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Abstract
In this paper we propose multi-objective control to deal with climate change and cli-
mate risks and the transition to a low carbon economy. Extending our previous col-
laborative work as in Atolia et al. (Math Control Related Fields, 13:583–604, 2023), 
we again build on the Nordhaus type DICE model to include various optimal macro-
economic policies such as mitigation, adaptation and climate-related infrastructure 
investment studying the dynamics of the decarbonizing of the economy. Based on a 
finite horizon model that includes the threats of climate disasters arising from CO

2
 

emissions and temperature rise, we deal with preventive measures such as adapta-
tion reducing disaster effects. Our optimal control problem of finite horizon is con-
sisting of a dynamical system with five-dimensional state vector representing stocks 
of private capital, green capital, public capital, stock of brown energy in the ground, 
carbon emissions, and temperature. The objective function captures preferences over 
consumption but is also impacted by atmospheric CO

2
 , climate risks events and by 

mitigation and adaptation policies. Given the numerous challenges to climate change 
policies with multiple objectives the control vector is eight-dimensional including 
mitigation, adaptation and infrastructure investment. The optimal control problem is 
studied under various state constraints. In two scenarios we compute the Pareto front 
for a bi-objective control problem. Optimization over the Pareto front provides us 
with suitable weights for the two objectives. In particular we explore the role of CO

2
 

constraints, as the Kyoto Protocol has suggested, and temperature constraints, as the 
Copenhagen–Paris agreements have proposed.
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1  Introduction

The Paris, December 2015, COP 20 agreement on climate change is aiming at 
reducing the temperature increase to below 2oC relative to pre-industrial level. This 
implies that effective mitigation policies need to be pursued that not only prevent 
the CO2 emission from rising further but should reduce the annual emission sub-
stantially. The Paris agreement is detailed in the IPCC (2018) report that demon-
strates higher probability of limiting global warming to 1.5oC will only be obtained, 
if a significant reduction of CO2 net emissions from 2020 to 2040 will be achieved. 
From then on the upper bound of CO2 should not be exceeded anymore.

Since those upper limits create great policy challenges we propose here a mod-
eling strategy that, attempts to answer three questions coming up in this context: 
First, what are the best strategies to keep the CO2 emission bounded by a predefined 
upper bound, and, correspondingly, how can one steer down the CO2 emission if it 
already has reached too high a level. Second, how can climate policies be scaled up 
and what resources should be allocated to mitigation and adaptation efforts, espe-
cially for the latter, in particular, when climate risk, due to a lack of emission reduc-
tion, is rising and future economic, social, and ecological damages can be expected. 
A third issue is of how the efforts of mitigation and adaptation are funded and how 
the funds should dynamically be allocated between traditional infrastructure invest-
ment, mitigation and adaptation efforts—and in what sequence.

A number of those issues have been studied in Integrated Assessment Models 
(IAMs) of various kind using scientific modelling to link the economy with the bio-
sphere and the atmosphere. This broad class of IAMs focusing on economy-climate 
interaction, use various scientific modeling and estimation methods. In our paper 
we more specifically focus on the seminal work by Nordhaus (2008, 2017) on the 
economy-climate link. This work specifically introduces the economy-climate inter-
action in mathematical formulations of an economic growth model, integrating into 
the model of carbon emission from industrial production, damages from it affecting 
output, and an optimal mitigation policy. Nordhaus calls his major work a Dynamic 
Integrated Model of Climate and the Economy, in short a DICE model. For details 
of the DICE model, see Nordhaus and Boyer (2000) and Nordhaus (2008).

We extend the latter Nordhaus type model to include beside mitigation, optimal 
policies for adaptation and infrastructure investment exploring the dynamics of the 
transition to a low fossil-fuel economy. Since mitigation policy is mainly aiming at 
phasing in of renewable energy we also explore what amount of traditional fossil 
energy is allowed to be extracted when setting some carbon emission and tempera-
ture constraints. Whereas Nordhaus employs as objective function preferences over 
consumption, based on standard growth theory, our objective function captures mul-
tiple targets—preferences over consumption, but is also impacted by atmospheric 
CO2 as well as the mitigation and adaptation policies. Our dynamic model, as it 
includes the phasing in of renewable energy along with the issues mentioned above, 
can be considered an extension of the DICE type models.

We present a dynamic global model with feedback control, representing an 
optimal control, that allows us to consider the specific policies of infrastructure 
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investment, mitigation and adaptation. The model is micro-founded in the sense 
that we employ a production technology which uses (private) physical capital and 
energy as inputs. Labor input is suppressed for simplicity as it is supplied inelas-
tically. There are two sources of energy: non-renewable, brown energy produced 
by an extractive resource sector and renewable, green energy produced with (pri-
vate physical) green capital. The emissions from brown energy use are a source 
of negative externality that directly enters the (instantaneous) felicity function. 
Note that we do not make damages to households dependent on the temperature, 
but rather on the stock of emissions. The reason is that the time series data on 
temperature is very heterogeneous across regions and quite volatile over time.

In our model the government levies lump-sum taxes to raise revenues, a por-
tion of which provides direct utility, another portion is invested in public (physi-
cal) capital, and remaining part is administrative expense. For models with other 
sources of capital, such as for example bond financing, see Bonen et al. (2016), 
and Orlov et al. (2018). The traditional use of public capital is to serve as infra-
structure investment that augments the productivity of the production process. 
This infrastructure investment can be considered representing traditional as well 
as climate-related infrastructure. In our setup, the government can also use public 
capital for adaptation and for mitigation and chooses the split between these three 
competing uses optimally.

Formally, the model gives rise to an optimal control problem of finite horizon 
consisting of a dynamic system with five-dimensional state vector representing 
the stocks of private capital, green capital, public capital, stock of brown energy 
in the ground, and emissions. The control vector is eight-dimensional, since it also 
comprises the split of public capital into mitigation, adaptation and infrastructure 
as time-dependent control functions excluding the choice of split for public capital 
mentioned earlier.

We characterize the optimal tax and investment policies for the government and 
examine the resultant paths of important macroeconomic variables, particularly, of 
those related to energy transition, CO2 emission, and resource extraction. The com-
plexity of the problem, however, necessitates both an analytical approach as well as 
the use of numerical methods.

Solving such a model of finite horizon poses the challenge to show that the turn-
pike properties are not violated and the trajectories of the finite horizon model can 
approximate the solution of the infinite horizon case. The turnpike property usu-
ally follows from imposing terminal state conditions which represent the stationary 
solution of the necessary optimality conditions. In our case the turnpike property 
follows from additional bound constraints of the capital assets. For  generic studies 
of turnpike properties of such models, see also Faulwasser et al. (2020) and Grüne 
et al. (2021).

These numerical solutions allow us to investigate the optimal sequence of cli-
mate policy decisions with respect to infrastructure, mitigation and adaptation. In 
all cases considered in the paper, numerical solutions from our finite-horizon set up 
recover the turnpike property that is characteristics of the infinite horizon models. 
In terms of climate policy response, in our model, we find that the optimal policy 
can keep the CO2 emission bounded for a wide-range of initial conditions of capital 
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stocks and CO2 levels. Specifically, we consider a scenarios with a high level of cap-
ital stocks and high level of CO2.

The remaining part of the paper is organized as follows. Section 2 describes the 
optimal control model of climate change. In Sect. 3, we introduce the temperature 
dynamics which is not contained in the basic model. In Sect. 4 we discuss the neces-
sary optimality conditions for the control problem with control and state constraints. 
Section 5 presents the numerical solution method and reports the results from sev-
eral scenarios concerning, in particular, bounds on the CO2 emission. In Sect. 6, we 
consider two objectives arising from two different elasticity exponents in the wel-
fare functional. We compute the Pareto front in two scenarios. Optimization over 
the Pareto front provides us with suitable weights for the two objectives. Section 7 
concludes.

2 � Optimal control model of climate change

We extend the Nordhaus DICE type model to include the adverse effects of climate 
change with a view to study the optimal policies for mitigation and adaptation to 
climate change until a transition to fossil-fuel-free green energy is successful. The 
green energy capital is a perfect substitute for fossil fuel in production. The climate 
change is modeled as an adverse effect of increase in atmospheric CO2 concentration 
(M) on utility. The mitigation efforts reduce the proportion of carbon in fossil fuel 
burned that escapes into the atmosphere as CO2 . In contrast, adaptation alleviates 
the harmful effects of higher atmospheric CO2 levels.

The government raises revenue ( ep ) which is used for direct, utility-enhancing 
services and provision of public (physical) capital/infrastructure (G), with the pos-
sibility of some wastage. To analyze the issue of climate change, besides its tradi-
tional use for enhancing productive efficiency in the economy, we allow government 
to use public capital for mitigation and adaptation.

The output of the production process is given by

with A,Ag,Au > 0 , 𝛼, 𝛽, 𝜁 > 0 , and 𝛼 + 𝛽 + 𝜁 < 1 . Kg is the stock of green capital, 
Kp is the stock of (private) physical capital, and �1 ∈ (0, 1] , as mentioned above, is 
the fraction of public capital (G) used for the traditional purpose of enhancing pro-
ductive efficiency. Finally, u is the amount of fossil fuel resource extracted and used, 
measured in terms of its carbon ( CO2 ) content.

The felicity (utility) function depends on four arguments (i) per-capita consump-
tion C; (ii) the per-capita amount of tax revenue ( �2eP, �2 ∈ [0, 1] ) used for direct 
welfare enhancement (e.g., healthcare); (iii) atmospheric concentration of CO2 (M) 
above the long-run sustainable level, the industrial level; and (iv) the per-capita 
amount of public capital expenditure ( �2G, �2 ∈ [0, 1) ) allocated to climate change 
adaptation. The optimal control model so defined then has five state variables:

Kp : private physical capital per capita

(1)Y = (�1G)
�A(AgKg + Auu)

�(Kp)
�
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Kg : private green capital per capita
G: public capital per capita
M:  CO2 (GHG) concentration in the atmosphere
R: non-renewable resource (fossil energy)
and the five basic control variables are

ip :   investment in physical capital
ig :  investment in green capital
ep : government’s net tax revenue
u:  extraction rate from the non-renewable resource
C:  per capita consumption

In addition, we consider the following three allocations of public capital as con-
trol functions:

•	 �1 :   standard infrastructure
•	 �2 :  adaptation
•	 �3 : mitigation

We emphasize that these allocations are not just parameters to be optimized but 
are considered as time-dependent control functions �k = �k(t), k = 1, 2, 3 . The state 
and control variables are denoted by

The time horizon tf > 0 (years) is finite. The dynamic system in [0, tf ] of the global 
model of climate change is given by

with initial conditions:

that will be specified later. The control constraint for the extraction rate u is given by

X = (Kp,Kg,G,R,M) ∈ ℝ
5
, U = (ip, ig, ep, u,C) ∈ ℝ

5
, � = (�

1
, �

2
, �

3
) ∈ ℝ

3
.

(2)K̇p = ip − (𝛿p + n)Kp,

(3)K̇g = ig − (𝛿g + n)Kg,

(4)Ġ = 𝛼
1
ep − (𝛿G + n)G,

(5)Ṁ = 𝛾 u − c (M − 𝜅 �M) − 𝜃(𝜈
3
⋅ G)𝜙,

(6)Ṙ = −u,

(7)X(0) = X0

(8)0 ≤ u(t) ≤ umax ∀ t ∈ [0, tf ].
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There are three potential uses of government revenues, as mentioned earlier. 
The amount �1ep is invested in public capital, �2ep provides direct utility, and 
(1 − �1 − �2)ep is administrative expense/waste. Of the total public capital, G, a frac-
tion �1 is the usual/traditional public capital that augments the productivity of the 
production process. Another fraction �2 is used for adaptation. The remaining frac-
tion �3 is used for mitigation. Hence, the infrastructural and climate oriented alloca-
tions of public capital satisfy the constraints:

Moreover, the system is subject to several control-state and pure state constraints. 
For defining a resource constraint we introduce the scalar function

and impose the mixed control-state equality constraint

Note that the mixed constraint does not depend on the allocations � . In later com-
putations we shall realize that we also need state constraints on the capital assets 
Kp,Kg,G and the CO2 concentration M. We prescribe lower bounds for the capital 
assets as state inequality constraints,

and an upper bound for the CO2 concentration

To handle these state constraints in a more convenient form we introduce the 
function

and consider the following state inequality constraint

Finally, note that our dynamics (5) for the evolution of carbon emission, generat-
ing the stock of carbon in the atmosphere, is slightly different from the Nordhaus’ 
DICE model as proposed in Nordhaus (2017). Nordhaus defines emission dynamics 
as time varying fraction of net output (after damages) that causes a carbon emission 
flow, partly absorbed by the ocean, but augmented by land carbon emission, that 
produces a stock of atmospheric carbon. The latter, called also carbon budget, in 
turn is the main driver of the global temperature, creating in turn the economic dam-
ages as a fraction of output. In our case we see the emission dynamics driven by the 

(9)�k(t) ≥ 0, �1(t) + �2(t) + �3(t) = 1 ∀ t ∈ [0, tf ].

(10)
c(X,U) = Y − C − ip − ig − ep − u�R−�

−
�p

2

(
ip

Kp

− �p − n
)2

Kp −
�g

2

(
ig

Kg

− �g − n
)2

Kg

(11)c(X(t),U(t)) = 0 ∀ t ∈ [0, tf ].

(12)Kp(t) ≥ Kmin
p

, Kg(t) ≥ Kmin
g

, G(t) ≥ Gmin ∀ 0 ≤ t ≤ tf ,

(13)M(t) ≤ Mmax ∀ 0 ≤ t ≤ tf .

(14)s(X) = (Kmin
p

− Kp,K
min
g

− Kg,G
min − G,M −Mmax)∗ ∈ ℝ

4

(15)s(X(t)) ≤ 0 ∀ t ∈ [0, tf ].
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equation (5) with 𝜅 > 0 a parameter allowing for a stationary stock of atmospheric 
carbon, �M̃ , some equilibrium level of carbon concentration, a parametrization that 
also other literature has used. If now the quantity of emission is a policy target, as 
was in the Kyoto Protocol, then equation (5) would imply a stationary solution. On 
the other hand if temperature is a target, as in the Paris agreement, then our emis-
sion dynamics could be translated into a global temperature via equation (25) using 
that as a target; see below. The two base cases of policy targets can also be found in 
Nordhaus (2008, Chapter V), giving rise to a stationary behavior of the atmospheric 
stock of carbon.

Let us now introduce the welfare functional. Recall, the felicity (utility) func-
tion depends on (i) per-capita consumption C; (ii) the per-capita tax revenue 
( �2eP, �2 ∈ [0, 1] ); (iii) atmospheric concentration of CO2 (M); and (iv) the per-cap-
ita expenditure on adaptation ( �2G, �2 ∈ [0, 1) ). The preferences of the representa-
tive household (or the policy maker) are

where M̃ is the preindustrial level of atmospheric CO2 and M̄ > 𝜅 �M is a high CO2 
level, with �M̃ being the level that would not need any adaptation and is the long-
run sustainable level. We have chosen the value M̄ = 4.5 in Table 1. 𝜌 > 0 is the time 
rate of preference, n > 0 is the rate of population growth, 𝜎 > 0 is the inverse of the 
elasticity of intertemporal substitution and � ∈ [0, 1] , � ∈ [0, 1] , 𝜉 > 0 , � ∈ [0, 1] , 
and 𝜅 > 0 are other parameters. The restrictions on parameters ensure that social 
expenditures and adaptation are utility enhancing with diminishing marginal util-
ity and carbon emission that increase M reduce utility with increasing marginal dis-
utility. As visible in our objective function we have not taken global temperature 
to measure the effect on welfare, but rather the stock of atmospheric carbon which 
appears to be easier to measure as driving variable for damages, see the simulations 
below. Note that for � ≥ 1 , we only need 𝜂, 𝜀 > 0 . Parameter values are given in 
Table 1.

This approach differs from other models that map emissions to temperature 
changes and then to reduced productivity-cum-output, see Nordhaus and Boyer 
(2000). The direct disutility approach better captures the wide ranging impacts of 
climate change that may include health impacts, ecological loss and heightened 
uncertainty, in addition to reduced productivity. Finally, note that the discount factor 
adjusts for the population growth rate n from the pure discount rate � as all values 
are normalized by the population per capita.

The optimal control problem (OCP) now consists in maximizing the welfare func-
tional (16) subject to the dynamical constraints (2)-(7), the control constraints (8), 
(9), the mixed control-state constraint (11) and the pure state constraints (12) and 
(13). To obtain a more compact form of the optimal control problem we use the vec-
tor of state and control variables (X,U, �) introduced above to write the dynamical 
system (2)–(6) in the form

(16)
∫

tf

0

e−(𝜌−n)t
1

1 − 𝜎

{[
C
(
𝛼2ep

)𝜂
(
1 − exp

(
−𝜉

(
𝜈2G

)𝜔)M − 𝜅 �M

M̄ − 𝜅 �M

)𝜀]1−𝜎
− 1

}
dt,
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Furthermore, let us denote the integrand of the welfare functional by

(17)Ẋ(t) = f (X(t),U(t), 𝜈(t)), X(0) = X0.

(18)

f0(X,U, 𝜈) =
1

1 − 𝜎

{[
C
(
𝛼2ep

)𝜂
(
1 − exp

(
−𝜉

(
𝜈2G

)𝜔)M − 𝜅 �M

M̄ − 𝜅 �M

)𝜀]1−𝜎
− 1

}
.

Table 1   Parameter values

Parameter Value Definition

� 0.03 Pure discount rate
n 0.015 Population Growth Rate
� 0.1 Elasticity of transfers and public spending in utility
� 1.1 Elasticity of CO

2
 concentration in (dis)utility

� 0.5 Elasticity of public capital used for adaptation in utility
� 2 Intertemporal elasticity of instantaneous utility
A 1 Total factor productivity
Ag 1 Efficiency index of green capital
Au 100 Efficiency index of the non-renewable resource
� 0.05 Output elasticity of inputs, (AgKg + Auu)

�

� 0.1 Output elasticity of public infrastructure, (�
1
G)�

� 0.1 Scaling factor in marginal cost of resource extraction
� 2 Exponential factor in marginal cost of resource extraction
�p 0.1 Depreciation rate of physical capital
�g 0.05 Depreciation rate of private capital
�G 0.05 Depreciation rate of public capital
Ωp ∈ [5, 15] q-elasticity of investment spending on private capital
Ωg ∈ [5, 15] q-elasticity of investment spending on public capital
�p

1

(�p+n)Ωp

�g
1

(�g+n)Ωg

�
1

0.3 Proportion of tax revenue allocated to new public capital
�
2

0.7 Proportion of tax revenue allocated to transfers and public consumption
r̄ 0.07 World interest rate (paid on public debt)

M̃ 2.5 Equilibrium concentration of CO
2

� 1.2 Atmospheric concentration stabilization ratio (relative to M̃)
M̄ 4.5 Value in disutility term in welfare (16)
� 0.9 Fraction of greenhouse gas emissions not absorbed by the ocean
c 0.01 Decay rate of greenhouse gases in atmosphere
� 1.2 Atmospheric concentration stabilization ratio (relative to M̃)
� 0.01 Effectiveness of mitigation measures
� 0.9 Exponent in mitigation term (�

3
G)�
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Then the optimal control problem can be written in compact form as follows:

subject to the dynamical constraint (17) and the control and state constraints 
(8)-(15).

3 � Temperature dynamics

So far, the optimal control problem does not involve the temperature T(t) at time 
t (measured in Kelvins), because the main focus was on the dynamics of the CO2 
concentration M(t) which directly enters the welfare functional (18, 19). Due to the 
energy balance model in Roedel and Wagner (2011) the dynamic behavior of the 
temperature is closely related to that of the CO2 concentration M(t). Hence, in this 
paper we compute the temperature T(t) as arising from the solution M(t) of the opti-
mal control problem. We do not need the feedback loop from temperature increase 
to economic welfare, since the disutility of welfare (damage) caused by a high CO2 
level is already incorporated.

We shall follow the presentation of the temperature model in Maurer et al. (2015) 
and Atolia et al. (2023). Some parameters in the model equations had been improved 
by discussions with Roedel (2012). The change of the average surface temperature 
T(t) is given by the equation

All magnitudes on the right side indicate annual averages. Hence, each time step Δt 
is exactly one year which expressed in seconds gives

Therefore, the differential equation changes to

The earth’s surface is greatly covered by oceans. Its heat capacity is given by the 
numerical value ch = 210652078 [J∕(m2 K)] , which follows from the identity 
ch = 0.7�wcwd , where �w = 1027 [kg∕m3] is the density and cw = 4186 [ J∕(kgK) ] 
is the specific heat capacity of the sea water; d = 70 [m] describes the depth of the 
oceanic top layer where a mixing and thus a heat transport takes place. The factor 
0.7 represents the proportion of sea water in the total surface of the earth. The unit 
of Δt

ch
 is given by

(19)Maximize (U,�) W(X,U, �) =

tf

∫
0

e−(�−n)tf0(X(t),U(t), �(t)) dt

(20)ch
dT

dt
= SE − H − FN , T(0) = T0.

Δt = 365 ⋅ 24 ⋅ 60 ⋅ 60 [s] = 31536000 [s] .

(21)Ṫ ≡ dT

dt
=

Δt

ch

(
SE − H − FN

)
, T(0) = T0.
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from which it follows that Δt
ch

≈ 0.149707 [m2K∕W] . SE is the supplied sun energy, H 
the non-radiative energy flux and FN = F↑ − F↓ the net flux of the terrestrial radia-
tion. F↑ complies with the Stefan–Boltzmann—law, which has the form

with the relative emissivity � = 0.95 and the Stefan–Boltzmann—constant

Furthermore, the flux ratio is F↑∕F↓ = 116∕97 and the difference is 
SE − H =

(
1 − �1(T)

)
Q

4
 with the solar constant Q = 1367 [W∕m2] and the planetary 

albedo �1 , which indicates how much energy is reflected back to space. The factor 
1

4
 is the ratio between the cross-sectional area �r2

earth
 and the surface area 4�r2

earth
 

of the earth, because it receives the sun’s radiation flux only on a hemisphere. The 
share of non-reflected sun energy is given by the differentiable function

with constants k1 = 5.6 ⋅ 10−3 and k2 = 0.1795.
A high concentration of greenhouse gases affects the temperature through the 

so-called radiative forcing, which describes the change of incoming and outgoing 
energy in the atmosphere. For carbon dioxide CO2 we have

with the pre-industrial CO2 concentration Mo . In Maurer et  al. (2015) we have 
allowed for a delay in this equation, since a change in the concentration of CO2 may 
not immediately affect a change in the temperature. However, in long term behavior 
the temperature is not much affected by such a (small) delay and thus delays will not 
be taken into account.

In summary, we obtain the following differential equation for the average surface 
temperature T,

where the unit on the right hand side is given by [m2K∕W) ⋅ (W∕m2] = [K] . In the 
following, we shall consider the initial temperature T(0) = 290 which is approxima-
tively 1.5 degree Celsius above the pre-industrial level.

s

J∕(m2 K)
= sm2 K∕J = m2K∕W,

(22)F↑ = ��T4

� = 5.67 ⋅ 10−8 [W∕(m2K4).

(23)1 − �1(T) = k1
2

�
arctan

(
�(T − 293)

2

)
+ k2,

(24)F = 5.35 ln

(
M(t)

Mo

)
[W∕m2]

(25)

Ṫ(t) =
Δt

ch

(
(1 − 𝛼1(T(t)))

Q

4
−

19

116
𝜀𝜎T(t)4 + 5.35 ln

(
M(t)

Mo

))
, T(0) = T0,
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4 � Maximum principle: necessary optimality conditions

We formulate the necessary conditions of the Maximum Principle for optimal con-
trol problems with state constraints; see Hestenes (1966); Pontryagin et al. (1964); 
Hartl et al. (1995); Maurer (1979) see also Atolia et al. (2023).

We use the direct-adjoining approach in Hartl et  al. (1995) to define the aug-
mented standard Hamiltonian and the current-value augmented Hamiltonain. The 
existence of regular multipliers associated with the constraints depends on the regu-
larity of the constraints; see Hartl et al. (1995); Maurer (1979). The mixed control-
state constraint (11) satisfies the regularity condition in view of

The 4 state constraints in (12, 13), resp., (15) are state constraints of order one and 
satisfy the regularity condition

The standard Hamiltonian is given by

Here, �0 ≥ 0 is a scalar multiplier and � denotes the adjoint variable (row vector)

To define the augmented Hamiltonian we use the direct adjoining approach (see 
Hartl et al. 1995; Maurer 1979, where the control-state constraint (11) and the pure 
state constraints (15) are directly adjoined to the Hamiltonian by multipliers:

Here, � is the multiplier associated with the mixed constraint (11) and the state con-
straints (12):

The discount factor e−(�−n)t in the standard augmented Hamiltonian can be elimi-
nated by considering the so-called current-value augmented Hamiltonian

The adjoint variable �∗ and the multiplier �∗ are related to those of the standard 
Hamiltonian by

�c

�U
(X(t),U(t)) ≠ 0 ∀ t ∈ [0, tf ].

𝜕Y

𝜕(U, 𝜈)
(X(t),U(t), 𝜈(t)) ≠ 0 ∀ t ∈ [0, tf ] Y ∈ {K̇p, K̇g, Ġ, Ṁ}.

(26)H(X, �,U, �) = �0 e
−(�−n)tf0(X,U, �) + � f (X,U, �).

� = (�1, �2, �3, �4, �5) = (�Kp, �Kg, �G, �M , �R).

(27)H(X, �,�,U, �) = H(X, �,U, �) + �c c(X,U) + �s s(X).

� = (�c,�s), �s = (�Kp,�Kg,�G,�M) ∈ ℝ
4.

(28)H
c(X, �∗,�∗,U, �) = e(�−n)tH(X, �,�,U, �).

�∗(t) = e(�−n)t�(t), �∗(t) = e(�−n)t�(t).
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We assume that the control problem is normal and, hence, we can set �0 = 1 in the 
standard Hamiltonians (26) and (27). It is well-known that the control problem is 
normal in case of a free terminal state. However, we are not able to show normality 
in the presence of control and state constraints.

Let (X,U, �) be an optimal solution of the optimal control (OCP) problem of 
maximizing the welfare (19) subject to the constraints (2)–(15). To formulate the 
maximum conditions for the controls we introduce the control set at time t:

Then the Maximum Principle asserts the existence of a piecewise continuous adjoint 
function � ∶ [0, tf ] → ℝ

5 , a continuous multiplier function �c ∶ [0, tf ] → ℝ and a 
piecewise continuous multiplier functions �s ∶ [0, tf ] → ℝ

4 such that the following 
conditions hold for t ∈ [0, tf ]:

Adjoint equation:

Boundary conditions for adjoint variable:

Maximum conditions for controls:

Local maximum conditions when ip(t), ig(t), ep(t),C(t) > 0 and 0 < u(t) < umax :

Complementary conditions:

The adjoint variable � and the multipliers �c,�s can be computed as the Lagrange 
multipliers of the nonlinear programming problem defined by the discretized control 
problem, see eg. Betts (2020); Büskens and Maurer (2000); Göllmann and Maurer 
(2014).

In Atolia et al. (2023) we have computed an (approximate) stationary solution of 
the canonical system and the maximum conditions. But here the analysis of station-
ary points of the necessary conditions is very complicated due to the presence of 
state constraints. Instead we can draw some information on stationary points from 
the turnpike behavior of the unconstrained solution; see Sect. 5.2. Note that in case 
of nonlinearities arising from the temperature dynamics one can also have multiple 
equilibria, see Greiner  et al. (2010).

(29)
Ω(t) = {(U, 𝜈) ∈ ℝ

8 | ip(t), ig(t), ep(t) ≥ 0, C(t) > 0, 0 ≤ u(t) ≤ umax,

𝜈k ≥ 0 (k = 1, 2, 3), 𝜈1(t) + 𝜈2(t) + 𝜈3(t) = 1, c(X(t),U) = 0}.

(30)𝜆̇(t) = −
𝜕H

𝜕X
(X(t), 𝜆(t),𝜇(t),U(t), 𝜈).

(31)�i(tf )si(X(tf )) = 0, i = 1, 2, 3, 4, �R(tf ) = 0.

(32)H(X(t), �(t),�(t),U(t), �(t)) = max (U,�) ∈Ω(t) H(X(t), �(t),U, �).

(33)
�H

�v
(X(t), �(t),U(t), v(t)) = 0 for v ∈ { ip, ig, ep,C, u }.

(34)�s(t) ≥ 0, �s(t) s(X(t)) = 0 ∀ t ∈ [0, tf ].
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5 � Numerical solutions

5.1 � Discretization and nonlinear programming methods

We choose the numerical approach "First Discretize then Optimize” to solve the 
optimal control problem OCP defined in (1)–(19). The discretization of the con-
trol problem on a fine grid leads to a large-scale nonlinear programming problem 
(NLP) that can be conveniently formulated with the help of (AMPL), A Mathemati-
cal Programming Language, which was developed by Fourer et al. (1993). AMPL 
can be linked to several powerful optimization solvers. We use the Interior-Point 
Optimization Solver Ipopt; see Wächter and Biegler (2006). Details of discretization 
methods may be found in Betts (2020); Büskens and Maurer (2000); Göllmann and 
Maurer (2014). The following computations for the terminal time tf = 200 (years) 
are performed with N = 2000 grid points using the trapezoidal rule as integration 
method. Choosing the error tolerance tol = 10−8 in Ipopt, we can expect that the 
state variables are correct up to 4 − 5 decimal digits. The Lagrange multipliers of 
the NLP yield approximations of the adjoint variables and multipliers of the optimal 
control problem which enables us to verify the necessary optimality conditions.

In the following computations, we fix the initial conditions X(0),

and the large time horizon tf = 200 (years). The CO2 concentration M(0) = 3.25 
is rather high and the initial temperature T(0) = 290 (Kelvin) is 1.5 degree above 
the pre-industrial temperature. These initial conditions mirror approximatively the 
actual data.

5.2 � Solutions with free terminal state X(tf)

First we analyse the control problem with a free terminal state X(tf ) . We obtain 
the following numerical results for the objective value (welfare) and terminal state 
variables

The negative value of the welfare is due to the negative scaling factor 1 − � = −1 in 
the welfare functional (16). The control and state trajectories are displayed in Fig. 1. 
The CO2 concentration reaches the rather high value M(t) = 3.48 at t = 110 . This is 
responsible for the high temperature value T(t) = 292.8 at t = 127 which is 2.8 deg. 
above the initial temperature T(0) = 290 . Though in the long run the concentration 
M comes down to M = 3.27 close to the initial value value M(0) = 3.25 , the temper-
ature settles at the high value T(tf ) = 292.4 . The mitigation effort �3(t) is still very 
small. The extraction rate u(t) is so high that it nearly depletes the resource R. We 
also observe that the capital assets Kp,Kg,G dramatically decrease during a terminal 

(35)
Kp(0) = 2.5, Kg(0) = 0.3, G(0) = 0.8, M(0) = 3.25, R(0) = 1, T(0) = 290,

(36)
W(U, �) = −19.22 ∶ Kp(tf ) = 0.8352, Kg(tf ) = 0.1314, G(tf ) = 0.5536,

M(tf ) = 3.279, R(tf ) = 0.09956, T(tf ) = 292.46,
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period while the consumption is increasing. This behavior is typical for economic 
finite-horizon optimal control problems without terminal constraints. Hence, in the 
following we impose suitable terminal inequality constraints in the form of state 
constraints (14) and (15) for the capital assets:

5.3 � Solution for state constraint M(t) ≤ 3.3 for t ∈ [0, 200]

Now we consider the solution under the state constraints (37) for the capital 
assets. and impose the bound M(t) ≤ 3.3, 0 ≤ t ≤ 200, for the CO2 concentra-
tion. We get the following numerical results for the welfare and terminal state 
variables:

(37)Kp(t) ≥ 2.2, Kg(t) ≥ 0.3, G(t) ≥ 0.8.

Fig. 1   State and control trajectories for terminal time tf = 200 and initial states (35) and free terminal 
state X(tf ) . Top row: (left) physical capital Kp , green capital Kg and government capital G, (middle) CO

2
 

concentration M, (right) resource R. Middle row: (left) investments ip and ig and tax revenue ep , (middle) 
temperature T, (right) extraction rate u. Bottom row: (left) consumption C and productivity Y, (middle) 
infrastructure �

1
 , (right) adaptation �

2
 and mitigation �

3
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The control and state trajectories are displayed in Fig. 2.
The capital assets Kp,Kg,G exhibit a turnpike behavior and stay on the bound-

ary of the state constraints (37) for most of the time. Also, the CO2 concentration 
M has a boundary arc M(t) = 3.3 for t ≥ 32 except for a small terminal interval. 
The temperature settles at T(t) = 292.5 for t ≥ 50 . The high temperature motivates 
us to enforce a more restrictive bound for M(t) at least on the terminal part of the 
planning period.

5.4 � Solution for state constraint M(t) ≤ 3.0 for t ∈ [40, 200]

We require that the CO2 concentration stay below the value M = 3.0 for t ≥ 40 . 
We get the following numerical results for the welfare and terminal state 
variables:

(38)
W(U, �) = −20.96 ∶ Kp(tf ) = 2.2, Kg(tf ) = 0.3, G(tf ) = 0.8,

M(tf ) = 3.3, R(tf ) = 0.8624, T(tf ) = 292.5,

Fig. 2   State and control trajectories for terminal time tf = 200 , initial states (35), state constraints (37) 
and state constraint M(t) ≤ 3.3 . Top row: (left) physical capital Kp , green capital Kg and government cap-
ital G, (middle) CO

2
 concentration M, (right) resource R. Middle row: (left) investments ip and ig and tax 

revenue ep , (middle) temperature T, (right) extraction rate u. Bottom row: (left) consumption C and pro-
ductivity Y, (middle) infrastructure �

1
 and adaptation �

2
 , (right) mitigation �

3
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Figure 3 shows the control and state trajectories.
The CO2 concentration M stays on the boundary M(t) = 3.0 for t ≥ 40 except 

on a small terminal interval. The temperature comes down to T(tf ) <= 292 after 
a short overshot. To reach the goal of a smaller CO2 concentration the extraction 
rate u(t) decreases significantly so that the resource R is far from being exhausted. 
Nevertheless, the welfare W(X,U, �) is not much smaller than in the previous 
cases.

5.5 � Solution for state constraint M(t) ≤ 2.6, ∀ t ∈ [50, 200]

This very restrictive constraint leads to the solution shown in Fig.  4. Numerical 
results for the welfare and the terminal state variables are

(39)
W(U, �) = −24.93 ∶ Kp(tf ) = 2.2, Kg(tf ) = 0.3, G(tf ) = 0.8,

M(tf ) = 3.0, R(tf ) = 0.9112, T(tf ) = 291.87.

Fig. 3   State and control trajectories for terminal time tf = 200 , initial states (35), state constraints (37) 
and state constraint M(t) ≤ 3.0 . Top row: (left) physical capital Kp , green capital Kg and government cap-
ital G, (middle) CO

2
 concentration M, (right) resource R. Middle row: (left) investments ip and ig and tax 

revenue ep , (middle) temperature T, (right) extraction rate u. Bottom row: (left) consumption C and pro-
ductivity Y, (middle) infrastructure �

1
 and adaptation �

2
 , (right) mitigation �

3
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The CO2 concentration is steered down to M(t) <= 2.6 on [50, 200]. This has the 
effect that the temperature remains below T = 291 on [50, 200] which is only 1 deg. 
higher then the initial temperature. However, it can not be avoided that the tempera-
ture reaches the high value T(t) = 292.0 already at t = 20 . The exhaustion rate u(t) 
is nearly zero on [0, 50] and remains on a small level which causes the high level 
R(tf ) = 0.9236 of the terminal resource. The small exhaustion rate is also respon-
sible for the low production and consumption for t ≤ 50 . Mitigation measures are 
dominant on [0, 50] and push adaptation and infrastructure aside.

It is interesting to note that we obtain a similar solution by imposing the following 
state constraint on the temperature:

(40)
W(U, �) = −40.99 ∶ Kp(tf ) = 2.2, Kg(tf ) = 0.3, G(tf ) = 0.8,

M(tf ) = 2.6, R(tf ) = 0.9236, T(tf ) = 291.87,

(41)T(t) ≤ Tmax = 291 ∀ 50 ≤ t ≤ 200.

Fig. 4   State and control trajectories for terminal time tf = 200 , initial states (35), state constraints (37) 
and state constraint M(t) ≤ 2.6 . Top row: (left) physical capital Kp , green capital Kg and government cap-
ital G, (middle) CO

2
 concentration M, (right) resource R. Middle row: (left) investments ip and ig and tax 

revenue ep , (middle) temperature T, (right) extraction rate u. Bottom row: (left) consumption C and pro-
ductivity Y, (middle) infrastructure �

1
 and adaptation �

2
 , (right) mitigation �

3
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6 � Multi‑objective approach to the optimal control problem 
under state constraints

The simultaneous optimization of multi-objective functions results in a set of trade-off 
or Pareto solutions. Although there is a wealth of literature involving finite-dimensional 
optimization problems (see Eichfelder 2008), only a few papers are devoted to opti-
mal control problems; see, eg., Kaya and Maurer (2014) and Eichfelder et al. (2023). 
The problem of optimizing over the Pareto front of a bi-objective control problem has 
recently been addressed by Kaya and Maurer (2023).

In this section, we study a bi-objective optimal control problem which arises from 
the fact that the control system and the objectives depend on some parameters which 
have significant impact on the solution but which can not be estimated precisely. One 
such critical parameter is the elasticity � of the CO2 concentration describing the disu-
tility in the objective (16), resp., (19). There we have chosen the nominal value � = 1.1 . 
Let us denote the welfare function by W(X,U, �, �) to underline its dependence on � . 
We shall compare the welfare W(X,U, �, �) for the small parameter �1 = 0.6 and for 
the large parameter �2 = 1.8 . Our focus is on the trade-off between the solutions for the 
functionals

To generate the Pareto front for this bi-objective optimal control problem we apply 
the weighted sum scalarisation and thus maximize the following weighted sum func-
tional with weight w ∈ [0, 1]:

Standard homotopy methods are used to compute the solution for weights
wi = i∕N, i = 0, ...,N, with, eg., N = 100 . Denote the state and control solution 

depending on the weight w by Xw(⋅),Uw(⋅), �w(⋅) and the objectives values by Fw
1
 and 

Fw
2
 . Then the Pareto front is defined the by curve PF = { (Fw

1
,Fw

2
) |w ∈ [0, 1] }.

6.1 � Pareto front for state constraints (37) and M(t) ≤ 3.3

The Pareto front is concave as shown in Fig. 5a since we are maximizing. We noted 
earlier that the objective values are negative.

Now let us determine the point where the Pareto front has minimal distance to the 
origin. To this end we have to minimize the so-called master function

By inspecting the numerical results of maximizing the weighted objective (43) we 
see that the minimum of the function Fm(w) is attained at w = wopt = 0.58 , depicted 
in Fig. 5b, with functional value F(wopt) = 28.94 . Solving the optimal control prob-
lem (43) with weight w = wopt = 0.58 we obtain

(42)Fk(X,U, �) = W(X,U, �, �i), k = 1, 2.

(43)Fw(X,U, �) = (1 − w) ⋅ F1(X,U, �) + w ⋅ F2(X,U, �).

(44)Fm(w) = ||(Fw
1
,Fw

2
)||2.

Fw(X,U, �) = −19.64, M(tf ) = 3.3, T(tf ) = 292.49.
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The control and state trajectories are very close to those in Fig. 2 and are not shown 
here.

Instead of using the weighed-sum scalarization (43) we can implement the Che-
bychev scalarization described in Kaya and Maurer (2014, 2023). This amounts to 
maximizing the non-smooth objective

This approach allows to optimize a master function like (44) in a more systematic 
way using bisection of gradient-like methods.

6.2 � Pareto front for state constraints (37) and M(t) ≤ 2.6, 50 ≤ t ≤ 200

Again, the Pareto front is concave as shown in Fig. 6a.
The minimum of the master function Fm(w) = ||(Fw

1
,Fw

2
)||2 is attained at 

w = wopt = 0.52 . The corresponding control and state trajectories are rather close to 
those in Fig. 4 and can be regarded as a compromise solution.

(45)
Fw(X,U, �) = max { (1 − w) ⋅ F1(X,U, �), w ⋅ F2(X,U, �) }, 0 ≤ w ≤ 1.

Fig. 5   Pareto front for functionals F
1
,F

2
 under state constraints (37) and M(t) ≤ 3.3, 0 ≤ t ≤ 200 . a 

Pareto front { (Fw
1
,Fw

2
) |w ∈ [0, 1] } , b Master function Fm(w) = ||(Fw

1
,Fw

2
)||

2
 for 0 ≤ w ≤ 1.

Fig. 6   Pareto front for functionals F
1
,F

2
 under state constraints (37) and M(t) ≤ 2.6, 50 ≤ t ≤ 200 . a 

Pareto front { (Fw
1
,Fw

2
) |w ∈ [0, 1] } , b Master function Fm(w) = ||(Fw

1
,Fw

2
)||

2
 for 0 ≤ w ≤ 1.
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7 � Conclusions

Climate change and rising climate risks currently pose great challenges for academic 
work as as policymakers. Those challenges are recently not only not to surpassing 
upper limits of atmospheric CO2 concentration, but reducing the atmospherics 
concentration and excessive temperature rise, generating increasing weather 
extremes. We propose an optimal control model of climate control including eight 
control variables and five state variables that are subject to a rather complex mixed 
control-state constraints. Besides the more standard control variables (consumption, 
investments in capital goods, extraction of nonrenewable resource) we propose an 
extensive dynamic model with three allocations of public capital (infrastructure, 
adaptation and mitigation) as time-dependent control objectives and five economic 
state variables.

Such an attempt not only needs to analyze the necessary optimality conditions 
and computed steady state values evaluated by the current-value Hamiltonian but in 
particular the numerical evaluation through numerical procedures. For the numerical 
solution paths we have chosen a rather large time horizon of tf = 200 years, where 
we have computed numerical solutions in several scenarios using discretization and 
nonlinear programming methods. In all scenarios, the solutions exhibit a turnpike 
behavior. The main focus in our model is on the evolution of the CO2 concentration 
and a dynamic equation of the temperature (see Kaya and Maurer 2023) to measure 
the effect of the changing CO2 concentration on the temperature. This way either the 
carbon emission and concentration or the temperature can be used as policy target - 
since one can be converted into the other.

We first explore for tf = 200 the paths of the variables without state constraints, 
so the final outcomes to let the variables developing freely which is not a very 
satisfactory path for the control of the state variables—the CO2 emissions and 
temperature go to high levels—generates not the controls, such as infrastructure, 
adaptation, mitigation, shown in Fig. 1. Next we constrain the CO2 emission by an 
upper magnitude of 3.3 which gives the path of CO2 . The CO2 emission goes to 
an upper bound in a finite time, after 50 steps,and the extraction of the fossil fuel 
resources decline, Those paths correspond to appropriate controls, shown in Fig. 2. 
This is achieved with the value of the welfare function W = −20.96.

In the next scenario, Fig. 3, we constrain the CO2 emission to be not greaser than 
the level 3, which gives us also the maximum temperature rise. Those results can 
also be achieved by the appropriate controls, in particular the fossil fuel extraction 
rate and welfare of W = −24.93 , to a lower welfare than in the previous case. 
The next scenario is depicted in Fig. 4, with the CO2 constraint M(t) ≤ 2.6 for all 
t ∈ [50, 200] . This allows also the temperature to be constrained below previous 
cases, namely to T(t) ≤ 291 for all t ∈ [50, 200] . The welfare is now decreased as 
well: W = −40.99.
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In general, we provide some dynamic estimates of how the scaling up of efforts 
of mitigation and adaptation can be funded and how the funds should be allocated 
between (traditional and climate related) infrastructure investment, mitigation and 
adaptation efforts. We find that infrastructure investment efforts are in most cases 
high, sometimes occurring with a delay effect. Since in this context successful miti-
gation policy means phasing in of renewable energy (see also Maurer and Semmler 
2015) we have also explored what amount of traditional fossil energy should be 
left in situ in order to satisfy some CO2 emission and temperature constraints.Yet, 
our control actions might not work if we are high above the CO2 target, namely if 
there are—as demonstrated in simpler models by Greiner et  al. (2010) and Nord-
haus (2008)—tipping points and thresholds beyond which the climate and whether 
extremes accelerate. For a model proposing also other means of financing climate 
policies, for example climate bonds, see Orlov et al. (2018). Addressing these issues 
required enlarging and solving for higher dimensional nonlinear control problems. 
We also showed that our numerical solutions for finite horizon decision model have 
turnpike properties similar to infinite horizon models.

We also demonstrated why our multi-objective control approach should be 
complemented by the computation of a Pareto front that helps us to attach certain 
weights for the objectives in the objective functional. As we demonstrated we can 
then suggest a certain compromise between the perception of higher and lower risk 
of damages.
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