500
RMSE MA(2) (1.6×10−4) −(−) == (0.4148) == (0.5304)
MAPE MA(1) (6.7×10−6) −(−) MA(1) (0.0247) MA(1) (0.0437)

AIC MA(2) (<10−16) −(−) MA(1) (<10−16) MA(2) (<10−16)

AICc MA(2) (<10−16) −(−) MA(1) (<10−16) MA(2) (<10−16)

BIC MA(2) (<10−16) −(−) MA(1) (<10−16) MA(1) (<10−16)
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Table A2. Comparison of models quality when the procedure suggests q̂ = 2. For any MA(2)
simulation where the procedure suggests q̂ = 1, MA(1) and MA(2) models are estimated. Prediction
criteria (RMSE and MAPE) and information criteria (AIC, AICc and BIC) are compared with the
Student’s paired t-test. When the null is rejected, the favored model, either MA(1) or MA(2), is
indicated. Otherwise, the “==” symbol is given. Moreover, we add the p-value in brackets. The
associated WN is Gaussian, and coefficient a2 is either a2 = 1

2 (left column) or a2 = 1
10 (right column).

a2 = 1
2 a2 = 1

10
Criteria n = 100 n = 500 n = 100 n = 500
RMSE MA(2) (<10−16) MA(2) (0.0040) == (0.6536) == (0.5257)
MAPE == (0.4298) == (0.0665) == (0.9965) == (0.1486)

AIC MA(2) (<10−16) MA(2) (0.0040) MA(2) (<10−16) MA(2) (<10−16)

AICc MA(2) (<10−16) MA(2) (<10−16) MA(2) (<10−16) MA(2) (<10−16)

BIC MA(2) (<10−16) MA(2) (<10−16) MA(2) (3×10−5) MA(2) (<10−16)

Appendix E. Diagnosis for Several Models Fitted on Wind Speed Data

Appendix E.1. MA(4) Model

Figure A3 displays the graphical diagnosis associated to an MA(4) model fitted on
wind speed data: ACF (top left) and standardized SACF (top right) computed on the
residuals, and Ljung–Box tests p-values (bottom).

Figure A3. Graphical diagnosis for an MA(4) model fitted on wind speed data. ACF (top left) and
Standardized SACF (top right) of the residuals from the MA(q) model constructed on wind speed
data, with h varying from 1 to n

4 . The blue-dotted horizontal lines represent the thresholds −1.96/
√

n
and 1.96/

√
n. p-values when using Ljung–Box’s test on the residuals associated to an MA(4) model

(bottom). Ljung–Box’s test is computed successively for all lags H = q + 1, · · · , 38, with degree of
freedom H − q. The red-dotted horizontal line represents 5%.
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Appendix E.2. ARMA(p, q) Models Suggested by the EACF Procedure

We check that the ARMA(p, q) models suggested by our EACF procedure and the
ARIMA(3,1,1) suggested by the automated procedure auto.arima are valid. Figure A4
displays the ACF of the residuals, Figure A5 their standardized SACF, and Figure A6 the
Ljung–Box test p-values.

Figure A4. ACF computed on the residuals of the ARMA(2,5) (top left), ARMA(3,2) (top right),
ARMA(4,4) (bottom left) and ARIMA(3,1,1) (bottom right), constructed on wind speed data, with
h varying from 1 to n

4 . The blue-dotted horizontal lines represent the thresholds −1.96/
√

n and
1.96/

√
n.

Figure A5. Cont.
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Figure A5. Standardized SACF computed on the residuals of the ARMA(2,5) (top left), ARMA(3,2)
(top right), ARMA(4,4) (bottom left) and ARIMA(3,1,1) (bottom right), constructed on wind speed
data, with h varying from 1 to n

4 . The blue-dotted horizontal lines represent the thresholds −1.96/
√

n
and 1.96/

√
n.

Figure A6. p-values when using Ljung–Box’s test on the residuals of the ARMA(2,5) (top left),
ARMA(3,2) (top right), ARMA(4,4) (bottom left) and ARIMA(3,1,1) (bottom right), constructed
on wind speed data, for all lags H = q + 1, · · · , 38, with degree of freedom H − q. The red-dotted
horizontal line represents 5%.
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