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Abstract: There are well-known issues in conjunction with eliciting probabilities, utilities,
and criteria weights in real-life decision analysis. This article explores various computa-
tionally efficient methods for generating weights in multi-criteria decision support systems.
Therefore, it constitutes an aid for MCDA modellers and tool designers in selecting surro-
gate methods for criteria weights. Given the challenges in eliciting precise criteria weights
from decision-makers, this study evaluates a range of techniques for automatically generat-
ing surrogate weights, focusing on both ordinal and cardinal ranking approaches. With a
thorough inquiry methodology never before used, we examine automatic multi-criteria
weight-generating algorithms in this article. The methods tested include traditional rank-
based models such as rank sum (RS), rank reciprocal (RR), and rank order centroid (ROC),
alongside newer approaches like the sum reciprocal (SR) and cardinal sum reciprocal (CSR).
The results show that the SR approach for the ordinal case and the CSR method for the
cardinal case perform better in terms of robustness than other methods, even including the
promising new geometric class of methods. It is also shown that linear programming (LP)
performs poorly when compared to surrogate weight models. Additionally, as expected,
the cardinal models perform better than the ordinal models. Unexpectedly, though, the
well-established LP model’s performance is worse than previously thought.

Keywords: multi-criteria decision analysis; criteria weights; surrogate weights; criteria
ranking; rank order; efficient weight generation

1. Introduction
Multi-criteria decision analysis (MCDA) constitutes a subfield of decision analysis.

Within MCDA, multi-attribute value theory (MAVT), and its probabilistic counterpart
multi-attribute utility theory (MAUT), stands as a principal methodology for quantify-
ing outcomes [1]. Among the various models in MAVT, the additive model is the most
prevalently employed [2], whereby the resultant (weighted) value is derived according to
Equation (1). An alternative approach, though much less common, involves a multiplicative
model, as outlined, for instance, in [3]. This research assesses the outcomes by applying the
additive model, wherein the utility of each alternative is quantified using the equation

V(a) =
n

∑
i=1

wivi(a) (1)
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With this equation, the overall sum V(a) for each alternative can be determined by the
sum of the products wi and vi over all indices i, i.e., the criteria weights and the attribute
values. Finally, using this additive model, the alternative that results in the largest value
is chosen.

The absence of quantitatively precise data regarding the weights of criteria in a
decision-making context presents a challenge in evaluating numerous MCDA models,
particularly when a larger set of criteria must be considered [3]. A variety of specialised
models have been introduced in the literature, such as second-order techniques [4] and
modifications to traditional decision rules [5,6]. Other models focus on ROC methods
or preference intensities [7–9]. Decision-makers are typically unable to provide exact nu-
merical values for the criteria weights, instead relying on ordinal information (a simple
ranking) or preference intensity (a ranking with varying distances between elements).
Several approaches have been developed to address these conditions. The first involves
the use of automatically generated weights (commonly referred to as surrogate weights),
and the second entails the application of dominance intensity measures. Moreover, various
methods for eliciting criteria weights exist, including one based on point distribution the-
ory and another grounded in the principle of direct rating, as detailed in Section 2. These
two distinct methodologies yield criteria weights with differing levels of flexibility. The
literature documents various model performances for surrogate weights, contingent on
the degree of freedom allowed. This article focuses on surrogate weight methods and
preference strength methods.

The current state of research in the area of weight elicitation methods is well described
in [10]. In the literature, the performance of different weight generation methods has been
compared before. The comparison of preference strength methods (described below) can be
found, for example, in [11]. Newer methods have been developed for ordinal information
in recent time, for example, IROC [12] or ROL [13]. A recent article on the selection of
appropriate weighting methods is [14].

Also, in the case where more than only ordinal information is available, newer methods
have been developed, for example, FUCOM [15], LBWA [16], and DIBR [17,18] methods.
Each of these three methods consists of several steps. The first step is always an ordinal
ranking of the criteria. Then, the next steps require more information from the user.
However, since these additional steps either expand the ordinal approach or differ from
the cardinal ranking approach as implemented in this study, we exclude them from this
article. Nevertheless, a comparison using a more general framework seems interesting and
possible in the future.

Furthermore, for weight elicitation, objective methods have been developed, for
example, WENSLO [19], LOPCOW [20,21], CRITIC [22] and D-CRITIC [23]. These objective
methods do not take individual preferences into account. On the contrary, the surrogate
weight methods studied in this article take the subjective preference of the decision-maker
into account, represented by using the assumption of true inner weights. This approach
explicitly assumes the existence of individual preferences. In this study, we exclude the
comparison with objective methods since the focus is on the comparison based on the
true inner weights approach. However, a more general comparison of weight elicitation
methods, taking objective methods into account, could offer new insights, especially if
there are larger deviations between these different approaches.

To the authors’ knowledge, a comparison of this nature has never been carried out
for linear programming (LP) models. In this study, robustness—the behaviour of models
independent of various degrees of freedom—is also examined. To sum up, the article’s
main contributions are as follows:
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# A thorough investigation of the efficacy of the most commonly used surrogate weights,
their advantages and disadvantages.

# The introduction and assessment of a new class of weight methods (geomet-
ric/multiplicative).

# Contrasting and measuring linear programming with surrogate weight methods
# Measurements of the effects of weight filters contra pure (original) weights on performance.

This article is organised as follows: Section 2 contains a presentation of the surrogate
methods included in the study. This is followed by the simulation results in Section 2 and a
discussion in Section 4. The article finishes with a conclusion in Section 5.

2. Methods
Decision-makers (DMs) often lack knowledge of the precise criteria weights or prefer

not to use them directly. Several methods have been developed to address those scenarios.
One such technique involves the use of automatically generated surrogate weights, which
can be applied when only the ranking of criteria weights is known but their exact values are
not. The outcome of the additive model can be determined through the application of these
automatically produced weight approaches, which transform the imprecise information
provided by the DM into surrogate weights that reflect the DM’s judgments regarding the
decision context [24–28].

Ordinal ranking and preference-strength ranking are fundamental concepts within the
domain of surrogate weights, with preference strength representing an advancement of the
ordinal approach. In ordinal ranking, criteria weights are ordered based on their perceived
importance to the DM, but the relative distances (or differences in importance) between
the weights are not considered. The preference strength method, however, incorporates
information regarding the relative importance of the criteria weights, complementing
the ranking with an indication of the strength of preference, such as criterion 1 being
considerably more important than criterion 2, criterion 2 being slightly more important
than criterion 3, and so on.

In this article, the following classic automatic (surrogate) generation methods are
considered: rank sum weights (RS) [29], rank reciprocal weights (RR) [29], and centroid
(ROC) weights [30]. They are compared to the more modern sum reciprocal weights [11],
from the same family of methods, to geometric methods, and, to the authors’ knowledge
for the first time, to the class of LP methods.

2.1. Ordinal Ranking

Many different surrogate weight methods have been developed over time. Well-
studied methods include the rank sum (RS), rank reciprocal (RR), and the rank order
centroid (ROC). In the presentations, N stands for the number of weights where each
weight variable wi is subject to Σwi = 1 and 0 ≤ wi.

For RS, the weights are given by Equation (2)

wRS
i =

N + 1 − i

∑N
j=i (N + 1 − j)

(2)

For RR, the weights are assigned based on Equation (3)

wRR
i =

1/i

∑N
j=i 1/j

(3)



Electronics 2025, 14, 1237 4 of 24

ROC is a function based on the average of the corners in the polytope defined by the
simplex Sw = w1 > w2 > . . . > wN, Σwi = 1, and 0 ≤ wi, where wi are variables representing
the criteria weights. The ROC weights are then given by Equation (4)

wROC
i = 1/N

N

∑
j=i

1
j

(4)

for the ranking number i among N items to rank [30]. The sum reciprocal (also known as
sum rank) (SR) method was proposed in [11]. It is a linear combination of the RS and RR
methods to reduce the extreme behaviours of both methods. The SR method allocates the
weights according to the formula in Equation (5)

wSR
i =

1/i + N+1−i
N

∑N
j=1 (1/j + N+1−j

N )
, i = 1, . . . , N; ∑ wi = 1; 0 ≤ wi. (5)

Additionally, we investigate the geometric sum (GS) method, which reflects the rank order
multiplicatively in the numeric weights. As shown in its formula below, GS contains the
parameter s. This article measures different levels of s and their performance. For the
geometric sum method, the formula to assign the criteria weights is Equation (6)

wGS
i =

s(i−1)

∑N
j=1 s(j−1)

, 0 < s < 1 (6)

In this article, we also study the behaviour for s > 1 since it has not been considered before,
according to a literature study by the authors. We direct readers to [24–30] for a more
thorough examination of the traditional ordinal approaches because much has already been
written about them.

2.2. Cardinal Ranking

The idea of preference strength (cardinal ranking) is a refinement of ordinal ranking
techniques. By this notion, it is used to provide more details about the reliability of the
rankings between each criterion. The degree of preference can be seen by comparing the
relative weights of the various criteria. Four alternative preference strengths, ranging
from “equally important” to “much more important”, are used by [1]. Since the range
of evaluations is continuous and a DM does not know its exact inner assessments, this
research study takes a different method since the condition of “equally important” is less
likely to occur.

Assigning preference strength information to a weight scale results in a total number
Q of scale positions and position p(i) for each criterion i. Here, position 1 corresponds to
the most important position (leftmost), and position Q corresponds to the least important
position (rightmost). Using this approach, the ordinal methods RS, RR, ROC, SR, and GS
are transformed into their cardinal counterparts, resulting in the CRS, Equation (7), CRR,
Equation (8), CRC, Equation (9), CSR, Equation (10), and CGS, Equation (11), methods. The
formulas for the methods are as follows:

wCRS
i =

Q + 1 − p(i)

∑N
j=1 Q + 1 − p(j)

(7)

wCRR
i =

1/p(i)

∑N
j=1(1/p(j))

(8)
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wCRC
i =

∑Q
j=p(i) (1/j)

∑N
k=1 (∑

Q
j=p(k) (1/j))

(9)

wCSR
i =

1/p(i) + Q+1−p(i)
Q

∑N
j=1 (1/p(j) + Q+1−p(j)

Q )
(10)

wCGS
i =

s(p(i)−1)

∑N
j=1 s(p(j)−1)

, for 0 < s < 1 (11)

where, as above, Q is the total number of scale positions and p(i) is the particular position of
criterion i. Analogously to other ordinal methods, GS can be reframed as a cardinal method
(CGS) using a similar approach. It should be noted that the definition of cardinal weights
differs from that in [31]. In this article, the cardinal extension to ordinal methods is made
by allowing the number of steps p(i) − p(i − 1) to be from one (the ordinal case) to many,
while in [31], p(i) = p(i − 1) is also allowed.

2.3. LP for MCDA

Linear programming (LP) provides an alternative approach for identifying optima
across various problems. Given that Equation (1) can be interpreted as a maximisation
problem, it is worth investigating whether LP techniques are effective for managing such
imprecise information. In LP, an objective function serves as the target to be maximised.
This objective function contains variables, which, in this case, are the criteria weights.
The ordinal ranking can be replicated by appropriately formulating the constraints of the
LP problem.

The LP formulation for MCDA can be structured in a manner that makes it comparable
to surrogate weight methods in terms of handling imprecise information. In this study,
the R package lpSolve (version 5.6.23) was utilised to implement the LP methods via R
scripts. In an LP-based MCDA approach, the weights are treated as the decision variables.
Let w1, w2, . . ., wN be the weight variables, sorted in descending weight order. Then, the
constraints of the LP problem can be rewritten as follows in Equation system (12):

w1 − w2 ≥ 0
w2 − w3 ≥ 0

. . .
wN−1 − wN ≥ 0

(12)

Because well-behaved pseudo-random numbers with long periods are used in the
procedure, sampling the same weights is highly unlikely. Hence, there is no practical
difference in using either ≥ or >. Let j = 1, . . ., m be an alternative’s number. Then, for each
alternative j, the objective function can be written as Equation (13)

Max∑n
i=1 wivi

(
aj
)
. (13)

Next, the maximum value of each alternative is determined, and the alternative with
the highest maximum value is selected as the winning alternative. Finally, the hit ratios can
be compared for both LP and the surrogate weight methods.

In order to try to improve the performance, an adjustment is also made to the minimum
distances. Therefore, a large set of weight vector samples is generated for each generator.
These weight vectors are ordered, and then the means of the ordered weights are calculated.
This results in a vector of mean ordered weights. Based on these vectors, the average
distance between the different ordered weights (e.g., the largest to the second largest, the
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second largest to the third largest, etc.) can be used as the minimum distance for the
above-mentioned constraints, i.e., Equation system (14)

w1 − w2 ≥ mean(w1)− mean(w2)

w2 − w3 ≥ mean(w2)− mean(w3)

. . .
wN−1 − wN ≥ mean(wN−1)− mean(wN)

(14)

2.4. Weight Elicitation

Several methods exist for eliciting the weights. Two primary approaches employed in
this article are point scoring and direct rating. The point allocation (PA) mechanism used
in the scoring-points scenario is based on [32]. In PA, each criterion is assigned a specific
number of points from a pre-determined total (such as 100 or 1000). Consequently, each
criterion is allocated a point value, with higher values corresponding to greater weights.
The total point sum represents the sum of all allocated points. The points for the final
weight are determined by the points assigned to the preceding weights since the total point
sum for N weights is fixed. Thus, the PA method provides N − 1 degrees of freedom (DoF).
In contrast, direct rating (DR) allows each criterion to be assigned arbitrary points or other
metrics. These points are subsequently normalised into weights by dividing each point
total by the overall sum of points. As a result, DR affords N degrees of freedom, as the
weights of all criteria sum to 1 and are independent. Experiments using various DoFs are
compared in the tables in Section 3.

2.5. Modelling Workflow

In the following, the general modelling workflow is described. This workflow includes
both surrogate weight methods and LP. In the beginning, the general simulation settings are
determined: the seed, the number of runs, the number of criteria, the number of alternatives,
the number of scenarios, and vectors containing parameters.

Two number generators are employed in the simulations:

(a) This generator is used if only ordinal information is available. In order to simulate
the weight for ordinal information, a mix of an N-generator and an N–1-generator
is applied. The composition of the mix depends on the corresponding s vector’s
value (evaluation via a for-loop). Therefore, for the N-generator, n independent
values are sampled using a uniform distribution with normalisation of the generated
independent values. On the other hand, a Dirichlet distribution is used for the N–1-
generator. This is accomplished by using the rdirichlet function from the R gtools
package (version 3.9.5).

(b) This generator is employed when preference strength information is available. To
simulate the weights for the preference strength data, the same procedure as in (a) is
applied, but using Q criteria positions instead of N criteria, where Q > N. Subsequently,
a ranked matrix is derived from the mix matrix, resulting in a matrix that assigns the
Q weights to each row in descending order. A type matrix is then calculated from
the ranked matrix. This type matrix categorises each value of the ranked matrix into
one of two types. Either an entry is assigned the value wi or an entry is assigned the
value pi. Both the first and last entries of each row are always wis; for the other wis,
random sampling without replacement is applied. The coding is as follows: wis are
mapped to 1, whereas pis are mapped to 0. After that, the ranked matrix is multiplied
row-wise by the type of the matrix’s corresponding row.
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In the final step, a normalisation is applied to the weights wi and the original ranks
(with a range of 1 to Q) are recorded. Information on the original ranks is needed to
calculate the surrogate weight.

The simulation is run a large number of times until the results converge. For each
run, we compare whether each method has the same best alternative as the best alternative
using the true weights. In case of a match, a hit (1) is recorded. If no match is obtained,
then 0 is recorded as the result, meaning no hit. The hit ratio is calculated as the number of
hits for each method divided by the overall number of simulations.

2.6. Filtering

Criticisms have been raised against unrestricted simulation methods, highlighting
the occurrence of “unnatural” weight distributions within the weight vectors. This un-
naturalness manifests when weights vary excessively from one another [31]. The primary
solution proposed is to apply filters to weight vectors that appear unnatural in some way.
In [33], a filter of 0.2 is implemented, meaning that if the difference between the largest and
second-largest weights exceeds 0.2, the weight vector is resampled. The filter approach
used in this study differs from that in [31], where weight vectors are discarded when a
weight component falls outside predefined thresholds. In addition to the 0.2 filter from [33],
filters of 0.1, 0.3, and 0.4 are applied in this study, in line with [34], which extends the work
in [35].

2.7. Variations in Results

Often, in the literature, only one value per hit ratio is given. However, variations in the
results occur depending on the chosen seed for the random number generation. We study
the variations resulting from this effect for a selection of surrogate weight methods with
different criteria/alternative combinations and different DoF. Thus, we use 10 different
random seeds for this approach and calculate a mean hit ratio for each aforementioned
combination. Additionally, we also studied the effect of filters on the variation in the results.

3. Results
In this study, the software used for the simulations was R, which is an open-source

statistical software. This section presents the results from the simulations. It compares the
performance of the studied surrogate weight techniques. The evaluation focuses on the
robustness of these methods across different degrees of freedom (DoF), which represent
natural variations in the decision-makers’ behaviours. The tables and graphs highlight how
the methods perform under various conditions and provide insights into their reliability
for a variety of usage scenarios. Throughout the article, the best-performing methods in
each category are marked in green.

3.1. Determining the Parameter s for GS and CGS

Although the simulations were run for many combinations of criteria and alternatives,
we show the representative combination of three, six, and nine criteria and three, six, and
nine alternatives for these weight methods. Tables 1–3 compare the GS and CGS methods
for different s parameters with the established methods SR and CSR. The DoF split columns
show the mean of the hit ratios over different distributions of DoF. This gives information
about the robustness of the studied methods. The higher the mean, the better the method is
regarding robustness. A split of 1.0 means that only the N-generator was used, whereas a
split of 0.0 corresponds to using only the N–1-generator.
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Table 1. Comparing the GS and CGS methods for 3 criteria and 3 alternatives.

DoF Split DoF Split

s Method 0.0 0.5 1.0 s Method 0.0 0.5 1.0

0 GS 86.8 80.2 77.7 0 CGS 86.8 80.2 77.7

0.1 GS 89.7 84.4 82.1 0.1 CGS 87.4 80.9 78.4

0.2 GS 92.0 87.4 84.7 0.2 CGS 88.4 81.4 79.0

0.3 GS 92.0 89.1 87.7 0.3 CGS 89.0 82.8 80.0

0.4 GS 90.9 89.0 88.8 0.4 CGS 90.3 84.1 81.4

0.5 GS 88.4 87.4 88.4 0.5 CGS 91.8 86.1 83.2

0.6 GS 84.3 83.1 86.5 0.6 CGS 93.6 88.7 85.8

0.7 GS 78.2 79.9 83.6 0.7 CGS 95.1 92.0 89.6

0.75 GS 75.8 77.9 81.7 0.75 CGS 94.8 92.5 91.5

0.8 GS 72.6 76.2 79.5 0.8 CGS 92.7 91.4 92.5

0.9 GS 69.3 73.0 75.0 0.9 CGS 82.4 82.9 86.5

1 GS 65.7 70.0 71.7 1 CGS 65.7 70.0 71.7

1.25 GS 58.4 63.3 63.6 1.25 CGS 39.8 46.4 47.8

1.5 GS 51.4 57.6 57.8 1.5 CGS 35.1 39.1 41.5

2 GS 42.7 50.9 52.1 2 CGS 34.2 35.8 38.1

2.5 GS 40.1 46.9 48.7 2.5 CGS 34.6 35.2 37.8

5 GS 36.7 38.8 40.7 5 CGS 34.7 34.5 37.3

SR 85.8 84.0 87.3 SR 85.8 84.0 87.3

CSR 94.4 92.4 92.0 CSR 94.4 92.4 92.0

Table 2. Comparing the GS and CGS methods for 6 criteria and 6 alternatives.

DoF Split DoF Split

s Method 0.0 0.5 1.0 s Method 0.0 0.5 1.0

0 GS 59.2 49.5 46.7 0 CGS 59.2 49.5 46.7

0.1 GS 66.5 55.9 51.6 0.1 CGS 61.3 51.5 47.9

0.2 GS 72.6 62.4 56.9 0.2 CGS 63.2 53.3 49.1

0.3 GS 78.4 69.1 62.5 0.3 CGS 65.5 55.5 50.8

0.4 GS 83.1 74.7 68.7 0.4 CGS 68.4 57.8 52.8

0.5 GS 85.7 79.6 75.4 0.5 CGS 71.6 61.0 55.5

0.6 GS 84.7 82.9 81.8 0.6 CGS 76.4 65.8 59.3

0.7 GS 79.5 81.8 85.1 0.7 CGS 82.6 72.7 65.0

0.75 GS 75.9 79.1 84.4 0.75 CGS 86.5 77.1 69.4

0.8 GS 72.2 75.6 81.8 0.8 CGS 89.7 82.1 75.3

0.9 GS 63.0 66.4 73.3 0.9 CGS 81.4 84.8 89.0

1 GS 53.9 59.5 62.5 1 CGS 53.9 59.5 62.5

1.25 GS 39.2 43.9 43.1 1.25 CGS 25.3 23.8 24.2

1.5 GS 32.4 33.8 33.5 1.5 CGS 22.1 19.6 20.6

2 GS 26.4 25.5 25.7 2 CGS 20.5 18.0 19.5

2.5 GS 24.2 22.4 22.6 2.5 CGS 20.2 17.5 19.2

5 GS 21.6 18.6 19.9 5 CGS 20.2 17.2 19.1

SR 78.9 81.2 85.2 SR 78.9 81.2 85.2

CSR 88.4 86.2 84.7 CSR 88.4 86.2 84.7
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Table 3. Comparing the GS and CGS methods for 9 criteria and 9 alternatives.

DoF Split DoF Split

s Method 0.0 0.5 1.0 s Method 0.0 0.5 1.0

0 GS 45.6 36.6 30.8 0 CGS 45.6 36.6 30.8

0.1 GS 52.5 43.1 35.4 0.1 CGS 47.6 38.6 32.1

0.2 GS 59.7 49.1 40.6 0.2 CGS 50.0 40.6 33.5

0.3 GS 65.5 54.9 45.5 0.3 CGS 52.3 42.7 34.9

0.4 GS 72.1 60.9 51.4 0.4 CGS 55.3 45.1 36.5

0.5 GS 78.0 67.6 58.4 0.5 CGS 59.0 48.3 39.2

0.6 GS 82.2 74.1 67.2 0.6 CGS 63.6 52.8 42.8

0.7 GS 82.5 79.3 77.7 0.7 CGS 70.5 59.2 48.9

0.75 GS 79.5 80.0 82.2 0.8 CGS 81.0 69.6 59.7

0.8 GS 73.8 77.8 84.2 0.9 CGS 85.9 82.3 80.7

0.9 GS 60.7 65.5 74.7 1 CGS 47.0 48.6 59.1

1 GS 47.0 48.6 59.1 1.25 CGS 15.9 12.2 16.3

1.25 GS 27.9 23.7 32.9 1.5 CGS 13.9 10.6 13.5

1.5 GS 20.7 16.2 23.4 2 CGS 13.5 10.2 12.3

2 GS 16.3 12.3 16.8 2.5 CGS 13.3 10.1 12.1

2.5 GS 15.0 11.1 15.0 5 CGS 13.2 10.1 11.7

5 GS 13.8 10.2 12.8 0.75 CGS 75.0 64.0 53.2

SR 76.3 78.8 83.6 SR 76.3 78.8 83.6

CSR 84.9 82.5 81.4 CSR 84.9 82.5 81.4

GS performs best for s-values between 0.7 and 0.8 using ordinal information only.
Also, taking preference strength information into account, CGS performs best for an s-value
of 0.9. Up to an s-value of 0.7, the geometric sum method performs better for N–1 DoF.
For larger values of s, the performance of the geometric sum method is better for N DoF.
CGS performs better for N–1 DoF for all values for the parameter s. Again, values of 1 and
larger for the parameter s clearly decrease the hit ratios. For further studies, a value of
0.75 was chosen for s. It has to be noted that this is supposed to be a representative choice
for this study, but other values are not unreasonable to choose. Depending on the setting,
other values might result in better hit ratios. However, 0.75 seems to be a good choice for
general comparisons.

3.2. General Comparison of Methods

Having found the best numbers for the s parameter, we next compare GS and CGS
to a larger set of well-known and well-performing methods. In Tables 4–7, the DoF split
columns show the mean of the hit ratios over the DoF split. The STDEV column additionally
shows the standard deviations of the hit ratios over the N-/N–1-split (calculated for a range
between 0 and 1 in steps of 0.1). Both measures provide information about the robustness
of the studied methods. The higher the mean and the smaller the standard deviation, the
better the method is in terms of robustness. As before, a split of 1.0 means that only the
N-generator was used, while a split of 0.0 corresponds to using only the N–1-generator.
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Table 4. Comparing GS and CGS with established methods for 3 criteria and 3 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 90.2 87.9 88.9 88.2 90.0 90.0 89.3 88.8 87.5 90.3 90.7 89.3 1.0

RS 83.6 81.3 83.3 83.4 85.7 86.7 84.9 84.9 83.9 88.4 87.5 84.9 2.0

RR 85.7 83.0 86.1 84.8 86.3 86.8 85.8 85.1 84.0 87.8 88.4 85.8 1.5

SR 85.8 81.8 84.9 84.2 86.3 86.9 85.4 85.4 84.2 88.5 88.3 85.6 1.8

GS 75.8 75.5 78.1 75.0 79.2 81.5 79.4 77.8 76.6 81.3 82.1 78.4 2.4

CRS 91.2 89.9 91.1 91.2 92.7 93.2 92.8 93.2 93.1 94.2 94.8 92.5 1.4

CRR 93.6 92.3 92.1 90.7 91.1 91.2 89.6 88.5 87.3 88.8 88.4 90.3 1.9

CRC 95.2 94.3 93.7 93.3 93.1 92.7 91.8 91.1 90.1 90.8 89.7 92.3 1.7

CSR 94.4 92.3 92.9 92.8 93.2 93.5 92.7 92.2 91.7 92.6 93.1 92.9 0.7

CGS 94.8 93.2 93.3 93.3 93.5 93.4 92.8 91.9 91.4 92.4 92.3 92.9 0.9

Table 5. Comparing GS and CGS with established methods for 6 criteria and 6 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 84.3 82.9 83.9 83.7 83.3 82.6 82.8 82.9 83.5 83.1 82.5 83.2 0.5

RS 73.9 74.0 76.4 77.7 78.4 78.9 80.5 81.8 83.5 84.0 86.0 79.6 3.8

RR 81.9 80.2 81.4 80.2 80.5 79.7 79.7 79.1 80.3 79.5 78.9 80.1 0.9

SR 78.9 77.7 80.0 80.0 80.8 80.5 81.8 82.8 83.9 83.8 85.1 81.4 2.2

GS 75.9 74.7 77.1 77.6 78.9 78.3 79.9 81.2 82.7 82.3 84.2 79.4 2.9

CRS 78.3 79.9 81.2 83.4 84.2 85.1 87.1 88.8 90.0 91.2 92.6 85.6 4.5

CRR 83.7 81.0 79.7 77.9 76.3 74.5 73.3 70.8 70.3 67.8 65.4 74.6 5.5

CRC 91.0 89.4 88.6 87.4 85.2 83.9 83.0 81.1 81.0 79.0 77.0 84.2 4.3

CSR 88.4 87.4 87.6 87.1 86.8 85.8 86.0 85.4 85.9 85.1 84.4 86.3 1.2

CGS 86.5 83.9 82.8 81.1 79.3 77.7 76.2 74.3 73.1 70.9 68.5 77.7 5.4

Table 6. Comparing GS and CGS with established methods for 9 criteria and 9 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 82.6 81.2 81.2 80.7 81.4 79.8 80.5 80.2 79.6 78.2 78.6 80.4 1.2

RS 69.3 69.7 71.9 73.9 76.1 76.7 79.6 82.1 83.4 84.0 85.8 77.5 5.6

RR 81.2 78.6 78.5 77.1 76.9 75.4 75.1 74.6 73.8 71.0 70.6 75.7 3.1

SR 76.3 76.2 77.4 78.3 79.5 79.0 80.5 82.0 82.1 82.1 83.0 79.7 2.3

GS 79.5 78.6 79.5 79.6 80.7 80.1 81.0 82.2 81.9 80.8 82.1 80.5 1.1

CRS 73.0 73.9 75.9 79.0 81.0 81.5 85.0 86.8 88.9 90.0 92.7 82.5 6.4

CRR 75.4 71.4 71.5 69.1 67.0 63.8 62.9 60.4 58.8 55.3 54.6 64.6 6.6

CRC 89.4 86.3 85.5 84.6 82.7 80.2 79.2 77.5 76.2 73.1 72.3 80.6 5.3

CSR 84.9 84.0 83.8 83.9 83.8 82.9 83.2 83.0 82.6 80.6 81.4 83.1 1.2

CGS 75.0 71.8 70.6 69.4 66.7 63.2 62.1 59.9 57.8 54.3 53.9 64.1 6.9



Electronics 2025, 14, 1237 11 of 24

Table 7. Comparing GS and CGS with established methods for 12 criteria and 12 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 82.6 81.3 81.5 79.8 79.3 79.2 77.0 77.0 77.4 75.3 75.6 78.7 2.3

RS 67.3 67.9 71.1 71.6 73.9 76.4 77.8 80.9 82.8 84.3 87.1 76.5 6.4

RR 80.7 77.1 77.2 75.2 73.1 72.2 69.4 68.5 68.4 64.8 65.5 72.0 4.9

SR 76.0 76.1 77.4 77.2 78.3 78.7 78.6 80.1 81.2 80.5 82.7 78.8 2.0

GS 82.0 80.7 80.7 78.8 78.3 78.0 75.8 75.4 75.5 73.7 73.7 77.5 2.7

CRS 70.4 71.3 74.5 75.7 78.6 80.9 82.5 85.8 88.0 90.1 93.0 81.0 7.3

CRR 69.8 65.7 64.5 61.8 59.9 58.2 54.9 53.4 51.3 47.6 47.4 57.7 7.1

CRC 89.2 86.6 85.1 82.5 80.4 78.8 76.1 74.4 73.3 69.6 69.1 78.6 6.5

CSR 83.1 82.6 83.0 81.8 81.7 81.2 79.9 80.1 80.9 79.0 79.7 81.2 1.3

CGS 66.2 62.6 61.0 58.3 56.5 54.5 52.2 49.9 47.2 44.3 43.7 54.2 7.2

For ordinal methods, it can be seen that ROC performs best for a smaller number of
criteria (three and six) and GS best for nine criteria. For preference strength methods and
also overall, CSR shows the best robustness of all methods, measured by a high mean hit
ratio over all DoF splits and a very low standard deviation over all DoF splits. Both high
performance (mean) and robustness (standard deviations) are important to consider when
evaluating various surrogate weight methods.

3.3. Comparison with LP

Next, we compare the LP approach with the same established methods. The informa-
tion in Tables 8–11 is the same as in the tables above. In order to evaluate the performance
of LP, some ordinal methods are included for reference.

Table 8. Comparing LP with established methods for 3 criteria and 3 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 91.0 89.7 89.4 89.9 89.2 87.2 88.9 89.8 87.7 88.6 87.5 89.0 1.1

RS 88.6 88.3 88.2 89.4 88.9 87.8 89.5 90.3 89.6 90.0 90.1 89.2 0.8

RR 89.4 89.4 88.4 89.4 88.9 87.6 88.7 89.6 89.1 89.0 88.6 88.9 0.6

SR 89.5 89.2 88.8 89.8 89.0 87.9 89.6 90.1 89.6 90.0 89.5 89.4 0.6

LP 34.6 39.9 35.7 31.8 40.4 32.0 30.6 32.2 33.3 30.4 32.7 33.9 3.3

Table 9. Comparing LP with established methods for 6 criteria and 6 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 85.1 84.8 84.6 82.8 81.6 82.5 80.8 80.5 80.1 80.2 81.0 82.2 1.8

RS 81.1 81.8 82.0 82.0 80.9 83.2 83.7 83.9 85.4 86.8 88.2 83.5 2.3

RR 82.4 82.4 82.6 80.1 78.6 80.3 78.4 78.5 78.1 78.2 79.3 79.9 1.7

SR 83.7 84.4 83.7 83.1 82.0 83.8 83.5 83.2 84.5 84.9 86.0 83.9 1.0

LP 13.0 16.7 13.9 18.4 13.4 14.7 16.9 15.3 16.1 20.5 14.3 15.7 2.2
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Table 10. Comparing LP with established methods for 9 criteria and 9 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 84.3 82.7 83.2 81.2 81.3 80.3 78.4 79.4 77.9 78.3 75.1 80.2 2.6

RS 76.7 75.8 78.1 79.2 81.2 81.5 82.2 84.2 84.9 86.9 86.3 81.5 3.6

RR 79.6 77.8 78.9 76.4 76.2 74.9 73.6 73.8 71.5 72.6 69.0 74.9 3.1

SR 81.4 81.0 82.0 81.3 82.9 82.5 82.2 83.7 82.6 84.3 81.9 82.3 1.0

LP 12.8 9.5 12.7 9.1 10.9 14.5 12.1 10.6 12.1 10.3 10.8 11.4 1.5

Table 11. Comparing LP with established methods for 12 criteria and 12 alternatives.

DoF Split

Method 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Mean STDEV

ROC 83.2 83.3 81.1 81.3 80.2 77.1 78.1 77.1 76.1 74.3 72.7 78.6 3.3

RS 72.6 74.1 76.2 78.0 79.7 79.6 82.1 83.3 85.0 85.2 87.7 80.3 4.6

RR 76.8 75.8 73.9 73.6 72.6 68.0 69.5 68.2 66.8 64.1 62.4 70.1 4.5

SR 80.0 80.4 80.4 81.5 81.6 79.7 81.5 82.0 82.2 80.9 81.3 81.0 0.8

LP 7.8 8.5 7.9 8.6 7.6 7.9 8.5 8.4 9.4 8.4 9.6 8.4 0.6

It can be seen that LP performs the worst of all methods by a wide margin. The
disappointing performance of LP is due to the fact that the criteria weights of the DM
determine the maximum utility, together with the alternative values. In this situation, the
pure ordinal constraints on the criteria weights do not map favourably. Further study is
needed to determine whether this disadvantage can be circumvented.

Next, the differences in the mean ordered weights are applied to the constraints
(Tables 12–14). Therefore, the mean ordered weight vectors are determined. Using
1 million samples results in the following vectors.

This is in accordance with [11], showing that the mean ordered weight vectors resulting
from an N–1-generator are more extreme than those from an N-generator. We can also see
that the differences between the mean ordered weights are quite similar for N DoF.

Table 12. Mean ordered weight vectors for 3, 6, and 9 criteria.

w1 w2 w3

N 0.52 0.32 0.15

N-1 0.61 0.28 0.11

w1 w2 w3 w4 w5 w6

N 0.30 0.24 0.19 0.14 0.09 0.04

N-1 0.41 0.24 0.16 0.10 0.06 0.03

w1 w2 w3 w4 w5 w6 w7 w8 w9

N 0.21 0.18 0.16 0.13 0.11 0.09 0.06 0.04 0.02

N-1 0.31 0.20 0.15 0.11 0.08 0.06 0.04 0.03 0.01
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Table 13. Differences between mean ordered weight vectors for 3, 6, and 9 criteria.

w1–w2 w2–w3

N 0.20 0.17

N-1 0.33 0.17

w1–w2 w2–w3 w3–w4 w4–w5 w5–w6

N 0.06 0.05 0.05 0.05 0.05

N-1 0.17 0.08 0.06 0.04 0.03

w1–w2 w2–w3 w3–w4 w4–w5 w5–w6 w6–w7 w7–w8 w8–w9

N 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02

N-1 0.11 0.06 0.04 0.03 0.02 0.02 0.02 0.01

Table 14. Comparing distance-adjusted LP with established methods for 3 criteria and 3 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 89.5 89.5 89.3 89.4 88.5 88.6 89.3 88.2 87.7 87.9 86.7 88.6 0.9

RS 87.9 88.2 88.7 88.9 88.3 88.8 89.4 89.7 89.0 89.6 89.0 88.9 0.6

RR 88.0 88.5 88.9 89.1 88.3 88.9 89.1 88.8 88.5 88.6 88.2 88.6 0.3

SR 88.3 88.5 89.3 89.4 88.3 89.0 89.6 89.5 89.1 89.3 89.0 89.0 0.4

LP 34.2 33.3 33.4 33.2 34.5 34.5 32.3 36.0 32.6 32.7 35.3 33.8 1.1

We studied the 3/3, 6/6, and 9/9 combinations. However, we were not able to increase
the performance of the LP method systematically. The changes are so small that it is unclear
whether they are due to method changes or random variations. In Table 14, there are
some variations for all methods compared to Table 8. We discuss the general influence of
variation in the random seeds in Section 3.5.

Nevertheless, calculating the mean ordered weights gave useful insights for an ap-
proximation for the alternative maximum hit ratio, introduced by [34]. There, after running
many simulations with stepwise changes in the surrogate weights, the mean ordered
weights were often close to the winning weight vectors.

3.4. Applying Filters

Again, the terminology in Tables 15–18 is the same as before. The ordinal methods
are in the upper part of the tables, whereas the preference strength methods are in the
lower part.

As in the general comparison, ROC performs best for the ordinal methods with a
lower number of criteria, whereas SR generally performs best with an increasing number
of criteria. For preference strength methods, CSR clearly performs best, with some other
methods being equally good in certain instances but not systematically. Generally, it is
understandable that CSR, as the best preference strength method, outperforms the ordinal
methods since more information is incorporated into this method. Nevertheless, it is
interesting to note that some preference strength methods sometimes perform worse than
their ordinal counterparts. Thus, it can be seen that more information does not necessarily
always yield better results.
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Table 15. Applying filters to the simulations for 3 criteria and 3 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 90.1 88.7 88.8 88.5 90.1 90.3 90.2 89.3 88.0 90.7 90.8 89.6 0.9

RS 84.1 82.2 83.8 83.8 86.5 87.6 85.5 85.4 84.6 88.5 87.6 85.4 1.9

RR 86.2 83.9 86.1 85.2 86.6 87.2 86.4 85.5 84.6 88.1 88.4 86.2 1.3

SR 86.2 82.8 85.0 84.7 87.0 87.3 86.0 85.8 84.9 88.8 88.3 86.1 1.7

GS 76.4 76.2 78.3 75.5 80.2 82.3 79.9 78.5 77.2 81.5 82.1 78.9 2.3

CRS 92.4 91.3 92.0 92.1 93.3 93.8 93.9 93.5 93.5 94.2 94.9 93.2 1.0

CRR 93.1 92.6 91.4 90.1 91.0 90.6 89.9 88.0 87.2 89.1 88.4 90.1 1.8

CRC 95.4 94.6 93.7 93.0 93.5 92.7 92.3 90.8 89.7 91.2 89.9 92.4 1.8

CSR 95.2 93.5 93.4 92.9 93.6 93.8 93.5 92.3 92.2 93.0 93.1 93.3 0.8

CGS 95.3 94.5 93.7 93.3 93.6 93.6 93.3 91.9 91.5 92.8 92.4 93.3 1.0

Table 16. Applying filters to the simulations for 6 criteria and 6 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 84.0 83.6 83.8 84.2 83.6 82.8 83.3 82.6 83.5 83.2 82.5 83.4 0.5

RS 73.8 74.9 76.7 78.1 79.0 79.7 80.4 81.9 83.9 84.3 86.0 79.9 3.7

RR 81.7 80.8 81.2 80.8 80.7 79.5 79.8 78.7 80.4 79.6 78.9 80.2 0.9

SR 78.8 78.4 79.8 80.8 81.0 81.3 81.9 82.6 84.1 83.8 85.1 81.6 2.1

GS 75.9 75.6 77.3 78.3 79.3 79.0 80.1 81.3 83.0 82.5 84.2 79.7 2.7

CRS 79.0 80.6 81.7 83.8 84.8 85.6 87.4 88.5 90.2 91.5 92.6 86.0 4.3

CRR 82.7 80.3 79.8 77.7 76.1 74.0 73.3 70.4 70.0 67.8 65.4 74.3 5.3

CRC 91.0 89.2 88.2 86.9 85.2 83.7 83.3 80.4 81.0 78.7 77.0 84.1 4.3

CSR 88.0 87.5 87.7 87.2 87.0 86.3 86.4 85.0 85.9 85.3 84.4 86.4 1.1

CGS 85.9 84.1 82.7 80.7 79.5 77.5 76.1 73.6 72.9 70.9 68.5 77.5 5.4

Table 17. Applying filters to the simulations for 9 criteria and 9 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 82.8 81.3 81.2 80.5 81.2 79.6 80.6 80.4 79.6 78.2 78.6 80.3 1.3

RS 69.3 70.0 72.2 74.0 76.1 76.6 79.4 82.1 83.5 84.0 85.8 77.5 5.6

RR 81.4 78.5 78.0 77.0 77.0 75.2 75.1 74.5 73.6 71.0 70.6 75.6 3.1

SR 76.3 76.5 77.4 78.2 79.6 78.9 80.6 82.0 82.1 82.0 83.0 79.7 2.3

GS 79.6 78.8 79.5 79.5 80.6 79.9 81.0 82.2 81.8 80.9 82.1 80.5 1.1

CRS 73.1 74.3 76.3 78.9 81.1 81.4 84.9 86.8 89.0 90.0 92.7 82.6 6.3

CRR 75.5 71.2 70.6 68.8 67.1 63.6 62.7 60.5 58.7 55.2 54.6 64.4 6.5

CRC 89.9 86.5 85.3 84.2 82.6 80.3 79.3 77.4 75.9 73.1 72.3 80.6 5.4

CSR 85.2 84.4 83.8 83.7 83.8 82.6 83.4 83.1 82.6 80.6 81.4 83.1 1.3

CGS 75.0 71.7 70.0 69.1 66.4 63.3 62.2 60.1 57.7 54.3 53.9 64.0 6.8
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Table 18. Applying filters to the simulations for 12 criteria and 12 alternatives.

DoF Split

Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean STDEV

ROC 82.7 81.2 81.4 79.9 79.3 79.2 77.1 77.1 77.4 75.3 75.6 78.8 2.3

RS 67.3 67.9 71.1 71.5 73.9 76.4 77.8 80.9 82.8 84.3 87.1 76.5 6.4

RR 80.8 77.1 77.2 75.2 73.1 72.2 69.4 68.4 68.4 64.8 65.5 72.0 5.0

SR 76.1 76.1 77.4 77.1 78.3 78.7 78.7 80.1 81.2 80.5 82.7 78.8 2.0

GS 82.0 80.7 80.7 78.8 78.3 78.0 75.8 75.4 75.5 73.7 73.7 77.5 2.7

CRS 70.5 71.3 74.7 75.6 78.6 80.9 82.5 85.8 88.0 90.1 93.0 81.0 7.3

CRR 69.8 65.8 64.4 61.7 59.9 58.2 55.0 53.3 51.3 47.6 47.4 57.7 7.1

CRC 89.2 86.5 85.1 82.4 80.4 78.7 76.2 74.5 73.3 69.6 69.1 78.7 6.5

CSR 83.1 82.6 83.1 81.7 81.7 81.2 80.0 80.1 80.9 79.0 79.7 81.2 1.3

CGS 66.4 62.7 60.9 58.4 56.5 54.5 52.2 49.7 47.2 44.3 43.7 54.2 7.2

3.5. Studying the Variation in Hit Ratios

Next, we examine the variation in hit ratios for surrogate weights. To that end, we
use the following three well-established distributions: ROC, SR, and RS. The reasoning
behind selecting these three methods is that ROC performs very well for N–1 DoF and RS
for N DoF, while SR generally performs well regardless of the DoF. In order to study the
variation, we used 10 different random seeds for each setting. Hence, instead of calculating
only one hit ratio from 100,000 decision situations as before, we now calculate 10 hit ratios
for a total of 1,000,000 decision situations and display them as separate dots.

A plot (Figures 1–4) and a table (Tables 19–22) are shown for each number of criteria
and number of alternative combinations. Each plot is divided into three subplots, one for
each studied surrogate weight method. On the X-axis, the different DoF mixes are shown;
on the Y-axis, the mean hit ratios of each of the 10 batches are shown. The tables are divided
into parts showing the means (upper half) and the standard deviations of the means (lower
half) of the 10 batches for each DoF mix. To the right, a column summarising the overall
means and standard deviations, regardless of the DoF, for each method is shown.
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Table 19. Variations in the hit ratio for 3 criteria and 3 alternatives for different DoF.

Dof Split
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 All DoF

mean ROC 90.26 90.04 89.63 89.48 89.11 88.92 88.56 88.14 87.88 87.39 87.27 88.79

RS 88.29 88.29 88.31 88.58 88.52 88.91 88.95 88.89 89.04 89.00 89.34 88.68

SR 89.31 89.30 89.15 89.27 89.13 89.33 89.26 89.09 89.05 88.94 89.11 89.18

stdev ROC 0.23 0.28 0.22 0.22 0.37 0.25 0.29 0.27 0.22 0.33 0.27 1.02

RS 0.34 0.36 0.38 0.30 0.41 0.27 0.29 0.26 0.21 0.28 0.25 0.46

SR 0.34 0.32 0.28 0.24 0.36 0.25 0.29 0.21 0.22 0.29 0.27 0.31

Table 20. Variations in the hit ratio for 6 criteria and 6 alternatives for different DoF.

DoF Split
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 All DoF

mean ROC 84.78 84.45 83.79 83.30 82.79 82.49 82.03 81.43 80.98 80.57 79.93 82.41

RS 79.75 80.68 81.24 82.01 82.70 83.68 84.36 85.07 85.74 86.59 87.22 83.18

SR 83.02 83.38 83.45 83.58 83.71 84.12 84.30 84.43 84.52 84.81 84.89 84.02

stdev ROC 0.16 0.19 0.24 0.19 0.24 0.24 0.18 0.31 0.21 0.37 0.25 1.54

RS 0.21 0.22 0.33 0.26 0.20 0.28 0.18 0.21 0.24 0.33 0.18 2.38

SR 0.21 0.22 0.30 0.20 0.18 0.27 0.19 0.26 0.23 0.36 0.23 0.64

Table 21. Variations in the hit ratio for 9 criteria and 9 alternatives for different DoF.

DoF Split
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 All DoF

mean ROC 83.71 82.95 82.21 81.44 80.84 79.94 79.32 78.45 77.62 76.85 76.20 79.96

RS 75.95 77.15 78.16 79.30 80.56 81.60 82.73 83.83 85.01 86.09 87.32 81.04

SR 81.33 81.58 81.66 81.79 82.17 82.18 82.45 82.47 82.65 82.76 83.03 82.19

stdev ROC 0.17 0.14 0.16 0.21 0.18 0.22 0.20 0.17 0.31 0.26 0.39 2.41

RS 0.18 0.21 0.26 0.18 0.24 0.16 0.18 0.14 0.28 0.21 0.21 3.58

SR 0.17 0.15 0.19 0.20 0.22 0.13 0.20 0.14 0.36 0.25 0.35 0.56

Table 22. Variations in the hit ratio for 12 criteria and 12 alternatives for different DoF.

DoF Split
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 All DoF

mean ROC 83.36 82.52 81.28 80.25 79.35 78.35 77.56 76.30 75.35 74.41 73.55 78.39

RS 73.14 74.78 75.97 77.34 78.96 80.37 81.99 83.23 84.74 86.27 87.68 79.68

SR 80.35 80.64 80.58 80.61 80.90 80.95 81.30 81.16 81.38 81.63 81.75 81.02

stdev ROC 0.16 0.13 0.17 0.17 0.17 0.21 0.14 0.41 0.15 0.28 0.18 3.14

RS 0.21 0.14 0.16 0.27 0.21 0.21 0.19 0.30 0.18 0.15 0.14 4.60

SR 0.15 0.12 0.12 0.15 0.17 0.25 0.19 0.33 0.16 0.19 0.16 0.48

The graphs (Figures 1–4) show no clear difference in the variation within each DoF
mix for the different methods. However, it is clearly visible that the variation within each
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DoF mix for ROC and RS is smaller than the variation between different DoF mixes. The
graphs clearly show that the SR method behaves very stably for different DoFs.

From Tables 19–22, we can see that only for SR is the overall standard deviation similar
to or only slightly higher than the standard deviation of the means for each DoF mix.
For ROC and RS, the overall standard deviation is significantly higher than the standard
deviation due to random seed variation within each DoF mix. Altogether, SR is a very
robust method with only small variations, not only within each DoF mix but also overall,
regardless of the chosen DoF generator.

Next (Figures 5–8), we consider different levels of filters for the weight vectors. Again,
a filter of 0.1, for example, means that a weight vector is resampled if the distance between
the two largest weights is larger than 0.1. Hence, for a filter of 0.1, the two largest weights
are quite close. On the other hand, using a filter of 0.4 does not prohibit the two largest
weights from being very close, but the distance cannot be larger than 0.4. Again, for each
DoF mix, 10 different simulation sets each of 100,000 decision situations are simulated.
Hence, on the vertical axis, the variation in the hit ratios of the different surrogate weight
methods is visible. This is performed for the combinations of three criteria and three
alternatives (Figure 5), six criteria and six alternatives (Figure 6), nine criteria and nine
alternatives (Figure 7), and twelve criteria and twelve alternatives (Figure 8).
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We can see that the smaller the filter (more intrusive), the better RS performs and the
worse ROC performs. However, this behaviour approaches the performance of no filters, as
in Tables 19–22, with increasing filter size. This behaviour is expected. With smaller filters,
the more extreme weight vectors that can result from unfiltered N–1-generation are rejected,
and hence, ROC cannot profit from its good performance for these more asymmetric
weight vectors. On the other hand, RS benefits from small filters compared to the other
two methods because it generally performs very well for N DoF, which normally results
in more symmetric weight vectors. Finally, RS again shows its very stable performance,
regardless of the filters or the DoF.

4. Discussion
This article is partly a substantial extension of [33], where most results are new.

It investigates computationally efficient techniques for generating surrogate weights in
MCDA, where decision-makers often struggle to provide precise weights for various criteria.
This study focuses on methods for automatically generating these weights based on ordinal
and cardinal ranking approaches, testing various models to evaluate their performance.
The techniques explored include traditional rank-based methods such as RS, RR, and ROC
and newer methods like SR and CSR, and we introduced a new CGS method, which is
the preference strength counterpart of the GS method. The findings highlight that the
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SR and CSR methods outperform the others in terms of robustness. CSR is generally
the best-performing method, and preference strength methods can take advantage of the
additional information supplied more than ordinal methods can.

Furthermore, the article compares the performance of LP against surrogate weight
models, demonstrating that LP fails to provide the same level of reliability and accuracy.
The reason for the disappointing performance of LP seems to be the mismatch of the
optimisation goal. Generally, it is recommended that the individual maximum utility be
approximated as much as possible. This utility is strongly influenced, of course, by the
DM’s weights. The optimisation, as implemented in this study using LP, tried to maximise
the utility by considering the ordinal information of the weights as a constraint only, not as
a fundamental part of the utility itself. Hence, you could say that LP tries to optimise the
overall sum product of weights and attribute values. It sees the weights as a restriction.
But the optimal alternative is determined by a combination of both alternative values
and weights. Further, applying filters for the decision problem is a modification of the
original decision problem. In the applied setting, it seems that the application of surrogate
weight methods still supplies a reasonable benefit. The analysis of filter sizes showed that
smaller filters tend to enhance the performance, emphasising the need for attention when
applying them.

The use of the mean ordered weights did not have a large impact on the performance
of the LP approach. Nevertheless, we identified the mean ordered weights as a possible
reasonable measure to approximate the approximate maximum hit ratio, as described
in [34]. This study also includes an analysis of filter sizes, revealing that smaller filter
sizes typically lead to improved model performance. This insight is critical for selecting
the optimal approach when dealing with varying levels of information and complexity in
real-world decision problems. Entirely new for this article is the study of the variations in
the hit ratios for different surrogate weight methods. We can clearly see that the variation
between different DoFs has, for several methods, a far more substantial influence than the
variation within the different DoFs.

To sum up, this article constitutes a basis for selecting an appropriate surrogate method
for an analysis or for its inclusion in an MCDA tool. To handle the cases of N–1 and N DoF,
as well as anything in between, an appropriate surrogate method needs to be reasonably
invariant to various DoFs, not least since it cannot be known which DoF the mental model
of a particular decision-maker is aligned to. Or it might even change between the start and
the end of an MCDA process. This desideratum is only fulfilled by the SR method, and
since it performs on par with the others or better across the measured decision situations, it
is the preferred choice according to this study.

5. Conclusions
In conclusion, this study provides insights into the selection and performance of

various methods for generating surrogate weights in MCDA. The findings underscore the
importance of selecting appropriate weight generation techniques based on the complexity
of the decision problem and the available information. The results from this study show
that for both the GS and the CGS methods, parameter s is most suitable when it is smaller
than 1. There seems to be no unique value for parameter s that fits every combination of the
number of alternatives and the number of criteria. Nevertheless, the overall performance
of both GS and CGS can be comparable to that of other ordinal and preference strength
methods. If supplied with additional preference information, the preference strength
methods, especially CSR, generally outperform the ordinal methods. This performance is
not influenced by the use of a filter that discards decision situations that are too extreme.
The study in this article is a large simulation study into the behaviours of various surrogate
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weight methods. As such, it constitutes a substantial contribution to the knowledge of such
weights in general. However, the purpose of this article is not to demonstrate the usage of
surrogate weights in real-world applications—that is the aim of many other studies in the
field. For the interested reader, an open-source platform/library, UNEDA, implementing all
these methods (and more) is bundled together with [36] and is freely available on GitHub
(https://github.com/uneda-cda/UNEDA).

This study also highlighted the limitations of LP as a method for surrogate weight
generation. Despite its widespread use in optimisation, LP was found to be less efficient
than rank-based methods, especially in cases where decision-maker preferences were less
precisely defined. This clearly indicates that surrogate weight models, particularly those
incorporating ordinal ranking methods, offer superior performance for weight genera-
tion. This study shows that comparably simple constructed surrogate weight methods
perform better than the more complex LP method. It is, however, an open question as to
whether reframing the LP problem could increase the performance bottleneck of coping
with ordinal information.

This study serves as guidelines for selecting surrogate methods, either for use in
a particular modelling situation or for inclusion in a methodological framework as, for
example, a component in a computer tool supporting decision-making. In all these cases, it
is important to understand and appreciate the performance of the selected surrogate weight
methods employed. For a methodology or tool directed to a general set of decision-makers,
the CSR method offers the best versatility in combining high accuracy performance with
large stability (i.e., low variation when encountering differing conditions).

Surrogate weight methods have their limitations. For example, some ordinal meth-
ods perform better or worse under certain assumptions. For example, the ROC method
performs best when the distance between the two most important weights is quite large.
This might be inappropriate in decision situations where the DM is almost indifferent
regarding the two most important criteria. On the other hand, methods like the RS method
perform worse in cases where the distance between the two most important weights is
quite large. However, as shown in [34], we see an upper performance limit that can be
approximated with surrogate weight methods. However, these methods will not be precise
enough in some decision situations where a higher success rate is required. Additionally,
these methods assume a fixed true inner weight. Nevertheless, preferences can be volatile
and this can lead to different results depending on the point of time the decision situation
is evaluated.

Overall, this study shows the efficacy of surrogate weight models in MCDA and
provides directions for further research into the refinement of these methods. Future work
could explore additional methods for incorporating preference strength and investigate the
applicability of these approaches in a wider range of decision-making scenarios. Recent
developments for both ordinal methods like IROC or ROL [12,13] and preference strength
methods like FUCOM, LBWA, or DIBR [15–17,37] offer the possibility for a detailed compar-
ison with respect to different measures of success or the robustness of these methods. For
the preference strength methods, a unified approach is needed to make them comparable
with respect to the amount of information as input. For example, cardinal ranking generally
uses a limited number of steps between the weights, whereas other methods use ratios.
It would be interesting to compare the newer methods FUCOM, LBWA, and DIBR to the
established CSR—are they comparable and how? Also, it would be interesting to see how
objective methods like WENSLO, LOPCOW, CRITIC, and D-CRITIC perform compared to
the subjective methods described [19–23,38]. Hence, a study taking different assumptions
regarding the availability of preferences into account offers possibilities for future research.
Furthermore, surrogate weight methods offer a straightforward and comparatively compu-

https://github.com/uneda-cda/UNEDA
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tationally non-intensive way to facilitate decision support. It would be interesting to study
the possibilities of incorporating these in more computationally intensive methods, like
machine learning, to reduce the amount of complexity or computing resources. Finally,
the problem of volatile preferences could be addressed in future studies, i.e., how do the
methods perform if the preferences of the DM vary within some range?

Author Contributions: Conceptualisation, S.L. and M.D.; methodology, S.L. and M.D.; software, S.L.;
formal analysis, S.L. and M.D.; writing—original draft preparation, S.L. and M.D.; writing—review
and editing, S.L. and M.D.; visualisation, S.L.; supervision, M.D. All authors have read and agreed to
the published version of the manuscript.

Funding: M.D. was partially funded by the European Commission research programme Horizon
Europe, grant agreement number 101074075.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This article is dedicated to our dear friend and esteemed colleague Professor
Love Ekenberg, who passed away in September 2022 and who was a co-author of the conference
paper on which this article is partly based.

Conflicts of Interest: The authors declare no conflicts of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this article:

MCDA Multi-criteria decision analysis
MAUT Multi-attribute utility theory
MAVT Multi-attribute value theory
LP Linear programming
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ROC Rank order centroid
RR Rank reciprocal
RS Rank sum
SR Sum reciprocal (also known as. Sum rank)
GS Geometric sum
CRC Cardinal rank order centroid
CRR Cardinal rank reciprocal
CRS Cardinal rank sum
CSR Cardinal sum reciprocal (also known as. Cardinal sum rank)
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18. Lukić, R. Application of DIBR and MAIRCA Methods in the Evaluation of the Economic Performance of the Economy of Bosnia
and Herzegovina. Econ. Rev. 2023, 21, 53–64.
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