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Abstract: Process-based Integrated Assessment Models (IAMs) play a crucial role in climate agenda-
setting and progress monitoring. They advise climate negotiations, inform nationally determined con-
tributions (NDCs), and help create scenarios for central banks. Recent developments have enhanced
IAMs’ policy scope and accuracy, including the incorporation of industrial policies, improved sectoral
details, and modeling of consumer behavior. Despite these advancements, challenges remain, partic-
ularly in improving spatio-temporal and sectoral resolution, adapting to fast-changing sector-specific
policies, and addressing complex dynamics beyond the traditional techno-economic cost-minimization
framework. This literature review explores Directed Technical Change (DTC) growth models, Agent-
Based Modeling (ABM), and game theory to complement mainstream IAM approaches, especially
in integrating political economy considerations. DTC emphasizes the role of public research and de-
velopment (R&D) investment in supporting early-stage mitigation technologies. ABM highlights the
decision-making processes and behaviors of heterogeneous agents, while game theory examines mar-
ket dynamics, such as newcomer vs. incumbent competition, strategic pricing, and resource extraction.
While these models cannot replace IAMs, they can broaden the scenario design space and improve the
complexity and policy relevance of IAM-based mitigation modeling.

Keywords: climate mitigation modelling; process-based integrated assessment models; directed
technical change; agent based models; game theory

1. Introduction

Mitigating climate change and guiding the global economy towards sustainability requires swift,
coordinated action from governments, international organizations, the financial sector, companies, civil
society, workers, and citizens. To coordinate such diverse actors, a quantitative and actionable roadmap
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for climate mitigation is essential. Over the last two decades, process-based integrated assessment
models (IAMs) have become a key tool in climate policy, particularly in the IPCC WG III report.
IAMs have taken on the dual role of setting agendas and monitoring climate mitigation progress [1],
advising governments and financial institutions worldwide on climate policy and investment.

However, in recent years, some review articles [2–8] have highlighted several important limitations
of IAMs. They identify areas where IAMs fail to effectively set agendas and monitor progress, even
within their optimization-based framework. They also point to the limitations of the IAM methodology,
and suggest other dynamic modeling methods, particularly for addressing the political economy aspects
of the transition. Among critical literature, a consensus is emerging that when it comes to modeling
disruptive technical innovation, heterogeneity of actors, processes of technology lock-in, and other
disruptive or non-equilibrium aspects of the transition, IAMs are not the best-suited tool.

Despite their shortcomings, IAMs remain a key tool for setting benchmark pathways for global
energy and land-use transitions. Their ability to generate internally consistent, flow-based global path-
ways of energy and agricultural production, as well as emissions under emission constraints, gives
them a strong future role in advising climate policies (Section 2). Any competing model will face
similar challenges IAMs face today, namely computing self-consistent flows of energy and emissions
under constraint, addressing data availability within the sectors, and balancing the tradeoff between
broad spatio-temporal scope and granular resolution. In this regard, dynamical methods are unlikely
to replace IAMs in providing a comprehensive range of quantitative services, from setting national and
sectoral policy targets to exploring trade-offs in technology choices. Given the limited carbon bud-
get under the Paris Agreement, even equilibrium-based IAMs can model radical transition pathways,
reflecting significant departures from the status quo [9, 10]. Moreover, IAMs are increasingly incorpo-
rating dynamical models to model sectoral dynamics, such as those used in transport and industry (see
Section 2.4.3).

Given these considerations, it is important to ask: Which limitations should IAMs address, consider-
ing their dual role of setting the mitigation agenda and monitoring progress? Which can be addressed
with existing methodology, and which cannot? Where IAMs have inherent limitations, what alterna-
tive tools can complement them? What questions do these tools address, and how can they enhance
IAM pathways? To answer these questions, we first survey recent advancements in IAMs, focusing
on energy systems. In Sections 2.1–2.3, we provide a mechanistic explanation of how IAMs model
the energy transition, aiming to increase the transparency of these complex models. We also highlight
the limitations of the market-based policy interpretation of IAM based mainly on highly aggregated
CO2 pricing, which struggles to meet the challenge of fast-changing policy realities and to generate
adequate volume of investment. In Section 2.4, we outline three interlinked limitations of IAMs that
can and should be addressed within the current methodological framework. The main critique focuses
on improving IAMs’ ability to better represent a broader range of real-world policies—beyond CO2

pricing—and incorporating them into standard pathways with greater accuracy, reflecting a deeper
understanding of regional energy policies, sectoral dynamics, and technological diffusion.

Alongside the critical review of recent advancements of IAMs, we provide a literature survey on
three dynamic methods that can complement mainstream IAM analysis: Directed Technical Change
(DTC) (Section 3), Agent-Based Modeling (ABM) (Section 4), and Game Theory (Section 5). Given
IAMs’ limitations in capturing political economy, these approaches offer a better way to model inno-
vation processes, heterogeneity, and strategic interactions. We have chosen them both because of their
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frequent appearances in the critical literature, and also of their ability to address key aspects of political
economy missing from IAMs. Drawing on the authors’ diverse expertise, we propose concrete ways
to integrate elements of these dynamic models into IAMs.

Compared to previous critical IAM literature, our review makes two main contributions. First,
we offer an “insider” perspective on IAM modeling, focusing on the energy system, and explaining the
mechanisms behind mitigation modeling, along with its strengths and shortcomings. Second, we differ-
entiate three types of limitations in current climate mitigation modeling: 1) limitations that mainstream
process-based IAMs can address within the existing equilibrium framework; 2) limitations IAMs can-
not resolve due to methodological constraints, but which can be complemented by dynamical models
and other quantitative tools; and 3) limitations common to all quantitative models, yet critical for un-
derstanding how to successfully mitigate climate change (see summary Figure 1). The first critique
does not undermine the value of IAM benchmark pathways, but calls for more accurate, real-world
oriented benchmarks with actionable policy levers. The second critique focuses on connecting IAM
benchmarks with real-world political economy, assessing not only CO2 prices, equity, or investment,
but also innovation and growth. Lastly, we highlight the general limitations of quantitative models.
While some models address political economy and behavioral aspects (limitation 2), all quantitative
models struggle to capture the complex social processes behind past transitions and the institutional
change needed to combat climate change, underscoring the need for a broader, interdisciplinary ap-
proach.

2. Current methodology of modeling climate mitigation – opportunities and challenges

2.1. IAMs, their policy roles and policy questions

As the primary tool for climate mitigation modeling, process-based IAMs have widespread policy
impacts. In recent years, they’ve shaped regional and national climate policies, including the EU
Emission Trading System (EU-ETS), the “Fit for 55” package, the EU 2040 GHG reduction target,
and China’s 2060 net-zero goal [11–14]. IAMs also support the 127 central banks and supervisors,
plus 20 observers in the Network for Greening the Financial System (NGFS), in conducting climate
stress tests and assessing climate-related risks [15].

IAMs compute global climate pathways under various socio-economic scenarios, mainly population
and GDP growth projections. The more complex, energy-engineering-focused IAMs—the so-called
“process-based” IAMs—include detailed energy and land-use systems, which contain all the emitting
sectors [7, 16]. Their outputs—“scenario pathways”—show how energy and food demand change
with GDP and population, and match these with resource extraction and production capacities. IAMs
also estimate required green investments and compute equilibrium prices of energy, providing useful
metrics for analyzing the economic implications of the transition.

There are two key questions IAMs are especially suited to answer:
1) Agenda-setting: What are the sectoral emission and capacity deployment targets needed to

meet a Paris Agreement-aligned climate commitment? What global and regional investment levels are
required? What sector-specific policies (e.g., CO2 prices, energy taxes, subsidies) can support green
technology competitiveness and drive consumer adoption?

2) Monitoring progress: Given current technological development and implemented policies, what
is the projected global warming outcome? Can major emitting regions meet net-zero targets by mid-
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century under current NDCs? How much emission reduction will these policies achieve if fully imple-
mented?

While stylized IAMs like DICE and RICE have contributed to climate policymaking, this review
focuses on process-based IAMs due to their detailed energy systems and broader policy impact [7].
Since IPCC scenarios mostly rely on five or six global process-based IAMs [17], we focus on models
like REMIND and MESSAGE to explain IAM methodology [18, 19], due to their large contribution to
the last IPCC AR6 scenarios, as well their ability to pass the scenario vetting tests [17]. Even though
there is some methodological diversity among process-based IAMs (e.g., [20]).

2.2. Modeling energy system in IAM

The energy “supply side” of IAMs typically models a linear chain of energy conversion, starting
from primary energy extraction (e.g., oil or coal), which is converted into a secondary energy carrier
(e.g., coal burned to generate electricity), and then to a final energy carrier, which is transported to users
(e.g., electricity transmission). The “demand-side” sector (e.g., buildings, transportation, and industry)
then takes over, where the final energy carrier is converted into usable energy, products, and services.
For example, a given amount of final energy (coal or hydrogen) delivered to steel plants produces one
ton of primary steel (industrial product). Electricity can be used to generate heat via heat pumps, which
maintains a fixed indoor temperature (energy service, measured in “heating degree days”). In transport,
electricity or diesel fuel powers a vehicle to provide transportation service, measured in “moving one
ton of freight or one passenger for one kilometer”. An example diagram from the IAM REMIND is
shown in Figure 2.

It is important to distinguish between final energy carrier demand and energy service demand, as
electrification or efficiency technologies can reduce final energy use without decreasing energy service
demand (e.g., in electrifying transport). An additional layer of efficiency exists between final energy
and energy service (“energy usage efficiency” in Figure 2). For example, with the same energy service
demand (e.g., indoor temperature in winter), a well-insulated house requires less final energy than a
poorly insulated one.

As energy is converted linearly in the energy system, IAMs track the emissions of greenhouse gases
in all world regions through usually non-region-specific benchmark emission factors for the energy
conversion and usage processes. In addition, soft-linking energy system IAMs to land-use IAMs can
help assess the impact of climate mitigation on the global food system, e.g., through the large-scale use
of biomass as a carbon-neutral fuel [21, 22]. Energy and land-use sectoral emissions from the modeled
systems are connected to a simplified climate model, which informs users about the climate outcomes
of a given scenario, e.g., climate forcing and global average temperature.

IAMs have a long-term temporal scope due to the cumulative impact of greenhouse gases like CO2

and N2O. They also cover large geographical areas, typically modeling the entire globe. Functionally,
IAMs use numerical solvers to determine the most cost-effective climate mitigation pathway under
exogenous emission constraints. For example, under a 1.5◦C or well-below-2◦C target, a cumulative
GHG or CO2 emission budget—based on the latest IPCC WGI results—is imposed on a baseline
energy and land-use system, with regional growth and population scenarios, usually extending to the
end of the century. Under these constraints, the model computes the long-term “least-cost” path across
the entire time horizon. Due to their computational simplicity, IAMs are well-suited for setting climate
mitigation agendas and providing benchmarks for global technological deployment.
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Figure 2. A diagram shows the linear conversion from primary to secondary energy, then
to final energy, and eventually to energy services or usable energy in the end-use sectors
in a state-of-the-art process-based IAM, REMIND [19]. Each stage of the linear conversion
involves several different types of technologies (e.g., oil to electricity conversion corresponds
to a diesel generator, coal to hydrogen conversion corresponds to coal gasification), which
are not shown separately in the figure. Each technology has capacity and generation variables
associated with it, which are endogenous and can respond to pricing or non-pricing policies
or constraints.

At their core, mainstream process-based IAMs are constrained optimization models. In this frame-
work, the objective function is typically welfare, which is maximized. This is equivalent to energy
system cost minimization under certain assumptions [23]. The decision variables are long-term annual
capacities, and the extraction or generation of energy and agricultural goods. The main constraints
include energy demand, historical capacities, GHG emissions, and resource endowments. The La-
grangian multipliers of supply-demand balance equations for different products are interpreted as their
equilibrium prices. Constrained optimization simulates the equilibrium state of energy and agricultural
markets, where supply equals demand. This simplifies the complex problem of numerically solving
coupled differential equations in high-dimensional systems to calculating the steady state through op-
timization.

The equilibrium prices generated by IAMs typically reflect perfect competition, meaning that prices
equal levelized production costs. Under market equilibrium and perfect endogeneity (i.e., when no
additional constraints are imposed on decision variables), cost always equals price in the model. This
is guaranteed by the Karush–Kuhn–Tucker condition in constrained optimization, as shown for the
electricity sectors in the studies by C. C. Gong, et al. [23, 24]. The market-equilibrium formulation
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reflects the idea that perfectly competitive markets force producers to “race their price to the bottom”,
driving profits to zero. However, this is a simplification of real-world agricultural and energy markets,
where varying degrees of imperfect competition, strategic price-setting, and profits arise, depending on
the pricing power of large producers, regulatory regimes, and geopolitical factors. These limitations of
IAM methodology can be sometimes addressed by other dynamical models (Section 5.3.1).

In the energy demand sectors, which lie “outside” the energy supply side, IAMs typically use nested
production functions with CES. The “CES tree” nodes represent production functions in various sec-
tors, with branches showing their inputs and outputs. An example of a CES tree for the industry sector
in the IAM model REMIND is shown in Figure 3. The CES elasticity parameter σ represents the ex-
ogenous, often time-dependent elasticities of substitution between upstream node branches, indicating
how easily the model can switch between different (energy) inputs to maintain output at a given time
based on input price changes. This CES-based structure for demand sectors is linked to the “supply-
side” linear energy system module, as shown in Figure 2. When the supply side adjusts its optimal mix
(e.g., due to emission constraints, CO2 prices, or subsidies), the prices of alternative fuels in the CES
node change accordingly. As a result, technology choices in end-use sectors may shift—for example,
from oil boilers to heat pumps powered by cheaper electricity from renewables. This incentivizes more
investment in heat pumps and renewable electricity, while reducing investment in crude oil, refineries,
and oil boilers. Fuel switching can be simulated not only with CO2 prices, but also with a mix of pric-
ing, taxes, subsidies, interest rate policies, and regulations to achieve similar outcomes (see Section
2.4.3).

2.3. Emission abatement dynamics in IAMs and recent challenges

In IAMs, emission constraints drive transformations in the energy and land-use systems. While
IAMs now use a range of policy tools including regulations and bans, most scenarios still rely primarily
on endogenous carbon pricing to drive this transformation. These price-based policies then indirectly
promote fuel-switching, technology learning, energy efficiency, and occasionally material efficiency
improvements. A simple graphic illustrating abatement dynamics in IAMs is shown in Figure 4.

The mechanism works as follows: IAMs begin with a starting CO2 price path, applied to per ton of
carbon emitted. The model iterates this path until a desired climate target is met (e.g., < 2◦C warming,
emissions budgets, etc.). The CO2 price increases the cost of emitting fuels and processes, making
green alternatives cheaper in comparison, prompting the model to invest in them. Over time, cumu-
lative investments in renewables trigger endogenous learning through a “learning-by-doing” function
(one-factor learning curve (OFLC)), which reduces costs for fast-learning technologies. This reflects
the “perfect foresight” in IAMs with long-term time horizons. IAMs also model the spillover effect,
where investments in renewables in one region lower costs in others. Lastly, energy and energy inten-
sive product prices change under policy, leading to demand responses in CES nodes. Higher energy
prices can induce energy and material efficiency improvements, or simply reduce demand, while lower
prices stimulate demand growth.

Assessing the endogeneity of efficiency improvements in IAMs requires understanding that sector
dynamics respond heterogeneously to price mechanisms, depending on how each sector is modeled
and the diversity of policies applied. For example, in the current version of the IAM REMIND, price-
induced electrification is particularly prominent in the industry and building sectors, which have CES-
based structures. In contrast, the transport sector’s response to price changes is less pronounced [25].
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Figure 3. A diagram showing the nested CES tree structure portraying the economics of
the industry sector of an IAM, REMIND [19]. EEC: energy efficiency capital (see Section
2.3); En: energy; FE: final energy; sol: solid; liq: liquid; el: electricity; H2: hydrogen; σ:
exogenous elasticity of substitution.

This is because REMIND models the global transport sector separately, using a dynamic model with
explicit technology diffusion, which is then coupled to the main energy system. The diffusion rate
of electric vehicles (EVs) depends on factors like fuel price, capital cost, driving range, and charging
infrastructure. While the CO2 price can slightly incentivize electrification by raising gasoline costs,
its impact on EV diffusion is minimal, as the shape of the diffusion curve is mainly controlled by
parameters not linked to the energy system module. Thus, the large efficiency gains from vehicle
electrification are primarily driven by policies other than the CO2 price.

2.3.1. Limitations of the aggregate CO2 price in adapting to ongoing technology innovation and rapid
energy price changes

Despite the simplicity of the CO2 price-based mechanism in models, applying it in real-world pol-
icymaking presents several issues. The CO2 price typically reflects the marginal abatement cost—the
cost of reducing one more ton of emissions. In this framework, the sector with the lowest abatement
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Figure 4. A diagram showing the application of the CO2 price creates an “investment expec-
tation” in IAM, which triggers fuel switching, endogenous learning and energy efficiency.
For simplicity, this relation holds for a one-region model, where the effects of trade and re-
source scarcity are neglected. Left: the comparison of the levelized cost of the green product
before the CO2 price is applied. Right: after a CO2 price is applied to greenhouse gas-
emitting products. The learning in this particular example does not lead to a decrease in the
price of the green product such that it becomes cheaper than before. As a result, demand is
reduced due to price-demand elasticity.

cost is usually targeted first, sidestepping the politically sensitive question of which sector should
transition early. However, the economy-wide CO2 price in IAMs is highly aggregated and applied
uniformly across the entire system, often to hundreds or thousands of processes. This can create chal-
lenges for policymakers navigating a fast-changing environment, where disruptive innovations, politi-
cal economy factors, and fossil fuel producers’ strategies to influence prices can rapidly alter abatement
dynamics.

First, disruptive innovation and learning could rapidly reduce the cost of low-emitting products,
making them cost-competitive with incumbent technologies (e.g., wind, solar, batteries, and electric
vehicles). In this case, an effective CO2 price may not be necessary in the near future for these sectors,
and other priorities—such as infrastructure build-out speed, critical mineral supply, financing, and just
transition policies for non-competitive industries—will become more important. Second, due to po-
litical economy considerations, subsidies may be needed as a short-term incentive before a CO2 price
can be applied, as part of “policy sequencing”. However, one cannot directly use the IAM aggregate
CO2 price as a subsidy, even if it can be translated to a per-capacity or per-generation unit. Instead, the
specific costs of production within the model need to be examined. However, understanding these costs
and their sub-components is not straightforward in IAMs. Finally, when fossil fuel prices rise—like
the current energy crisis in Europe—an increased CO2 price could exacerbate inflation in sectors like
household heating and electricity, unless supported by active policies for electrification and fuel switch-
ing. This is analyzed extensively in the study by I. Weber, et al. [26], via IO models of price pass-
through in each sector. However, reducing the CO2 price too much risks relaxing sectoral targets and
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widening the price gap between sectors. A more targeted approach based on process-specific cost
analysis is needed. Conversely, if fossil fuel prices collapse due to oversupply or inability to compete
with green fuels, CO2 prices must rise to maintain the competitiveness of green products. This latter
example highlights the need for integrating with models that allow for demand-supply imbalances and
where game-theoretical approaches, based on cash-flow analysis, can be applied (Section 5.3.1).

Besides the more granular sectoral models (see Section 2.4.3), one alternative approach to analyzing
the more specific key components of sectoral abatement dynamics is simply to decompose output
prices into input prices and costs, which can help policymakers better understand what drives the cost
differences between dirty and green options. There is a rich literature based on this type of bottom-
up techno-economic analysis for the levelized costs of brown vs. green processes [27]. While this
method lacks the sectoral interactions that IAMs more comprehensively portray, it is, depending on the
application, more lightweight, and its results are more straightforward to interpret due to the limited
numbers of parameter input and assumptions. The changes in prices due to economy-wide inter-
sectoral interactions can always be derived from IAM results and incorporated into such bottom-up
analyses as an additional sensitivity parameter.

2.3.2. Limitations of CO2 price in generating adequate volume of effective investment

A successful theory of change—depicted in Figure 4—which relies on CO2 pricing as the primary
driver of fuel switching, technology learning, and efficiency, assumes that the government will cred-
ibly signal to investors that the CO2 price will eventually reach levels necessary to achieve net-zero
emissions. This would compel companies, asset managers, and funds to align their investments ac-
cordingly, leading to large-scale manufacturing and deployment of green technologies. However, in
reality, this is not guaranteed. The key motivator for investment—profit—is not modeled in IAMs,
and non-profit-driven public investment is also seldom addressed. Therefore, interpreting IAMs solely
through a market-based lens, with CO2 pricing as the main policy lever and ignoring the sources of
investment, presents an incomplete theory of change and results in a slow, uncertain transition.

However, recent expansions in sectoral details and the implementation of endogenous learning in
IAMs could theoretically improve this situation by supporting an investment-primacy policy interpreta-
tion, moving beyond a market-primacy approach. This interpretation is made possible by incorporating
fiscal and financial policy tools based on investment variables derived from the IAMs’ transition path-
ways. These variables represent the necessary investments to meet stringent mitigation targets and
reduce the cost of renewables (especially if IAMs include endogenous technical change). In policy
terms, they provide investment estimates for climate fiscal policies. This shift from carbon pricing to
investment reflects a broader transformation from a neoclassical paradigm to a more diversified policy
discourse following the great financial crisis [28]. However, the methodological advancements re-
quired for this interpretation are still incomplete, as most process-based IAMs include detailed capital
expenditure variables only on the energy supply side, with limited detail on the demand side (due to a
lack of demand-side granularity in CES-based formulations) (see Section 2.4.3).
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2.4. Recent advancements and further challenges in improving the accuracy and quality of IAM
benchmark pathways

To fulfill the dual roles of agenda-setting and monitoring progress, IAMs must continually improve
their methodology. We highlight three key areas: 1) increasing resolution in the power and industrial
sectors to enhance the accuracy of mitigation pathways; 2) broadening and diversifying the technolog-
ical scope; 3) systematically exploring and implementing policies beyond carbon pricing. The third
aspect is closely linked to the first two. While IAMs have made recent advances in these areas, chal-
lenges persist, and a coordinated approach within the IAM community is needed. A lack of policy
diversity risks widening the gap between IAMs’ primary policy levers and real-world policies, espe-
cially as the US and China implement major industrial policies to support renewable industries and new
supply chains. Increasing spatio-temporal resolution and sectoral granularity is crucial for modeling
non-pricing policies. Thus, resolution remains the biggest barrier to the quality and accuracy of global
scenario pathways and meeting IAMs’ dual goals.

2.4.1. Further development on increasing spatial, temporal and sectoral resolution

Global process-based IAMs, whether focused on energy supply or demand, require higher resolu-
tion in technology, spatial, temporal, and sectoral dimensions. This is especially urgent for electricity
generation on the supply side. Since the lowest-cost electricity worldwide comes from intermittent so-
lar and wind, the optimal power sector solution is inherently spatio-temporally complex. Most global
IAMs fail to capture this complexity due to computational constraints. With typical 1-year resolution
and 5- to 10-year time steps, IAMs cannot accurately represent weather fluctuations affecting wind,
solar, and battery output, or demand-side flexibilization. This results in inaccurate capacity and invest-
ment projections, which can materially impact policymaking [29]. Policy tools like capacity market
mechanisms are also difficult to assess in coarse-grained IAMs. Spatially, regions in IAMs are typically
treated as “copper plates”, with no explicit representation of electricity grid networks. This limits the
modeling of grid constraints and expansion and renders it difficult to project future electricity prices,
which increasingly depend on specific locations.

To respond to this challenge, many IAMs have explored the explicit incorporation of high-resolution
dynamics in the power sector [23, 30–36]. C. C. Gong, et al. [23] in particular, presents a bidirectional
iterative soft-coupling approach which can be shown to be mathematically consistent with mapping the
Lagrangian function of two constraint optimization problems of different scales. Using this and other
similar formulation, coupling long-term IAMs with a complete set of energy sectors such as extraction
sectors and demand sectors, to spatially and temporally detailed power sector models becomes feasible.
Once further developed, this improvement could pave way to the combined long-term planning and
short-term operation of a future complex power sectors with high shares of intermittent resources, and
help evaluate the climate impact on power demand and supply which requires high resolution time
series (e.g., air condition use during heat waves or decreased hydroelectric output due to droughts).

On the demand side, increasing granularity could improve the interpretation of IAM results [3].
IAMs also need to become more granular to monitor climate progress. A lack of resolution could
create a widening gap between IAM policies and real-world policy implementation, as many newly
proposed or enacted national investment and regulatory policies are highly granular, targeting specific
sectors or technologies. These include policies on energy efficiency standards, targets for specific
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appliances or vehicles, tax exemptions, price caps on certain goods, waste reduction, and more [37].
In advanced IAM versions, it is possible to replace a CES branch with process-based systems or

substitute an entire sector’s subtree with a high-granularity model, soft-coupled to the IAM. Process-
based and diffusion models offer clear advantages over older CES formulations. Granular demand-side
modules not only provide more policy levers, such as capacity limits and subsidies, but also enhance
accuracy by including material costs, capacity factors, and stock consistency. By incorporating actual
production-level technology, capital expenditures for new processes are accounted for—particularly
important for capital-intensive electrification processes. For example, ArcelorMittal and Acciaierie
d’Italia each received around 1 billion euros in subsidies for new direct reduced iron (DRI) plants.
The development of non-pricing industrial policies and efforts to increase granularity in IAMs are
closely linked—without granularity, IAMs cannot effectively simulate industrial policies. For recent
applications of granular models in IAMs, see Section 2.4.3. While some granular sectoral components
have been integrated into standard IAMs, many are still under development.

Although energy efficiency is endogenously modeled in IAMs, often times they are not explicitly
modeled as a technology type. For example, Figure 3 shows the implementation of such a stylized
“energy efficiency capital” (EEC). This is a highly stylized way to indicate that models can invest in
this node to increase energy efficiencies according to certain elasticity. As a result, there is no capital
expenditure or operational cost associated with this stylized formulation, nor are there capacity targets
which can be created due to there being no explicit technologies. This lack of granularity could impact
the accuracies of assessing of GHG-emission reduction costs [38].

In addition to increasing spatial and sectoral resolutions, another dimension for increasing granu-
larity is to resolve detailed economic sectors’ energy use and emission. This is typically carried out
through post-process down-scaling. Recent studies have focused on downscaling energy variables to
the sector level using input-output (IO) models linked to IAMs [39–41]. Although this approach has
limitations, such as the inability of historical IO tables to fully capture long-term structural economic
changes, it represents a promising frontier in refining sectoral energy processes, including emissions
across scopes 1, 2, and 3.

The post-processing approach has also been used to geographically downscale global mitigation
pathways to the country level. Studies by F. Sferra, et al. [42, 43] applied the SIAMESE method, which
allocates energy consumption from regions to countries based on price equilibrium, converting it into
emissions, along with statistical (algorithmic) down-scaling. Although finer geographical resolution is
theoretically possible within IAMs, it is constrained by computational resources. A major challenge is
the lack of historical energy data for many countries, especially in the Global South and many middle-
income nations, where such data is unavailable or of low quality.

2.4.2. Expand IAMs’ technological scope and model the role of innovation policy

In the energy system part of IAMs, policy pathways are typically based on assessing mature miti-
gation technologies and their market competitiveness. However, to meet stringent mitigation targets, a
broader portfolio of mitigation technologies should be considered in default or bespoke scenarios, with
an emphasis on supporting emerging innovations. Early-stage technologies are often excluded from
IAMs, either because they are still precommercial, recently commercialized (e.g., sodium batteries), or
are only deployed at small scales. Less mature technologies such as silicon-based alternative cement,
advanced nuclear, nuclear marine propulsion, thermal energy storage, advanced geothermal, and indus-
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trial electrification [44] are often deemed too niche or immature for inclusion in mainstream scenarios
such as MESSAGE or REMIND [18, 19]. The notable exception is novel carbon dioxide removal
(CDR) technologies, including direct air capture, bioenergy with carbon capture, enhanced weather-
ing, ocean alkalinization, and biochar, which are increasingly featured in IAM scenarios [45, 46].

Excluding technologies not fully commercialized makes IAMs less relevant for policies support-
ing technologies through the so-called “valley of death” in innovation theory, which describes when
technologies mature, emerge from the laboratory, but the generally risk-averse private capital is not
able to scale it up and introduce it into the market [47]. If a novel technology is excluded from the
model, IAMs cannot suggest policies for R&D or deployment. Although IAM modellers may take a
conservative approach due to uncertainties around costs, safety, and scalability, this introduces subjec-
tive judgments. IAM teams with limited resources may lack the capacity to prioritize pre-commercial
technologies, even if viewed as “game-changing” by other stakeholders. For example, emerging tech-
nologies such as sodium batteries, brick-based heat storage, copper-based wind turbine magnets, or
thorium reactors could be added, especially under strict emission budgets. Uncertainty around elec-
trolytic hydrogen could be hedged by incorporating direct electrification methods such as molten oxide
metallurgy. Broader collaboration with engineering and industrial communities may be needed to as-
sess the costs and mineral requirements of emerging technologies.

Most process-based IAMs focus primarily on scaling up mature, commercialized technologies
through endogenous or exogenous “learning by doing” [48], without addressing the policies that en-
able these technologies to succeed in the first place. In Section 3, we introduce the DTC model, which
explicitly depicts knowledge innovation and accumulation. Within the existing IAM framework, it is
also possible to implement the “two-factor learning curve (TFLC)”, based on empirical studies of tech-
nology learning [49, 50], and applied in both stylized and process-based IAMs [48, 51, 52]. The two
factors are “learning by doing” (learning through capacity accumulation) and “learning by researching”
(learning through knowledge accumulation).

In addition to the learning curve, the “forgetting curve” has been formulated for technologies that
have experienced a loss of accumulated (often tacit) knowledge [53–56]. This is especially applicable
to the nuclear industry. After decades of underinvestment in human and physical capital in the U.S. and
Europe, newly built nuclear power plants face high costs. Applying the forgetting curve to older indus-
tries, where experienced workers have retired, and new skills are required, has significant implications
for policies aimed at reducing the costs of these technologies.

2.4.3. Expand IAMs’ scope for sectoral policies beyond carbon pricing

Empirical research linking past policy implementation to emission reductions shows that CO2 pric-
ing and non-pricing regulatory policies are effective as part of a broader policy mix, rather than stan-
dalone measures [57]. The CO2 price is considered the most economically efficient policy instrument
under the neoclassical IAM framework. However, its effectiveness depends on how investors react to
future carbon price expectations. If the policy fails to credibly signal a rising future price, the scheme
will be ineffective, leading to market failures [58]. In such cases, additional policy instruments are
needed, such as emission intensity regulations, subsidies, direct investment, technology bans, and en-
ergy efficiency mandates [58, 59].

Recent advancement in IAM modeling has shown rich implementation beyond carbon pricing. Al-
though not widely used in current IAM scenarios, where carbon pricing is the main climate instrument
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[60, 61], energy supply-side subsidies and quantity targets can be modeled [62–65]. On the demand
side, IAMs have employed technology-diffusion models (e.g., “logit models”) for the transport sector
to simulate transformation, incorporating a broader range of vehicle types and policy instruments, such
as vehicle subsidies, technological diffusion, producer mandates, purchase subsidies, and technology
bans [66–72]. For industry sectors, IAMs can model technology bans, retrofitting existing processes,
or creating entirely new methods for producing steel or cement [73]. Shaohui Zhang, et al. [25, 74, 75]
have applied the linearized and process-based approach to the case of steel sector in IAMs.

Endogenous material efficiency can sometimes be modeled to incorporate circular economy poli-
cies. However, this requires additional modeling of material flows within a sector, as the viability of
material substitution or efficiency is highly dependent on end-use applications and contexts. For ex-
ample, scrap steel is only suitable for making long products like concrete reinforcement bars due to
trace contamination during recycling, the removal of which requires innovative technologies [76, 77].
Material Flow Analysis (MFA) has been coupled with IAMs in the studies by Paul Stegmann, et al.
[75, 78, 79]. Without MFA, it is difficult to integrate circular economy measures into climate pathways.
Even with MFA, it is essential to explicitly model the abatement cost curves of separate industrial pro-
cesses, their innovation learning potential, and the global diffusion of “best practices” of production.

2.5. Inherent methodological limitations and need for complementary approaches

Although process-based IAMs’ demand sectors increasingly incorporate dynamical aspects (as the
case with transport), at their core—specifically in energy systems and land-use—they remain funda-
mentally market equilibrium models. As such, they face long-standing criticisms for their inability
to capture profit, strategic pricing, and other non-equilibrium market phenomena and behaviors [80].
Given the political economy of growth and industrial competition on one hand, and behavioral iner-
tia and institutional bottlenecks on the other, it is clear that neither the market-equilibrium nor the
single-agent assumptions in IAMs hold [60, 81] (see also Section 4). This need for complementary
approaches has been recognized by the IAM community, and conceptual frameworks for iteration
or integration have been proposed [5, 82, 83]. However, concrete collaborations between the IAM
community and political or social sciences are still in the early stages, largely due to differences in
underlying approaches and assumptions [82, 84].

The lack of scenarios that account for breaks and disruptions is considered an inherent weakness of
IAMs [85–88]. However, despite being equilibrium models, IAMs’ technical pathways are not always
slow-moving and smooth. In fact, under stringent temperature stabilization scenarios, such as 1.5◦C
or well-below-2◦C end-of-century targets with low temperature overshoot, energy variables like fossil
fuel consumption can sharply decline from their current upward or stagnating trajectories in the near
term, with dramatic reductions occurring by mid-century [9, 10]. This has even led some to question
the feasibility of such pathways [89, 90].

While critical literature highlights the importance of disruption in the transition process or macro
conditions [85–88], it’s important to assess the benefits of replacing IAMs’ near-term disruptive
pathways with smaller breaks or longer plateaus using non-equilibrium methods. After all, a non-
equilibrium model doesn’t automatically offer more policy insights than an equilibrium one. The
effectiveness of either approach depends on its accuracy, scope, and ability to assess concrete policies.
Discontinuous diffusion processes, like stagnation and lock-in, are perhaps better suited for portraying
baseline dynamics—such as the “business-as-usual” or “national policy implemented” (NPi) scenar-
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ios—rather than creating ambitious long-term climate pathways. Given political economy constraints,
transitions in scenarios without a climate budget won’t happen smoothly. This is where integrating
dynamic models with IAMs could make baseline scenarios more realistic and informative.

One thing is clear: IAMs are not models of politics and power, and they may never be. Explic-
itly modeling politics, institutions, and behaviors is beyond IAMs’ methodology, the core of which is
designed to inform users of engineering benchmark for deploying green technologies under climate
constraint. However, IAMs can be improved in terms of political economy dynamics by incorporat-
ing other quantitative models. In this paper, we suggest three alternative methods—DTC, ABM, and
game theory—as valuable additions to the mitigation research toolbox. While not an exhaustive list of
complementary approaches, these models address some of the gaps between IAMs and complex policy
realities, potentially guiding IAM scenario design or even being soft-coupled with IAMs. While these
models have their own limitations [80], they can model various aspects of political economy. Despite
successful applications, such as [91], soft-coupling political economy models with IAMs remains a
new and emerging field that requires further research.

3. Growth Models with Directed Technical Change

3.1. Introduction and empirical support

DTC models, building on endogenous growth theory, emphasize how economic incentives and pol-
icy interventions can actively direct technological progress in specific directions [92]. Unlike earlier
models that treat technological change as exogenous or passive, DTC models focus on the strategic
decision-making of firms and investors in response to policy signals, accounting for the heterogeneity
of technologies and the allocation of R&D efforts among them. Government interventions such as sub-
sidies, taxes, and regulations are pivotal in guiding innovation toward cleaner technologies, recognizing
the influence of path dependency shaped by existing infrastructures and institutions [93].

While both DTC models and IAMs with endogenous technical change (ETC-IAMs) aim to project
energy technology transitions under various policies, they differ significantly in their methodological
approaches. IAMs often focus on how overall technological progress is stimulated by economic activ-
ities and policies but treat innovation as a relatively passive and uniform process [5]. In contrast, DTC
models involve detailed modeling of the innovation process, capturing how policies can unevenly im-
pact the attractiveness of various technologies, thus influencing the direction and pace of technological
advancements. In IAMs, the investment expectation is simply assumed (see Figure 4), based on the
existence of a credibly communicated future CO2 price path that leads to the net-zero goal. In DTC
models, investment is profit-driven and modeled more explicitly. Endogenous technological learning
remains a complex topic and an active area of research in energy system modeling as well as in IAMs
[94]. Here, we focus on applying DTC and endogenous technological learning in IAMs.

Recent empirical studies strongly support the Directed Technological Change (DTC) framework,
highlighting the crucial role of targeted economic incentives and policy interventions in steering in-
novation toward clean energy technologies. Beyond energy prices, environmental policies such as
carbon pricing mechanisms have significantly boosted low-carbon innovation. The EU-ETS serves as
a prime example, with regulated firms showing increased patenting activities in low-carbon technolo-
gies compared to unregulated firms [95]. A recent analysis further demonstrated that carbon pricing
mechanisms in the European Union have amplified patenting activity in low-carbon technologies, re-
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inforcing the connection between price signals and innovation pathways. The phenomenon of path
dependency within the DTC framework is also empirically supported. Philippe Aghion, et al. [96]
demonstrated that firms with a history of clean innovation are more likely to continue on this path,
with initial policy support, such as carbon taxes, playing a pivotal role in shaping firms’ innovation
trajectories toward sustainability.

Moreover, research underscores the risk of fossil fuel market dominance without targeted support,
potentially locking economies into carbon-intensive pathways. Daron Acemoglu, et al. [97] found
that the natural gas boom in the United States temporarily reduced coal use but ultimately slowed
renewable energy innovation. This highlights the importance of pairing carbon pricing with targeted
subsidies for renewables to sustain a long-term shift toward clean energy. These insights align with the
DTC perspective, emphasizing the need for policies that go beyond market signals alone.

In addition to price-based incentives, government investment in R&D and targeted subsidies plays
a significant role in accelerating the adoption of clean technologies. The International Energy Agency
(IEA) [98, 99] emphasizes that effective allocation of public funds in research, development, and
demonstration (RD&D) for emerging energy technologies is crucial for overcoming initial cost bar-
riers, ensuring that clean technologies can compete with established, carbon-intensive ones. This tar-
geted support is especially vital for addressing innovation gaps in harder-to-abate sectors like heavy
industry and long-haul transport. Addressing innovation market failures, empirical research under-
scores the effectiveness of clean R&D subsidies in stimulating innovation, particularly among smaller
firms. Sabrina T Howell [100] found that government grants significantly increase the likelihood of
small firms securing venture capital and succeeding in innovation activities. Moreover, clean tech-
nologies generate higher knowledge spillovers compared to conventional technologies, reinforcing the
argument for R&D subsidies within the DTC model [101].

3.2. Embedding DTC into IAMs

With the empirical support discussed above, it is pertinent to explore the integration of Directed
Technological Change (DTC) modeling into the IAM framework. This integration requires the devel-
opment of methods to incorporate DTC principles into IAMs, taking into account the specific struc-
tural features and assumptions of each model. This approach would enable an enhanced representation
of innovation dynamics and policy impacts while maintaining consistency with the established IAM
frameworks. A foundational model within environmental economics that utilizes DTC principles is
the framework developed by Acemoglu, Aghion, Bursztyn, and Hemous (AABH) [102]. This model
differentiates between innovations that complement existing technologies and those that aim to replace
them, focusing on the potential for clean technologies to displace their polluting counterparts. The
AABH model highlights how targeted policies can transform the energy landscape, contrasting with
approaches that assume technological change occurs exogenously or passively.

The AABH model considers a scenario where a final good Yt is produced using clean (Yct) and dirty
(Ydt) inputs, described by a CES production function:

Yt =

(
Y
ε−1
ε

ct + Y
ε−1
ε

dt

) ε
ε−1
, (3.1)

where ε is the elasticity of substitution between clean and dirty inputs (ε > 1 indicates they are gross
substitutes). Emissions are directly linked to the consumption of dirty inputs:
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Pt = ξYdt, (3.2)

with ξ representing the emission coefficient per unit of dirty input. Innovation in both clean and dirty
sectors drives productivity, represented by:

Y j =
1

1 − β
Lβj

∫ 1

0
Aβjix

1−β
ji di, for j ∈ c, d, (3.3)

where L j denotes the labor allocated to the sector j, A ji is the technology level for intermediate good
i in the sector j, and x ji is the quantity of intermediate good i used in the sector j. The parameter β
represents the output elasticity with respect to labor.

Scientists choose to innovate in either clean or dirty sectors. The expected profits for a scientist in
the sector j are:

Π jt = η j (1 + γ) β p
1
β

jtL j,tA j,t−1 =
η jβpi jY jt

1 + γ η j s jt
, (3.4)

where η j is the probability of successful innovation in a sector j, p jt is the price of output in the sector
j, s jt is the research effort, and γ is a parameter representing the size of innovation steps. The profit
ratio between clean and dirty sectors is:

Πct

Πdt
=
ηc

ηd

(
pct

pdt

) 1
β Lct

Ldt

Ac,t−1

Ad,t−1
. (3.5)

This expression indicates that the sector with higher existing technology levels A j,t−1 and greater
profitability attracts more innovation efforts, leading to a self-reinforcing cycle of technological ad-
vancement—an example of path dependence. Without policy intervention, the dirty sector may con-
tinue to dominate due to its established technological advantage and higher immediate returns on in-
vestment. To overcome this inertia, the model suggests policies such as:

• Clean Research Subsidies (αc): Increasing the expected profits from innovating in the clean
sector by subsidizing R&D, encouraging a shift in innovation efforts toward clean technologies.

Πct = (1 + αc) ηc (1 + γ) β p
1
β

c,tLc,tAc,t−1,

• Carbon Taxes (τ) Internalizing environmental externalities by raising the costs of dirty inputs,
reducing the profitability of the dirty sector and making clean technologies more competitive.

These interventions adjust the profit incentives, making it more attractive to innovate in the clean
sector and addressing the market’s inherent bias toward established, carbon-intensive technologies. The
AABH framework thus emphasizes that effective policy measures are crucial for guiding innovation
toward sustainable technologies, rather than relying solely on market forces.

The AABH model’s emphasis on the role of policy in shifting profitability and directing innovation
toward cleaner sectors is a key insight from the DTC framework. While some IAMs may not explicitly
model profits, they can capture similar dynamics by representing how policies such as carbon pricing
and subsidies alter the cost-effectiveness of low-carbon technologies. Incorporating an explicit repre-
sentation of R&D dynamics, including knowledge accumulation and depreciation, is crucial for IAMs
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to effectively assess the impact of these policies on the direction and pace of technological change.
Integrating insights from DTC models can further enhance the representation of directed technical
change in IAMs, enabling a more comprehensive assessment of the long-term implications of climate
policies and the potential for a sustainable energy transition.

3.2.1. The WITCH model – an example of DTC application in IAM

Integrating Directed Technological Change (DTC) principles into an Integrated Assessment Model
(IAM) involves embedding mechanisms that allow for directed innovation, where R&D allocation and
technological advancements are endogenously shaped by policy and market incentives. The WITCH
model (World Induced Technical Change Hybrid), developed by Bosetti et al. ([103, 104]), provides a
prominent attempt at this integration. It combines a top-down intertemporal optimization framework
with a bottom-up representation of the energy sector, modeling ETC and DTC principles explicitly
within an IAM framework.

In the WITCH model, regions allocate R&D investments across energy technologies, enhancing
energy efficiency and reducing low-carbon technology costs. This aligns with DTC principles by fo-
cusing on targeted technological advancements. Policy measures like carbon pricing, subsidies, and
regulations drive these investments, facilitating cleaner energy transitions. Subsidies are particularly
impactful, as they reduce the effective cost of R&D in targeted sectors, thereby incentivizing higher
investment levels and accelerating knowledge stock accumulation. The model also captures technol-
ogy externalities, such as international knowledge spillovers, which enable shared advancements and
further support global climate and innovation goals.

Formally, the impact of subsidies on R&D investment can be expressed as follows:
R&D Investment Function with Subsidies: When subsidies (S ) are applied, they reduce the net

cost of R&D for firms or governments. The effective R&D investment in a sector can be modeled as:

Inet
RD = (1 − S ) · IRD

where Inet
RD represents the adjusted R&D investment after subsidies, with S as the subsidy rate (e.g.,

S = 0.3 for a 30% subsidy).
Knowledge Stock Accumulation with Subsidies: Knowledge stock K in a sector accumulates

over time through R&D investments. With subsidies, this accumulation is accelerated:

RDt+1 = RDt + γ · Inet
RD

Here, γ is a productivity parameter that translates R&D into knowledge stock.
Learning Curves and Cost Reductions: Subsidies also impact learning curves by enabling greater

R&D investment, leading to faster cost reductions in technology. For example, a two-factor learning
curve might capture this as:

Ct+1 = Ct · (Inet
RD)−δ

where C represents technology cost, which declines more rapidly as effective R&D increases.
Additionally, WITCH models learning-by-doing, where accumulated experience in deploying a

technology reduces costs over time. This effect, coupled with R&D subsidies, supports substantial
long-term cost reductions in clean technologies, making them more competitive with conventional
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options. The model also accounts for international technological spillovers, allowing one region’s
R&D advancements to benefit others and emphasizing the role of global cooperation.

The WITCH model’s results demonstrate that combining carbon pricing with targeted R&D subsi-
dies effectively directs technological change toward low-carbon solutions. Early focused investments
in clean R&D can substantially reduce long-term mitigation costs by accelerating technological ad-
vancements and decreasing future abatement expenses [104]. This strategic integration underscores
the benefits of policies that simultaneously incentivize R&D and promote international collaboration,
establishing a robust framework for addressing climate change through directed innovation.

4. Agent-Based Modeling

IAMs often overlook the heterogeneous processes of technological adoption within social and in-
stitutional contexts. Factors such as government institutions [105] and infrastructure availability [106]
significantly influence how new technologies spread or encounter barriers in international and domestic
markets. Accurately capturing these dynamics is critical for modeling the green transition.

To model these path-dependent, explosive, or disruptive dynamical processes, introducing hetero-
geneous actors and agents in simulations is essential. ABM offers a computational method rooted
in complexity science, focusing on the individual behaviors of agents and their interactions within
a system [107]. Unlike conventional economic modeling techniques that rely on aggregate data and
the concept of a singular “representative agent”, ABM adopts a detailed, bottom-up approach. This
method is particularly useful for modeling systems with heterogeneous agents, nonlinear interactions,
and adaptive behaviors. Consequently, ABM is well positioned to provide an in-depth analysis of the
green transition—a process characterized by the different influences of various actors whose distinct
behaviors collectively dictate the pace and path of environmental progress [108, 109].

4.1. Core Tenets, Strengths, and Weaknesses of Agent-Based Modeling

Agent-Based Modeling is grounded in three core tenets: individual agents and their decision-
making capacities, heterogeneity among actors, and interactions leading to emergent systemic patterns.
ABM delineates individual agents—including private individuals, businesses, and government bod-
ies—each endowed with specific attributes and decision-making abilities. This granularity allows for
a detailed representation of how different entities influence and are influenced by their environments.

ABM acknowledges and embraces the inherent heterogeneity among agents, such as differences in
preferences, financial and regulatory constraints, and reactions to various incentives. Understanding
this diversity is essential for capturing the full spectrum of potential outcomes and identifying strategies
that leverage it. Furthermore, ABMs map the interactions among agents within their ecosystems, un-
covering emergent systemic patterns or behaviors that may not be immediately apparent. By modeling
these interactions, ABMs reveal how individual behaviors aggregate to produce collective outcomes,
such as tipping points in technology adoption or shifts in market dynamics.

For instance, an ABM studying EV adoption might demonstrate how initial government subsidies
create a critical mass of EV users, leading to network effects that lower costs and increase convenience
for subsequent adopters, resulting in a market-wide shift toward EVs. By focusing on these core tenets,
ABM provides a robust framework for exploring and understanding the complex, dynamic processes
that drive the transition to more sustainable and resilient systems. These principles enable ABM to offer
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deep insights into the interactions and behaviors that shape real-world outcomes, making it a powerful
tool for policymakers and researchers aiming to address environmental and economic challenges.

The inherent strengths of ABM lie in its strong ability to represent complex systems characterized
by numerous interacting participants, complex feedback loops, and the integration of technological,
social, and economic factors [110, 111]. These models are particularly pertinent in identifying emer-
gent outcomes or critical thresholds arising from the aggregated actions of individual agents, providing
invaluable insights crucial for navigating the green transition. Notwithstanding its merits, ABM faces
certain challenges. It requires extensive data on agent behaviors, preferences, and interaction patterns,
which can be difficult to obtain. Simulating large populations of agents over extended periods demands
considerable computational resources. Moreover, ensuring that ABMs produce realistic and reliable
outcomes necessitates meticulous validation efforts, often employing empirical data and thorough sen-
sitivity analyses to enhance the model’s credibility [112].

Despite these challenges, ABMs can be instrumental in deepening our understanding of sub-
processes already identified in global IAM pathways, such as technology lock-in and institutional
bottlenecks in specific regions and sectors. ABMs have been applied to sectors where heterogeneous
decision-making is significant, such as building renovation [113], national policies on coal phase-out
[114], and bottlenecks in granting permits for renewable capacity and power grids [115]. These sub-
processes can be soft-coupled to IAMs by implementing bounds and constraints in the sector or region
that match certain scenario outcomes from these sub-processes, or by directly incorporating ABM
formulations into IAM submodules.

4.2. ABM in energy systems and integration with IAMs

ABMs have been applied across various energy sectors, including power, transport, and buildings,
allowing for a potential linkage or integration with energy systems in process-based IAMs. For in-
stance, in the power sector, ABMs model interactions between producers, consumers, and grid op-
erators to simulate how policy changes, technological advancements, and consumer behaviors affect
renewable energy adoption and grid stability [116]. In urban settings, ABMs have been used to model
the adoption of sustainable transportation, capturing commuter behaviors and interactions to assess the
impact of policies on the uptake of public transit and cycling infrastructure [117]. ABMs also provide
insights into consumer behavior related to sustainable goods, considering factors like social influence,
environmental consciousness, and policies such as green labeling [118].

In particular, ABM-IAM integrations, or “ABIAMs”, can introduce heterogeneous agents (e.g.,
firms, households, financial entities) and enable adaptive, non-equilibrium dynamics, shocks, and
complex policy testing. Much of this work is currently conducted with stylized IAMs rather than
process-based IAMs. Nevertheless, aspects of this research can inspire integration approaches aimed
at improving specific aspects of process-based IAMs.

The Dystopian Schumpeter meets Keynes (DSK) model by Lamperti and colleagues expands the
Keynes+Schumpeter framework to include climate effects, innovation dynamics, and the financial sec-
tor’s role in low-carbon transitions [119, 120]. By simulating green financial regulations, such as
carbon-risk-adjusted credit ratings, it highlights impacts on both financial stability and climate re-
silience.The ABM-IAM model by Safarzyńska and van den Bergh [121] integrates income inequality
and R&D-driven technological innovation to show how these factors affect carbon costs and policy
effectiveness [121], particularly the social cost of carbon. The CFHS model by Michał Czupryna
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et al[122, 123] emphasizes regional dynamics in agriculture, productivity, and energy. It features a
detailed energy sector with multiple resources and models regional energy transitions in response to
resource depletion. The GRSW model by L. Gerdes et al. [124] addresses global inequality, examining
disparities between developed (North) and developing (South) regions. By integrating localized pollu-
tion effects on labor productivity, it underscores the socioeconomic costs of regional pollution and the
challenges of equitable climate policy.

Recent ABIAM applications reflect their growing role in climate policy analysis. Christoph
Schimeczek et al. [125]’s AMIRIS model uses an ABM approach to simulate electricity markets
and assess renewable energy integration, while the MUSE framework by Sara Giarola et al. [126]
examines global energy transition scenarios, focusing on technology adoption and investment. Leila
Niamir et al. [127] integrate ABMs with computable general equilibrium models to explore individual
actions on emissions, emphasizing behavioral change for climate targets. In urban systems, Christina
Nageli et al. [113] employ ABMs to assess how building renovation rates and technology adoption
influence emissions. Further, Karolina Safarzyn´ska [128] investigate how revenue-redistributive car-
bon taxes mitigate income inequality and enhance resilience, while Jinkun Dai et al. [129, 130] focus
on individual land-use decisions and sustainable agri-food systems. Finally, Alessandro Di Noia et al.
[131] explore coastal climate adaptation through ABMs, showing how individual and collective actions
shape resilience in vulnerable areas.

Future development of ABIAMs holds significant potential for refining the granularity of energy
system modeling, multi-sectoral economic structures, and land-use dynamics by exploring several
key areas. These areas include more sophisticated energy sector representations, integration of re-
source flows, expanded financial system modeling, and incorporation of DTC mechanisms. As Karl
Naumann-Woleske [132] highlights, models such as CFHS [122] and ACCLIMATE [133] have made
notable advancements, but further development could improve these frameworks. Integrating as-
pects of resource extraction, emissions-intensive processes, and end-of-life waste management will
be crucial, particularly as resource constraints impact the feasibility and timing of energy transitions
[134, 135]. Insights from industrial ecology, emphasized by Naumann-Woleske [132], could enrich
ABIAMs by applying frameworks like the stock-flow-service nexus [136] and incorporating social
factors that influence demand. This integration would allow ABIAMs to more accurately capture the
complex interplay between socioeconomic systems and resource use, addressing both material and
social constraints on sustainable development.

Rewriting state-of-the-art process-based IAMs to include multiple agents in the global energy and
land-use system is challenging due to their broad scope and limited data in developing countries. How-
ever, there are three ways IAMs and ABMs could be integrated. First, IAMs or down-scaled IAMs
can identify key abatement dynamics in sectors within a region. ABM scenarios can be constructed
based on these, focusing on hard-to-abate sectors where diverse policy proposals can be tested for het-
erogeneous actors. Second, where computational resources allow, IAMs can be soft-coupled to ABMs
of sectoral processes to produce baseline or NPi pathways. These models would reflect non-smooth
adoption under existing policies, likely resulting in a slower process and higher baseline tempera-
ture estimates, which could inform other climate-related fields, such as impact and adaptation. Third,
ABMs can be used to explore climate resilience. When climate damages are incorporated into IAMs,
adaptation adoption is highly heterogeneous. ABMs can simulate adaptation dynamics based on in-
come, exposure, and vulnerability, with the varying abilities of agents to adapt potentially amplifying
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or dampening overall climate-related damage on GDP.
Not every demand-side energy sector requires ABM to describe its dynamics in integration with

IAMs. For example, technological diffusion in the building and transport sectors differs from that
in industrial sectors. ABM studies in these sectors focus on technology adoption by heterogeneous
user groups or across diverse applications. In contrast, industrial sectors spread production techniques
and exchange information through specialized associations and conferences, involving fewer decision
makers. Depending on the tradability of the industrial good, producers often compete on efficiency and
cost, leading to a more homogeneous adoption process. However, even within a single sector, different
production processes can diffuse in varied ways. For instance, as Steve Pye et al. [137] shows, iron and
steel methods like the oxygen furnace, direct reduction iron, and continuous casting diffused differently
across regions. In this case, a single logit curve can effectively model diffusion using adoption year
and speed, with regional industries behaving more like a single agent than multiple ones.

5. Game Theory

5.1. Introduction to game theory

Game theory, recognized for its thorough examination of strategic interactions in various fields, is
crucial for understanding environmental sustainability. Depending on the game, it can analyze market
dynamics, entry strategies for emerging industries, and the complex behavior of entities within compet-
itive settings. Game theory can provide insights into decision-making influenced by the expectations of
others’ actions. This analytical tool helps navigate the intricate journey towards sustainable practices,
shedding light on the challenges and opportunities of the green transition. In IAMs, game theory has
also been applied to model trade, such as using Nash equilibrium [138].

Game theory is a systematic approach used to analyze the interactions between two or more players
to understand their behavior under defined circumstances. The importance of considering strategic
interactions in analyzing climate issues has a long-standing tradition [139–143].

Recent economic research on global warming policies has extensively concentrated on mitigation
strategies. Recent contributions of game theory to environmental economics have explored various
areas such as international climate agreements, the allocation of carbon credits, and the strategic in-
teractions between countries in reducing emissions. Additionally, game theory has been applied to
analyze cooperation and competition in the development and adoption of green technologies, the man-
agement of common resources, and the role of incentives in encouraging sustainable practices. These
insights help to better understand the dynamics and challenges of implementing effective global warm-
ing policies. However, despite the extensive use of game theory in environmental economics and green
transitions, it’s important to note that many models discussed within game theory may not integrate
economic, environmental, and resource dynamics into a single framework. Nonetheless, game theory
can be crucial as a tool for assessing the long-term implications of energy transitions. Policy insights
derived from game theory can help policymakers understand the behaviors of actors in the green eco-
nomic transition, therefore devise better policy strategies to encourage the adoption of sustainable and
environmentally friendly innovation. In this way, game theory insights can complement the more static
IAM policy targets, and increase the policy relevance of quantitative models.

Incorporating the principle of dynamic interactions, game theory recognizes that decisions are made
within a network of strategic considerations, influenced by both current and anticipated future scenar-
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ios. The work by E. Saltari et al. [144], on “A Nash equilibrium for differential games with moving-
horizon strategies”, serves as a notable example. Their study introduces a framework for understanding
strategic decisions in a dynamic context, offering an algorithm to calculate Nash equilibrium for dif-
ferential games. By employing nonlinear model predictive control methods, their research highlights
the continuous evolution of strategic decision-making in uncertain and shifting environments. This
progress in game theory, enhancing our understanding of the interactions between the economy and
the environment, strengthens our ability to address complex challenges in environmental sustainability.
It represents a crucial step towards a more sustainable future, particularly in addressing uncertainties
and policy impacts.

Game theory can be applied to both cooperative and non-cooperative scenarios. Among recent con-
tributions of game theory to environmental economics, Bruno Nkuiya [145] examined how the antici-
pation of abrupt environmental damage shifts can influence the behavior of non-cooperating countries.
However, IAMs, which capture the feedback between the economy and climate change damages, often
need to be linked to game-theoretic modules of coalition formation to study the stability of agreements
[146]. In recent years, various climate models have been employed to study the prospects of cooper-
ation. In this context, Giovanni Di Bartolomeo et al. [147] employed an approach that incorporated
both economic activity and the climate system. Their study compared individual emission levels gen-
erated by polluters acting non-cooperatively with those under cooperative solutions, highlighting the
differences in outcomes between these approaches.

5.2. Game theory and climate change

As mentioned, game theory offers valuable insights into the strategic interactions among players in
the context of climate change. By modeling various scenarios, it helps us understand how countries,
organizations, and individuals make decisions related to climate policies and resource management.
Recent papers have expanded on these themes, offering new perspectives and solutions in different
areas.

Nicola Acocella et al. [148] assessed strategic interactions in environmental governance, highlight-
ing policy trade-offs. Their formal policy game illustrated potential conflicts between central and local
authorities, revealing how coordination failures can lead to suboptimal provision of natural resources
and environmental protection. Addressing carbon emission reduction remains a global priority, with
cap-and-trade regulations widely adopted to achieve this objective. Chuyu Sun et al. [149] developed
two evolutionary game models to examine the effects of carbon tax and carbon emission trading poli-
cies within the context of fiscal subsidies. Their study explores how integrating these policies with
subsidies can more effectively promote the development of renewable energy, with a particular focus
on wind power. Kai Kang et al. [150] investigated the impact of cap-and-trade regulations on carbon
emission trading efforts between suppliers and manufacturers, using an evolutionary game model to
examine their investment decisions. Moreover, Ming Zhong et al. [151] applied cooperative game
theory to develop a comprehensive economic scheduling model for demand response within the con-
text of carbon trading. The goal was to optimize both collective and individual gains across various
scenarios. The study revealed that incorporating the carbon trading mechanism led to reductions in
system operating costs and carbon emissions, demonstrating favorable outcomes for both economic
and environmental objectives.

Within the context of green supply chain management, Rui Zhao et al.[152] applied game theory to
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examine the strategies that manufacturers adapt to minimize the environmental risks associated with
material life cycles and reduce carbon emissions. Kourosh Halat et al. [153] employed a Stackelberg
game framework involving both the government and the green supply chains (GSC). In this setup, the
government aims to maximize social welfare, while the GSC focuses on minimizing its costs. The
study investigates how coordination and carbon regulations affect inventory costs, carbon emissions,
and the government’s objective function.

Reyer Gerlagh, et al. [154] introduced a novel dynamic game, known as the green transition game,
which combines elements of coordination games and public good games, including considerations of
free-rider incentives. This dynamic three-player stag-hunt game captures aspects of transitioning from
a carbon-intensive economy to a green economy. Furthermore, Michael Finus et al. [155] demonstrated
that stable coalitions tend to be larger in the Stackelberg scenario compared to the Nash-Cournot sce-
nario within the context of the standard international environmental agreement game.

Additionally, Rui Bai et al. [156] utilizes game theory to illustrate that green finance plays a substan-
tial role, both theoretically and empirically, in fostering green innovation. These findings underscore
the critical role of government regulations and incentive mechanisms in shaping environmental policies
and promoting sustainable practices. Moreover, environmental regulations play a crucial role in effec-
tively mitigating pollution. Game theory, renowned for its robust theoretical foundation and modeling
capabilities, has been extensively utilized to study competition in environmental regulation (ER) for
pollution control [157].

In this context, Rafaela Vital Caetano et al. [158], investigated how carbon taxes and custom du-
ties on polluting imports can prevent the transfer of polluting industries from developed to developing
countries, using game theory and a dynamic game with incomplete information. Analyzing 24 devel-
oped and 18 developing countries, the study highlights the role of energy transition and recommends
stricter regulatory frameworks to attract clean FDI and enhance the deterrent effect of carbon taxes.

Additionally, game theory plays a vital role in understanding geopolitical competition, providing
valuable insights into the strategies and decisions of various global actors. In the context of electricity
grids and geopolitics, Songying Fang et al. [159] employed a game-theoretic framework to explore
the potential outcomes of synchronizing the Baltic electricity grid with Europe while simultaneously
desynchronizing it from Russia’s BRELL network. This analysis aimed to enhance energy security for
Estonia, Latvia, and Lithuania. In the context of electric power markets, Steven A. Gabriel et al. [160]
presented a mixed-integer linear programming model designed for a Stackelberg game within network-
constrained industries. The model is applied to both a three-node example network and a fifteen-node
Western European grid. The results highlight the model’s effectiveness and its potential for addressing
larger-scale problems in the future. Furthermore, rare earth and critical materials play a crucial role
in consumer products, green technologies, and military applications today. In this context, among
recent studies, Benteng Zou et al. [161] analyzed the U.S.-China competition for rare earth elements
from a dynamic game perspective. The findings indicated that the U.S. should delay production until
its rare earth reserves align with China’s. While China’s monopolistic supply isn’t influenced by the
chosen strategy, the duopolistic Markovian approach initially proves more profitable than an open-loop
commitment. However, as competition continues, the situation reverses, with both countries ultimately
benefiting more from committing to an open-loop supply strategy. Using an international relation
perspective, Maciej Filip Bukowski [162] explores the complexity of the geopolitics of climate change,
framing it as a “wicked problem” due to the multitude of variables and conflicting national interests
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involved. It argues that applying concepts from Game Theory, specifically the Nash Equilibrium, could
help reconcile competing geopolitical interests and support the achievement of global climate goals,
such as reducing GHG emissions and decarbonizing the economy.

5.3. Incumbents vs. newcomers game in the green transition

The role of newcomers in the green transition is crucial, as they introduce innovative technologies
and approaches that can accelerate progress towards sustainability. Understanding their impact is es-
sential for shaping effective policies and strategies. Building on game theory, a focused application of
this framework is illustrated through the dynamics of incumbents vs. newcomers in the green transi-
tion. Depending on the technique used, these competitive scenarios may involve either a single player
acting strategically or both incumbents and potential market entrants engage in a strategic battle, each
aiming for profit maximization. In a game-theoretic analysis of incumbents vs. newcomers, incum-
bents usually move first, but since they are playing in a game, they have to take the reaction of the
newcomers into account. This strategic interplay underscores the dynamic nature of market competi-
tion, where incumbents’ decisions not only shape their own outcomes but also influence the strategic
responses of newcomers, shaping the overall market landscape. In this type of game, the core players
can be identified as:

• Incumbents, Leaders, or Cartels: In the context of the green transition, depending on the game,
these players typically set prices or determine extraction and exploitation paths.
• Newcomers, Followers, or Fringes: These players, which may consist of small groups or individ-

ual entities, react to decisions made by the incumbents and aim to challenge their positions within
the market.

In an analysis of incumbents versus newcomers, game theory can provide valuable insights into two
key aspects:

5.3.1. Setting the price in the game

Incumbents can use strategic pricing to prevent new competitors from entering the market, as seen
in dynamic limit pricing games. Incumbents can set prices with the intent to deter new entrants, who, as
fringe players, are forced to adapt their strategies accordingly. This strategic interplay gains additional
complexity with the growing emphasis on sustainability, prompting incumbent firms to reassess their
market strategies to align with environmental goals.

Among recent studies, this theme is illustrated by W. Semmler et al. [163]. This research ad-
dresses the confrontation between incumbent fossil fuel entities and emerging renewable energy firms,
by employing a game-theoretic lens to examine the entry barriers and financial accessibility disparities
between dominant companies and new entrants. Through these dynamics, the study highlights how
financial differences shape the competitive battlefield in the energy sector’s pivot towards sustainabil-
ity. Hassan Benchekroun et al. [164] investigates a game between oligopolistic fossil fuel suppliers,
fringe suppliers, and producers of a renewable substitute. The findings highlight economic rather than
physical exhaustion of non-renewable resources under cost assumptions, and identify a phase of limit-
pricing where both fossil and renewable suppliers remain active.
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5.3.2. Setting the extraction path in the game

In the strategy of determining how to extract a shared resource, a leading firm often takes the lead,
markedly influencing the market direction. This leadership involves strategically deciding how fast and
in what manner to extract resources, affecting not only the company’s path but also the overall market
environment. New entrants typically assume the role of followers, adjusting their strategies based
on the leading firm’s decisions. These dynamics highlight the complex interplay between leadership,
market response, and competition, especially relevant in the development of green technologies and
efficient resource use.

Key academic contributions illuminate the intricacies of this strategic framework. For example,
F. Groot et al. [165] presented a scenario in which the leading firm determines the pace of resource
extraction while tacking the resource’s value into account. This approach outlines the market’s sequen-
tial and responsive nature, with new entrants tailoring their strategies to the leader’s decisions. Among
recent contributions, B. Minooei Fard et al. [166], employed game theory to explore the competitive
dynamics in the Rare Earth Elements (REEs) market, investigating the behavior of China and other
market players. This research examines the strategies around pricing, resource extraction, and supply
chains used by China and other global players, highlighting the tactics for preserving market control
and the consequences of resource scarcity.

5.3.3. Effect of policy

Additionally, it is important to note that public policy plays a crucial role in influencing the interac-
tion between incumbents and newcomers, especially in the context of promoting or hindering the green
transition. Government policies can incentivize sustainable practices, encourage innovation in green
technologies, or impose regulations that level the playing field for newcomers. Conversely, policies
favoring incumbents may hold back competition and prevent the adoption of environmentally friendly
solutions. Thus, the interplay between incumbents and newcomers is not only shaped by market dy-
namics, but also by the broader regulatory environment set by public policy. In this context, we can
refer to W. Semmler et al. [163], which demonstrates how market outcomes can be influenced by
environmental public policies that support renewable energy firms.

One area where the impact of public policy is particularly significant is in the green supply chain.
Jiuh-Biing Sheu et al. [167] employed a three-stage game-theoretic model to examine how green sup-
ply chain participants respond to competitive pressures under government interventions. Their findings
indicate that the government should implement green taxation and subsidies to ensure that the profits
from green-product production remain positive. Among recent contributions, Seyed Reza Madani et
al. [168] focused on governance policies that promote the production of greener, more sustainable
products. They developed a mathematical model where the government acts as the leader, and two
competing supply chains, green and non-green, are the followers. The study discussed pricing poli-
cies, greening strategies, and governance tariffs in the context of supply chain competition. Moreover,
Xin Chen et al. [169] investigated the impact of subsidy strategies on the green supply chain by devel-
oping a three-stage Stackelberg game model involving the government, manufacturers, and retailers.
Their study analyzed the effects of policy interventions, including cost, R&D, and sales subsidies.
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5.4. Enhancing IAMs with game-theoretic frameworks

IAMs typically simulate market equilibrium, assuming symmetrical information among players.
However, the rapid advancement of mitigation technologies and the growing complexity of the tech-
nological and supply-chain landscape make this assumption increasingly unrealistic. Climate policies
are tightening globally and becoming more intertwined with geopolitical and national security issues.
In this context, information asymmetry among players is common. Game-theoretic frameworks can
help conceptualize the complex and dynamic interactions in climate mitigation research, enhancing
the policy relevance of IAMs. For instance, the IAM WITCH has incorporated game theory to model
coalition formation for achieving ambitious climate action [170]. We propose a few concrete policy
research questions that could, in theory, be addressed by integrating game theory with IAMs.

• Producers’ strategic approaches to price setting: Due to rapid technological progress in trans-
port electrification, demand growth in fossil fuel sectors is already slowing. As mitigation requires
a rapid phase-out of fossil fuels, this process accelerates in IAM scenarios. This could lead to sit-
uations where fossil fuel prices fall below production costs. As IAMs are equilibrium models,
they cannot simulate prices below production costs. However, limit pricing games can provide
a qualitative decreasing price trajectory for fossil fuels, which can be quantified by producers’
cash flow. The resulting price can be fed back into IAMs, altering competition dynamics between
green synthetic liquid fuels and fossil fuels, potentially making the green alternative less com-
petitive, requiring more policies. Price-setting could also apply to green energy producers, where
firms may adjust heterogeneous pricing strategies, particularly in export sectors like Chinese solar
panel exports [171]. Detailed IAM pathways can incorporate such pricing dynamics, leading to
near-term adjustments in technology diffusion but potentially having long-term path-dependent
effects.
• Supply-chain management: Aggregated IAMs cannot capture the full complexity of interactions

within green supply chains. Game-theoretic studies [152, 153] demonstrate how supply chains
respond to government interventions and green policies. These studies offer detailed insights into
how stakeholders interact under competitive pressures and regulatory interventions, highlight-
ing the trade-offs businesses face when adopting sustainable practices. In this context, carbon
price or total investment variables derived from IAM benchmark pathways can be integrated into
game-theoretic analyses of supply chains, considering strategic interactions under policy-driven
scenarios.
• Geopolitical competition: Optimization-based IAMs often struggle to fully simulate the com-

plex and evolving nature of geopolitical competition over energy resources, whereas game-
theoretic approaches offer detailed insights into strategic moves and interdependencies between
nations. For example, decisions on rare earth element markets, as analyzed by B. Minooei Fard
et al. [166], or the synchronization of electricity grids, as examined by Songying Fang et al.
[159], involve strategic choices made to secure energy autonomy or align with politically favor-
able regions. By integrating these insights from game theory, IAMs can enhance their realism,
accounting for the interactive and competitive aspects of international energy security. For in-
stance, if one country heavily invests in renewable energy to reduce fossil fuel dependence, IAMs
can use game-theoretic models to predict how neighboring countries might respond. This allows
IAMs to simulate energy policy adjustments as countries aim to maintain competitive balance,
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secure supplies, or align with renewable energy leaders. By incorporating such strategic insights,
IAMs can model a broader range of potential outcomes, reflecting the dynamic geopolitical nature
of energy policies, rather than relying on static assumptions.
• Strategic interaction around green technology choice: IAMs typically lack regional growth

motives and technological specialization based on existing technology stocks. Game-theory mod-
els, however, suggest that regions may form “technology clusters”, where industries focus on
advancing technologies in which they have a perceived competitive advantage. For example,
Japanese car manufacturers prioritize hydrogen fuel-cell vehicles, German carmakers focus on
synthetic fuel, coal-dependent countries may support synthetic ammonia or biomass co-firing,
and Saudi Arabia might specialize in carbon capture and storage. These technology choices often
deviate from cost-optimal options like electric vehicles or widespread wind and solar deployment.
Nonetheless, by pursuing these strategies, regions with existing industrial advantages can secure
a substantial share of the green energy market or dominate specific segments of future supply
chains, shaping technology development in their favor. Less-developed regions, reliant on capital
and technology transfers from more industrially advanced ones, may also be influenced by these
suboptimal technology choices. This dynamic can impact the diffusion of green technologies in
IAMs, such as their speed and direction, i.e. technology adoption does not occur uniformly but
follows networks shaped by economic and geopolitical relations.

6. Concluding remarks and outlooks

6.1. Integration of political economy into climate mitigation modeling

As Bruno Turnheim et al. [172] points out, “governing open-ended, uncertain, contested, disruptive
change processes is very different from governing the efficient exploitation of relatively stable systems,
which dominated in previous decades in many countries.” Process-based IAMs, using mainstream
environmental economic frameworks, have inherent limitations in capturing disruptive, heterogeneous,
and path-dependent dynamics in structural transitions. This gap is increasingly recognized within and
outside the IAM community. In this paper, we survey recent developments in mainstream climate
mitigation modeling while drawing on critical IAM literature. By introducing three complementary
dynamical methods, we propose new approaches for integrating political economy aspects into IAMs’
scenario designs and pathways.

In this critical review, building on a more comprehensive introduction to IAM methodology com-
pared to previous literature, we propose several ways to improve the existing framework. First, enhance
the quality of pathways by increasing IAMs’ temporal, spatial, and technical resolution through both
hard and soft coupling, and gradually replace coarse CES-based formulations with process-based ones.
Second, improve the depiction of technological innovation by expanding IAM technology portfolios
and implementing two-factor learning curves (and possibly a “learning and forgetting curve” to cap-
ture knowledge depreciation). Third, incorporate dynamic models, particularly for demand sectors,
diversify the policy mix in IAM pathways to systematically include regulatory, investment, and infras-
tructure policies, and develop alternative ambitious climate scenarios where carbon pricing is not the
main driver, but part of a broader policy mix.

To integrate political economy aspects into IAMs, we propose three dynamic models that address
key limitations. These models focus on the political economy of innovation, heterogeneous adoption
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dynamics, and strategic responses in the green transition. The DTC model links profit, investment,
innovation, and growth, with features like knowledge stock accumulation, depreciation, and endoge-
nous growth from innovation that can be incorporated into IAMs as stand-alone components. ABMs
model transitional dynamics as a heterogeneous diffusion process, refining IAM baseline dynamics by
modeling the impacts of existing climate policies on different groups in a more realistic way. ABMs
can also examine the heterogeneous response to climate damage and adaptation based on wealth and
income, feeding back into IAMs through economic growth, energy and food demand. Game-theoretic
models could enhance IAMs by simulating strategic interactions in pricing dynamics, supply chains,
and geopolitical competition. For example, limit pricing games can model price declines in fossil fu-
els, while game theory can show how countries and firms navigate competitive pressures and policy
interventions. Additionally, game theory can explain regional technological specialization and innova-
tion, illustrating how countries prioritize certain green technologies based on competitive advantages,
influencing global technology adoption in IAM scenarios.

While we cannot comprehensively cover all the latest advancements or critiques of IAMs, nor pro-
vide an exhaustive discussion of dynamic models, we hope this paper offers valuable insights and
concrete suggestions for advancing the research agenda in climate mitigation modeling. In our last
reflection, we would like to highlight that there exist limitations common to all quantitative models to
portray key aspects of climate mitigation, which is related to institutional change, as well as endoge-
nizing the role of finance and debt in relation to growth.

6.2. Future research on endogenizing institutional change, growth and finance

Over the past three decades, IAMs and other quantitative models have gained traction within policy
and research communities. However, their real-world impact remains limited in effectively coordi-
nating rapid and global climate action, due to various internal and external factors [6]. Beyond their
limited depiction of political economy, a key challenge for successful climate mitigation is modeling
institutional behavior change. A simple coupling of IAMs with political economy models, as fre-
quently suggested in the critical literature, does not adequately endogenize institutional change—an
essential component for understanding how an existing industrial regime is destabilized, phased out,
and replaced by a new one, especially when considering past cases from industrial history [173, 174].
To give an example, the previous lack of endogenous modeling for coal phase-out policies and power
sector transitions led to unrealistic coal phase-out pathways in IAMs [90]. Although recent efforts have
integrated political economy constraints, such as the diffusion and adoption of coal phase-out pledges
[91], these hybrid models still remain highly aggregated [80] and fail to capture the complex social and
political processes underlying the adoption of such policies or their regional diffusion.

As Michael Grubb et al. [6, 60] suggest, understanding these processes requires economic thinking
beyond the neoclassical framework to endogenize institutional change. While many social theoretical
frameworks analyze industrial regime and policy changes (e.g., those mentioned in the studies by
Anders Enggaard Bødker et al.[175, 176], we propose Masahiko Aoki’s game-theoretic framework
for studying institutional change in the “post-carbon” transition. This dynamical model of institutions
resists full mathematical formulation. Known as the “equilibrium-summary-representation” approach,
it provides a process-based model for institutional evolution [177–179]. In essence, institutions are
neither the equilibrium outcome of the game, nor the set of rules of the game, but a system of shared
beliefs and “summary representations”—compressed information about the game’s equilibrium—that
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coordinate them. Together, the “summary representations” that coordinate shared beliefs and the shared
beliefs themselves contribute to the collective sustaining and remaking of the institution.

Under Aoki’s framework, creating a shared belief about the equilibrium of the new rules is key
to driving institutional change. In terms of climate mitigation, the institutional change needed for
successful climate mitigation requires coordinated cognitive shifts among participants, i.e., creating
shared beliefs, which have a substantive base. How the “post-carbon” game’s rules would look like are
currently only communicated through quantitative “compressed information”, in the form of scenario
pathways of IAMs and results from dynamic models. By providing an internally consistent “sum-
mary representation” of a green future, these models have played (or were expected to play) a crucial
role in coordinating this shared belief about how a “post-carbon” game will unfold. Aoki’s frame-
work also make more obvious and explicit the observation that IAM results cannot be interpreted as
an equilibrium of the world post-carbon. Since mitigation models—whether dynamic or optimization-
based—cannot be expected to portray a real equilibrium where global society achieves ambitious cli-
mate targets, as the politics and rules of the game are constantly evolving. No models can predict the
changing structure of power over the next 20 years, let alone 50 or 80 years.

Hence, we are to interpret the quantitative results from the models as a form of “compressed in-
formation” about how the post-carbon game will be played, and not the equilibrium of the outcome.
However, there are at least two difficulties on how such model results could then coordinate shared be-
liefs. First, due to the aggregate, engineering-focused, and static nature of many quantitative models,
the full implications of these pathways for the actors shaping a new “post-carbon” rule, as well as their
evolving strategies, are difficult to articulate. Second, the representation of the rule in the “post-carbon”
world currently lacks a substantive base. For a world meant to embody sustainability and equity, there
has been a lack of sufficient international policies to ground these compressed visions—policies such
as loss and damage funds, green finance, and grants for the least-developed countries. This results in a
vicious cycle—a lack of substantive policies that back up a supposed shared vision, leads to denial or
doubt about the “summary representation” regarding the post-carbon world (e.g. climate models and
transition pathways), which then in turn leads to increasing difficulties in coordinating shared beliefs
among actors to create endogenous institutional change.

However, if the quantitative models (or any analytical models) can credibly and precisely articulate,
what the equilibrium of the “post-carbon” rule may be, and the more shared beliefs are grounded in
common values such as equity, fairness, feasibility, growth, and resilience, the easier the shared beliefs
about the post-carbon world can be coordinated. To create a “summary representation” of how the new
“post-carbon” game will unfold, IAMs and quantitative models are just one way to coordinate beliefs.
Other academic works using different analytical methods from diverse disciplines are also needed to
explore these implications from various perspectives.

Lastly, as many studies highlight, technological innovation, economic growth, debt, and finance are
intricately interlinked and must be considered together in a comprehensive climate mitigation frame-
work [2, 8, 180]. The relationship between growth, debt, and emissions is complex, shaped by finan-
cial structures, fiscal policies, inequality, investment, and technology choices [181–184]. Since IAMs
play a role in both setting targets and monitoring progress, understanding and endogenizing economic
growth is crucial, as uncertainties in growth rates directly affect energy demand projections. To better
understand growth, finance, technological innovation, and emissions, IAMs must go beyond simplistic
GDP-emission decoupling and incorporate frameworks like Keynesian or post-Schumpeterian models
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[180, 185, 186].
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56 José Ângelo Ferreira, Edson Luiz Valmorbida, Bruno Goulart Sato, et al. (2024) Forgetting curve
models: A systematic review aimed at consolidating the main models and outlining possibilities
for future research in production. Expert Syst 41: e13405. https://doi.org/10.1111/exsy.13405

57 Annika Stechemesser, Nicolas Koch, Ebba Mark, et al. (2024) Climate policies that achieved
major emission reductions: Global evidence from two decades. Science 385: 884–892.
https://doi.org/10.1126/science.adl6547

58 R. Pietzcker, J. Feuerhahn, L. Haywood, et al. (2021) Ariadne-hintergrund: Notwendige co2-
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124 L. Gerdes, B. Rengs, M. Scholz-Wäckerle (2022) Labor and environment in global value chains:
An evolutionary policy study with a three-sector and two-region agent-based macroeconomic
model. Journal of Evolutionary Economics 32: 123–173. https://doi.org/10.1007/s00191-021-
00750-7

125 Christoph Schimeczek, Michael Sonnenschein (2020) AMIRIS – a simulation model for analyz-
ing the market integration of renewable energies by simulating the electricity spot market. In 2020
17th International Conference on the European Energy Market (EEM), pages 1–6. IEEE.

126 Sara Giarola, Shivika Mittal, Adam Hawkes, Paul Deane, et al. (2021) The MUSE integrated
assessment model for global energy systems: An application of high-performance computing.
Environ Modell Softw 137: 104929.

127 Leila Niamir, Gregor Kiesewetter, Fabian Wagner, et al. (2020) Assessing the macroeconomic
impacts of individual behavioral changes on carbon emissions. Clim Change 158: 141–160.
https://doi.org/10.1007/s10584-019-02566-8
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