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Geography and availability of natural habitat 
determine whether cropland intensification 
or expansion is more detrimental to 
biodiversity
 

Silvia Ceaușu    1  , David Leclère    2 & Tim Newbold    1

To mitigate biodiversity loss from agriculture, intensification is often 
promoted as an alternative to farmland expansion. However, its local 
impacts remain debated. We assess globally the responses of three 
biodiversity metrics—species richness, total abundance and relative 
community abundance-weighted average range size (RCAR), a proxy for 
biotic homogenization—to land conversion and yield increases. Our models 
predict a median species loss of 11% in primary vegetation in modified 
landscapes, and of 25% and 40% in cropland within natural and modified 
landscapes, respectively. Land conversion also reduces abundance and 
increases biotic homogenization, with impacts varying by geographic 
region and history of human modification. However, increasing yields 
changes biodiversity as well, including in adjacent primary vegetation, 
with effects dependent on crop, region, biodiversity metric and natural 
habitat cover. Ultimately, neither expansion nor intensification consistently 
benefits biodiversity. Intensification has better species richness outcomes 
in 29%, 83%, 64% and 57% of maize, soybean, wheat and rice landscapes, 
respectively, whereas expansion performs better in the remaining areas. 
In terms of abundance and RCAR, both expansion and intensification can 
outperform the other depending on landscape. Therefore, minimizing local 
biodiversity loss requires a context-dependent balance between expansion 
and intensification, while avoiding expansion in unmodified landscapes.

Agriculture is one of the major drivers of biodiversity loss1,2 and many 
projections suggest that biodiversity loss due to agriculture may con-
tinue to occur locally, even under ambitious scenarios that include 
efforts to limit future demand for agricultural products3–5. Policies 
attempting to reduce the biodiversity cost of agriculture often aim to 
reduce farmland expansion by increasing yields on existing agricultural 
land6,7. To understand the effectiveness of this strategy we need to fully 
quantify the biodiversity impact of yield increases and compare it to the 

impact of farmland expansion. Considering there is a large uncertainty 
about where land-use pressure could increase in the future8, we also 
need to understand the relative biodiversity costs of expansion and 
intensification across global landscapes.

The intensification–expansion options are often discussed either 
in terms of spatial hotspots of potential conflict with biodiversity 
conservation9, or within the land-sparing/sharing framework10,11. In the 
latter approach, the two ends of a continuum of options are extreme 
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do the hypothetical impacts of land conversion and yield increases 
targeting an equal increase in production compare within each exist-
ing agricultural landscape, defined here as the extent of one raster cell 
with any amount of cropland? We analyse crops separately to capture 
potential differences in landscape types and landscape effects of differ-
ent management approaches, and we focus on two land uses: cropland 
(that is, land used for cultivation of herbaceous crops) or primary 
vegetation (that is, land showing no evidence of prior destruction of 
vegetation, either by human actions or extreme natural events). We 
use a space-for-time substitution to model three biodiversity metrics: 
sampled species richness, sampled total abundance and relative com-
munity abundance-weighted average range size (RCAR). First, we model 
how biodiversity reacts to land-use conversion locally (farmland versus 
primary vegetation) and at landscape scale (modified landscapes with 
less than 30% natural habitat versus natural landscapes with more than 
70% natural habitat) by creating a combined land-use–landscape vari-
able (Fig. 1a,c). We chose these thresholds of natural habitat based on 
research showing that ~30% and ~70% mark important thresholds in 
how habitat loss and spatial arrangement of habitat patches interact 
to reduce biodiversity44. These values also broadly align with habitat 
cover thresholds identified for biodiversity in tropical forests45 and in 
agricultural landscapes46. Second, we model biodiversity impacts of 
agricultural yield47 and amount of natural vegetation in the landscape48 
(Fig. 1b,c). Relying on these models, we then answer the third and 
fourth questions (Fig. 1c). We first project the impact of fully closing 
yield gaps on existing cropland identified as having yields below the 
maximum attainable yields for the respective region and crop6. We 
then compare estimated biodiversity impacts of achieving an arbitrary 
increase in production by either expansion or intensification for each 
crop and within each raster cell already containing the respective 
crop, regardless of the yield levels in the year 2000, in accordance with 
the principle of comparing alternatives that are matched in terms of 
total production10,49. Although we test several production increase 
targets, we focus on the results for a 1% uniform production increase 
to minimize the number of raster cells for which we would achieve 
invalid land-use proportions in the expansion scenario, for example, 
cropland occupying more than 100% of the cell or primary vegetation 
contracting to below 0%. Our unrealistic scenario of 1% uniform pro-
duction increase is obviously unsuitable to predict credible land-use 
change patterns, but is suitable to compare impacts of hypothetical 
intensification and expansion within each agricultural landscape. 
Given that most comparisons of intensification and expansion focus 
on conversion of primary or natural vegetation into cropland11,17,50, 
our expansion projections also focus on the primary vegetation to 
cropland conversion. Moreover, stress testing the prevailing opinion 
that intensification is less detrimental to biodiversity than expansion 
requires a comparison of intensification against the most impactful 
type of expansion, which is the one at the cost of primary vegetation.

Results
Biodiversity impacts of habitat conversion
Relative to primary vegetation in natural landscapes, the other 
land-use–landscape categories showed reductions in species richness 
(Fig. 2a) and abundance (Fig. 2b,d), and increases in RCAR (Fig. 2c,e), 
although the statistically significant interactions of the combined 
land-use–landscape variable with other model variables suggest 
distinct patterns for different types of landscape. For example, the 
interaction with geographic region was selected as significant for total 
abundance and RCAR (Fig. 2b–e). The results suggest that in tropical 
regions, primary vegetation in modified landscapes remains relatively 
close in terms of abundance and RCAR to primary vegetation in natural 
landscapes, and the 95% confidence intervals include 0, indicating no 
significant difference between these two categories. In non-tropical 
regions, it is the cropland in natural landscapes that has biodiversity 
levels closest to primary vegetation in natural landscapes in terms 

land sparing, when production is concentrated on the smallest pos-
sible area by intensifying agriculture, and extreme land sharing, when 
production is spread with the lowest possible local impact through 
the use of biodiversity-friendly practices10. The land-sparing/sharing 
studies often rely on models of population density in relation to yield at 
regional scales as a measure of likelihood of species persistence, aimed 
at understanding extinction risk. Most of these studies conclude that 
more species would benefit from land sparing than from land sharing 
at a given production target7,12–14, whereas other studies suggest that 
species responses are mediated by surrounding natural habitat15–18 
and land-use history19–21. Studies of local community metrics in rela-
tion to yield, which is important to understand ecosystem service 
supply22, and stability of ecological communities23 are rarer, and show 
mixed responses of biodiversity to yield increases24–27. Neither species 
persistence nor community metrics responses to yield increases were 
assessed across global agricultural landscapes, so our understanding 
of the comparative biodiversity impacts of agricultural intensification 
and expansion is far from complete.

Quantifying land-use intensity globally is a complex challenge 
due to the multiple dimensions of intensity, and the gaps and uncer-
tainty of many data sources28. To quantify the biodiversity impacts 
of agricultural management, previous large-scale studies have used  
output proxies such as human-appropriated net primary productivity29, 
agricultural inputs such as fertilizers29 or broad categories of land-use 
intensity, which typically consider both agricultural inputs and 
outputs30,31. As agricultural management is only a means to obtaining 
a certain level of yield, focusing instead on the biodiversity impact of 
yield provides a more direct relationship to consumption patterns, 
which foregrounds the importance of the demand-side measures 
to reducing biodiversity impacts of agriculture4. This approach also 
provides a more direct relationship to agricultural production, as 
higher agricultural inputs do not always translate into higher yield, and 
degraded farmland might actually require higher inputs for the same 
yield level32. Similarly, yields can be increased with lower biodiversity 
impacts when relying on ecosystem services33,34 or using technological 
improvements benign for biodiversity35.

To fully quantify the biodiversity impact of yield increases, we 
have to look beyond the most frequently used metrics of species 
richness30,31,36 and total abundance31,36, which can obscure changes 
in community composition. Biotic homogenization, which happens 
when ecological communities become increasingly similar across 
space37, is often a consequence of human impact even when other 
biodiversity metrics appear unchanged38. Among species character-
istics used to capture changes in community composition and biotic 
homogenization39,40, range size is a key predictor of extinction risk41 and 
therefore highly relevant for conservation goals. Community-average 
range size, often weighted by the abundance of the component species, 
reflects shifts in composition towards more geographically widespread 
or narrow-ranged species, indicating whether a community becomes 
more or less distinctive42. Apart from Phalan et al.7,11, who report how 
global ranges of birds and trees in Ghana and India relate to species’ 
ability to persist in agricultural landscapes at different yield levels, 
few studies report how biotic homogenization relates to agricultural 
management42, and none to different yield levels at a global scale.

Here we provide a global assessment of the biodiversity conse-
quences of land conversion and yield increases in landscapes pro-
ducing four crops: maize, soybean, wheat and rice, which together 
represent over half of the total global calorie production43. We achieve 
this in four stages, each focused on a specific question: (1) what is the 
biodiversity impact of land conversion in the absence of any yield 
considerations, considering both local and landscape-level effects 
of land conversion? (2) Within agricultural landscapes, what is the 
biodiversity impact of increasing yields? (3) What is the biodiversity 
impact of reaching the maximum attainable yield in a given region, that 
is, closing yield gaps6, in the absence of land conversion? And (4) how 

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-025-02691-x

Land-use type

a

c

b

Landscape type

Data sources Model variables

Interactions
LU–landscape combined variable × Geographic region

LU–landscape combined variable × Duration of human modification

PREDICTS
database Land use

LU–landscape combined variable

Primary veg–natural
landscapes

Cropland–natural
landscapes

Primary veg–modified
landscapes

Cropland–modified
landscapes

% natural habitat

Mean annual temperature

Annual precipitation

Geographic region

Crop diversity

Subsistence yield

Yield bu�er–focal
di�erence

Interactions
Yield × Subsistence yield

Yield × Geographic region
Yield × % natural habitat

Yield × Land use
% natural habitat × Subsistence yield

% natural habitat × Geographic region
% natural habitat × Land use

Yield

Duration of human modification

% natural habitat
bu�er–focal di�erence

Downscaled LUH
land-use data

WorldClim

Defined
based on
latitude

EPIC-BOKU
MapSPAM

EarthStat
MapSPAM

HYDE

Mixed-e�ects models

Conversion
models Species richness Closing yield

gaps

Uniform
production
increases

Total abundance

RCARYield
models

Response variables Projections

Number of sites 1 2 3 4 >5

Human-modified landscape Natural landscape Yield size relative to maximum yield 0.25 0.50 0.75

Cropland Primary vegetation Geographic region Non-tropical sites Tropical sites

Fig. 1 | Global distribution of PREDICTS sites used for the land conversion and 
yield–biodiversity models, and overview of data sources, variables, models 
and projections. a, PREDICTS site distribution for the land-conversion models of 
biodiversity response to land use and landscape type. Circles and triangles show 
cropland and primary vegetation sites, respectively, and purple and green show 
human-modified (less than 30% of natural vegetation) and natural landscapes 
(more than 70% natural vegetation), respectively. b, PREDICTS site distribution 
for the yield–biodiversity models of biodiversity response to different yield 
levels of maize, soy, wheat and rice. Orange and blue indicate tropical and non-
tropical sites, respectively, and circle size is proportional to the yield relative 
to maximum yield for each crop, aggregated across maize, soybean, wheat and 
rice. The relative yields were aggregated by weighting each crop yield by the 
size of the cropland for that particular crop out of the total agricultural area for 

the four crops in each location. The symbols for PREDICTS sites in a and b are 
transparent to make overlapping sites visible. Please note that the transparency 
of symbols is reduced by overlap with sites that are in close proximity, not at the 
same exact location. c, Graphical illustration of the data sources, model variables 
and their use across the two types of models and projections. ‘Yield’ represents 
the landscape yield for each of the four crops, ‘% natural habitat’ represents the 
percentage of natural habitat in the landscape, and ‘yield buffer–focal difference’ 
and ‘% natural habitat buffer–focal difference’ represent the difference between 
the one-cell buffer value and the focal cell value for yield and percentage of 
natural habitat, respectively. ‘LU–landscape’ combined variables refer to the 
land-use–landscape combined variable. All other variable names are self-
explanatory. Panels a and b made with Natural Earth world basemap.
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of total abundance (Fig. 2d) and RCAR (Fig. 2e). The species richness 
effects (Fig. 2a) and the non-significant interaction between land-use–
landscape categories and geographic region for this metric suggests 
that species are lost with land conversion at similar rates in both tropical 
and non-tropical landscapes. It is important to highlight the imbalance 
in the number of data points between the different categories of the 
combined land-use–landscape variable and between data points in 
tropical and non-tropical regions, which might contribute to wider 
confidence intervals in some cases (Fig. 2 and Supplementary Table 1).

Other significant effects in the conversion models included mean 
annual temperature in the abundance and species richness models, 
and annual precipitation in the species richness model. Duration of 
substantial human landscape modification and its interaction with 
the combined land-use–landscape variable were retained in the spe-
cies richness (Extended Data Fig. 1) and RCAR models (Extended Data 
Fig. 2). Areas that have experienced late substantial human landscape 
modification (in the past 500 years) exhibit more pronounced rich-
ness and RCAR differences across the land-use–landscape categories 
than areas that have experienced early substantial human landscape 
modifications (~2,000 years ago; Extended Data Figs. 1 and 2). The 
exception to this pattern is represented by RCAR in cropland in natural 
landscapes, where the increase is greater for landscapes with a long 

history of substantial human landscape modification, although the 
small number of data points reduces confidence in this result (Extended 
Data Fig. 2b).

Biodiversity impacts of yield increases
Biodiversity change with yield increases is mediated by land use, geo-
graphic region and percentage of natural habitat in the landscape. 
Yield increases were associated with decreases in species richness 
(Fig. 3a,c,d) with two exceptions: landscapes with soybean cultivation, 
where soybean yield increases were not associated with any changes 
in species richness (Fig. 3b); and landscapes with rice cultivation and 
high percentage of natural vegetation, where rice yield increases were 
associated with increases in species richness (Fig. 3d). The associa-
tion between yield increases and total abundance is more complex 
(Fig. 3e–h), the interaction with geographic region becoming important 
to explain abundance patterns within landscapes with maize, soybean 
and rice cultivation (Fig. 3e,f,h, respectively). The general pattern in 
these landscapes is that total abundance increases with yield in tropical 
landscapes and decreases in temperate landscapes, while high levels 
of natural vegetation accentuate increases and dampen decreases in 
tropical and non-tropical landscapes, respectively. In landscapes used 
to grow wheat, total abundance decreases with increases in yield, most 
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Fig. 2 | The modelled effect of land conversion at local and landscape scale on 
three biodiversity metrics in tropical and non-tropical regions. a–e, Modelled 
species richness (a), total abundance (b,d) and RCAR (c,e) in primary vegetation 
and cropland, in natural landscapes (>70% natural habitat, green dots and error 
bars) and in human-modified landscapes (<30% natural habitat, black dots and 
error bars). Species richness effects are geographically undifferentiated (the 
interactions between land conversion and geographic region are not statistically 
significant) whereas total abundance and RCAR have distinct tropical (b,c) 
and non-tropical effects (d,e). Models are based on PREDICTS data sampled 

in primary vegetation and cropland. The effects are presented as percentage 
changes relative to values in primary vegetation in natural landscapes. Median 
estimated values (points), and 2.5th and 97.5th percentiles (error bars), were 
calculated by sampling the fixed effects of the conversion models 1,000 times 
based on the variance–covariance matrix. If the error bar does not cross the 
0% change line, this indicates that the difference between that particular class 
and the reference category is significant. The N values represent the number of 
sampled sites for each class of the combined land-use–landscape variable for 
either tropical or non-tropical areas.
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strongly in landscapes with a high percentage of natural vegetation 
(Fig. 3g). Geographic region impacts the effects of maize and soybean 
yield on RCAR, with tropical landscapes experiencing strong negative 
biodiversity impacts of increasing yields (that is, steep increases in 
RCAR), and non-tropical landscapes showing smaller impacts or even 

decreasing RCAR with increasing yields (Fig. 3i,j). In landscapes with 
rice cultivation, RCAR decreases with increasing yield at high percent-
age of natural vegetation, but increases with increasing yield at low 
percentage of natural vegetation (Fig. 3l). Wheat yield is not associated 
with any changes in RCAR.
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Fig. 3 | The modelled effect of yield of four crops on three biodiversity metrics. 
a–l, Modelled responses of species richness (a–d), total abundance (e–h) and 
RCAR (i–l) to maize (a,e,i), soy (b,f,j), wheat (c,g,k) and rice (d,h,l) yield. Where 
yield was not selected in the final model, the plot is empty. The interactions, 
if selected in the final model, are illustrated as follows: for yield × geographic 
region, red and blue colours represent tropical and non-tropical regions, 
respectively; for yield × percentage of natural habitat, light and dark colours 
represent trends at low and high percentages of natural habitat (15% and 85% for 
illustrative purposes), respectively; and for yield × land use type, solid and dotted 
lines represent cropland and primary vegetation, respectively. Where geographic 
region was not statistically significant either independently or in interactions, 
the trend line is grey. Where geographic region and land-use type were selected 
in the final model without their interactions with yield, we plotted the values for 
the category with the most data points. Where percentage of natural vegetation 

was selected in the final model without its interaction with yield, we plotted the 
values for low percentage of natural vegetation. The lines represent median 
predicted values and shaded areas represent 95% confidence intervals. Species 
richness and total abundance increases are usually associated with positive, 
while RCAR increases are associated with negative biodiversity changes (that is, 
a homogenization of community composition). The ticks at the bottom of plots 
illustrate yield values rescaled to [0, 1]. The trends illustrate model predictions 
that do not necessarily represent plausible combinations of variable values. 
We scaled biodiversity metrics relative to the values in primary vegetation in 
landscapes with the lowest yield, a value of 0% meaning that biodiversity has not 
changed compared to this reference value. Owing to the large range of values, 
the changes in total abundance (e–h) and RCAR (i–l) were log10-transformed to 
facilitate illustration, and the y scale is logarithmic.
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The datasets were imbalanced in terms of number of data points 
available for the different land uses and geographic regions (Supple-
mentary Figs. 1–4 and Supplementary Tables 2–5). The models were 
robust to the choice of subsistence yield and fairly robust to the choice 
of yield data (Supplementary Tables 9–19). Most models using yields 
from MapSPAM agreed with the models that used yields from Earth-
Stat in direction, or in both direction and magnitude of biodiversity 
change (Supplementary Table 9). The only MapSPAM yield models 
that did not agree on the direction of the effect of yield on biodiversity 
were rice total abundance and maize RCAR models (Supplementary 
Tables 16 and 17).

Among the other variables, percentage of natural vegetation and 
land use were selected in all 12 best models (4 crops × 3 biodiversity 
metrics); geographic region, as yield, was selected in 10 models; and 
subsistence yield was selected in 8 models (Supplementary Table 8). 
When selected in the final model, subsistence yield had mostly nega-
tive effects on species richness and abundance. It also had a negative 
effect on RCAR (that is, positive impact in terms of biodiversity value) 
for all crops. All the other variables were selected in 4 or less of the 12 
models. Crop diversity had a negative effect on species richness and 
abundance in maize landscapes but it had a positive effect on abun-
dance in soy landscapes. Duration of substantial human landscape 
modification had a negative impact on total abundance in maize and 
rice landscapes, and a positive effect on RCAR (that is, negative impact 
in terms of biodiversity value) in soy landscapes.

The variance explained by fixed effects (marginal pseudo-R2)51 for 
all models varied between 0.05 and 0.35, whereas the variance explained 
by fixed and random effects together (conditional pseudo-R2)51 varied 
between 0.5 and 0.98 (Supplementary Tables 10–19). These levels of 
pseudo-R2 are typical for models based on datasets collected from 
multiple sources, in which most of the variation is explained by the 
random effects52. The model diagnostic plots suggest that our models 
do not fully fit model assumptions (Supplementary Figs. 5–21). The use 
of the negative binomial instead of the Poisson distribution for the spe-
cies richness models did not substantially improve model behaviour 
(Supplementary Figs. 5–12). The estimated effect sizes and directions 
were largely similar to the Poisson models (Supplementary Fig. 15 and 
Supplementary Table 20). The Bayesian models produced very similar 
results to the original models (Supplementary Table 21).

Biodiversity impacts of closing yield gaps
When closing yield gaps for all four crops, as estimated for the year 
2000, the biodiversity effects differ strongly across metrics and geo-
graphic regions. For non-tropical regions, closing yield gaps leads to 
negative species richness and abundance effects but positive effects 
in terms of RCAR (Fig. 4). For tropical regions, the effects in terms of 
species richness are both positive and negative depending on location, 
whereas the effects on total abundance are positive and the effects on 
RCAR are negative (Fig. 4).

More specifically, when closing yield gaps 73.6% of all grid cells 
would experience a decrease in species richness. Mean species rich-
ness change per pixel globally was −9% and the median was −8.7%. 
The decrease in species richness is spread across both tropical and 
non-tropical areas, while the increase in species richness is concen-
trated mainly in tropical areas (Fig. 4a), probably due to positive rice 
yield effects in landscapes with a high percentage of natural habitat 
(Supplementary Fig. 29). A total of 61.5% of all grid cells will experience 
a decrease in total abundance, with an average of +37% change driven 
by high abundance increases for maize and soybean in tropical areas 
(Supplementary Fig. 30), and a median of −10.6%. Non-tropical areas 
are almost all characterized by decreases in abundances (Fig. 4b). For 
RCAR, 38.4% of grid cells will experience a negative biodiversity impact 
and almost all of them are in tropical areas (Fig. 4c). The difference in 
geographic patterns are most probably driven by soybean and maize 
yield RCAR effects (Fig. 3i,j). The average projected RCAR change across 
all grid cells was +68.6% with a median of 0%. A total of 15.5% of grid cells 
had a 0% change in RCAR, these being mostly non-tropical landscapes 
with wheat cultivation (Supplementary Fig. 31).

Farmland expansion versus intensification
When comparing hypothetical options for increasing total produc-
tion by 1% in existing agricultural landscapes, neither expansion nor 
intensification had better estimated biodiversity outcomes in all loca-
tions (Fig. 5). Intensification was associated with better biodiversity 
outcomes in terms of species richness than farmland expansion on 
29%, 83.3%, 64.2% and 56.7% of the cultivated areas for maize, soybean, 
wheat and rice, respectively (Fig. 5a–d). Farmland expansion was asso-
ciated with higher species richness on the rest of the cultivated areas. 
In terms of total abundance, modelled intensification was associated 

a b

–50 –30 –10 10 30 500

cSpecies richness Total abundance

Projected change (%)

RCAR

Fig. 4 | The projected effect of closing yield gaps on three biodiversity metrics. 
a–c, Local species richness (a), total abundance (b) and RCAR (c), calculated 
as the percentage difference between biodiversity at yield levels equal to 
those where yield gaps estimated to have existed in 2000 have been closed 
and biodiversity at yield levels estimated for the year 2000. The colour range 

symbolizes positive change (cold colours) and negative change (warm colours) 
for all plots, including for RCAR percentage changes, which were multiplied by −1. 
Note that yield benefits from closing yield gaps are spatially variable and depend 
on the size of yield gaps (Supplementary Fig. 23) and the cultivated area in each 
pixel (Supplementary Fig. 22). Figure made with Natural Earth world basemap.
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with more positive outcomes on 41.4%, 36.1%, 34% and 63% of the cul-
tivated areas for maize, soybean, wheat and rice, respectively. Thus, 
farmland expansion was associated with higher total abundances on 
more than half of the land cultivated with maize, soybean and wheat, 
but intensification was estimated to be better across much of the trop-
ics (Fig. 5e–h). For RCAR, farmland intensification resulted in better 
modelled outcomes on 73.7%, 71.1%, 71.6% and 48.3% of the cultivated 
areas for maize, soybean, wheat and rice, respectively. In this case, 
intensification was the better production-growing strategy compared 
with farmland expansion for three of the four crops: maize, soybean 
and wheat. However, farmland expansion resulted in better modelled 
outcomes in the tropics, especially for maize and soybean (Fig. 5i–l). 

These overall patterns were similar when choosing different production 
increase targets (Supplementary Figs. 32 and 35) or when assuming 
different intensification patterns (Supplementary Figs. 33 and 34), 
including when ‘restoring’ some of the cropland to primary vegetation 
(Supplementary Fig. 36). The magnitude of the differences between 
intensification and expansion impacts was sensitive to the size of the 
production increase.

Discussion
When looking at the biodiversity impact of land conversion sepa-
rately from yield considerations, impacts of both local land use and 
landscape composition are mostly negative across species richness, 

Maize

Species richness

Intensification better Expansion better

Total abundance RCAR

Soybean

Wheat

Rice
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b

c

d
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i
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Fig. 5 | The difference in biodiversity metrics when comparing land expansion 
and intensification within the same agricultural landscape. a–l, The plots 
are organized in rows for each crop: maize (a,e,i), soybean (b,f,j), wheat (c,g,k) 
and rice (d,h,l). Columns represent each biodiversity metric: species richness 
(a–d); total abundance (e–h) and RCAR (i–l). The colour range symbolizes areas 
where increasing total production by 1% through cropland expansion is better 
for biodiversity (blue colours) and areas where increasing total production 

by 1% through intensification is better for biodiversity (red colours). RCAR 
(i–l) increases and decreases were considered to be the negative and positive 
outcomes for biodiversity, respectively. We removed 0.9%, 2.3%, 0.5% and 0.2% of 
raster cells from the maize, soybean, wheat and rice analyses, respectively, owing 
to invalid projections of land-use coverage (that is, more than 100% cropland 
coverage or negative coverage of primary vegetation). Figure made with Natural 
Earth world basemap.
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total abundance and RCAR, although their strength across land-use–
landscape categories differs depending on geographic region and 
duration of substantial human landscape modification. Our results 
are consistent with previous studies of local land-use change31,53,54 
and landscape composition effects55. More specifically, our results 
highlight the importance of considering the landscape context when 
designing and implementing conservation management, as suggested 
by other authors56. For instance, biodiversity in primary vegetation in 
agricultural landscapes changes compared with primary vegetation in 
natural landscapes across all three metrics, especially in non-tropical 
areas. This suggests that primary vegetation in human-modified land-
scapes has less conservation value than primary vegetation in natural 
landscapes57,58, and highlights the high biodiversity costs of expand-
ing agriculture in previously unfarmed landscapes. Moreover, early 
human landscape modification is associated with lower biodiversity 
differences across most of the four land-use–landscape categories 
(Extended Data Figs. 1 and 2), consistent with previous research describ-
ing the biotic homogenization of regions with long histories of human 
disturbance59,60. However, primary vegetation in modified landscapes 
can harbour species of conservation concern61 and probably repre-
sents an important source of ecosystem services for the surround-
ing farmland55,62, especially when paired with favourable landscape 
configurations such as high density of edges between crop fields and 
non-crop areas18.

When looking at the biodiversity impacts of yield or agricultural 
management, large-scale studies rarely assess how the direction of 
these effects might differ in different geographic regions (but see refs. 
55,63). In our results, tropical landscapes cultivated with maize and 
soybean show an increase in total abundance and an increase in biotic 
homogenization, as measured by RCAR (Fig. 3), suggesting that abun-
dance increases are driven by widespread species42 and signalling a 
higher potential risk of invasion in these landscapes64. Indeed, previous 
research in tropical areas showed that species with large global ranges, 
which are often generalists65, are more likely to persist and thrive in agri-
cultural landscapes7,11. In non-tropical soy and maize landscapes, both 
total abundance and biotic homogenization generally decrease, sug-
gesting that abundance decreases in these landscapes are also driven by 
changes in the abundance of widespread species, this time decreases. 
Supporting evidence for this pattern comes from abundance decreases 
in common European birds66, often attributed to agricultural intensi-
fication67. There are two considerations that can help interpret these 
opposing responses of widespread species to yield increases. First, 
most tropical yields in our data are at the lower end of the yield range, 
whereas non-tropical yields are more equally distributed (Fig. 3, data 
distribution rugs at the bottom of all panels). Therefore, the tropi-
cal trends are likely to be representative of lower yields, whereas the 
non-tropical trends probably capture biodiversity trends across a 
wider yield range. Second, non-tropical areas, especially temperate 
regions, tend to have a longer history of human occupation and smaller 
areas of natural habitats than tropical landscapes58. This probably led 
to farmland-intolerant, narrow-ranged species being filtered out59 
and farmland-tolerant, widespread species increasing in abundance 
well before the accelerated intensification of the past decades. These 
ecological communities dominated by farmland-tolerant species in 
lower intensity agriculture still persist in eastern European traditional 
landscapes68. We speculate that the tropical biodiversity trends in our 
results capture the type of community change that had happened in the 
past in non-tropical agricultural landscapes, whereas the non-tropical 
trends capture mainly the response of farmland-tolerant species to the 
recent high levels of intensification in non-tropical areas.

Previous research has shown the importance of interactions 
between natural habitat and agriculture for mitigating biodiversity 
impacts17,55, but our results suggest mixed impacts depending on crop 
and biodiversity metric. For example, in landscapes with wheat culti-
vation, areas with a higher percentage of natural habitat experience 

steeper decreases in species richness and abundance with yield, prob-
ably from higher initial biodiversity as natural habitat is positively 
related to species richness and abundance (Supplementary Table 20). 
This suggests that aspects of wheat landscapes or their management 
might undermine the ability of natural habitat patches to buffer the 
impact of yield increases, in accordance with research highlighting the 
importance of landscape context for the biodiversity value of natural 
habitat patches69. In maize and soybean landscapes, a higher percent-
age of natural habitat has a positive impact on the effect of yield on 
total abundance, accentuating increases in tropical and dampening 
decreases in non-tropical regions, but a negative biodiversity impact 
in terms of biotic homogenization, accentuating RCAR increases in 
tropical and dampening RCAR decreases in non-tropical regions. These 
results suggest that natural habitat in these landscapes is beneficial 
mostly to widespread species that are able to use natural habitat to 
benefit in relative terms from increases in yield70. In landscapes with 
rice cultivation, a higher percentage of natural habitat has a positive 
impact on the effect of yield on all biodiversity metrics, as species 
richness increases and RCAR decreases with yield at high percentages 
of natural habitat. In terms of total abundance, tropical increases 
become steeper and non-tropical decreases become shallower at high 
percentages of natural habitat. The RCAR responses to the interaction 
between rice yield and percentage of natural habitat suggest that 
narrow-ranged species are the ones benefiting in relative terms from 
yield increases in landscapes with a high percentage of natural habitat. 
We speculate that this could be owing to the specific requirements of 
rice cultivation that often involve a period of water submergence71, 
which creates temporary wetlands that can be functionally equivalent 
to more natural wetlands72. Given that wetlands represent only 5–10% 
of the global land surface and that more than half of the global wetland 
area has been destroyed or modified73, species that are likely to benefit 
from anthropogenic wetlands created by agriculture will be relatively 
narrow ranged74. Our results suggest that a certain amount of natural 
habitat is necessary for this to happen, as suggested by research that 
shows the importance of natural habitat for connecting populations 
of wetland species75.

Although closing yield gaps was proposed more than a decade 
ago as a solution to the challenge of producing food while protecting 
biodiversity76, there are surprisingly few quantitative assessments of its 
biodiversity impacts. Compared with existing assessments, our results 
suggest more severe losses in local biodiversity when closing yield gaps. 
Kehoe et al.50, who analysed the biodiversity impact of maximizing 
agricultural intensity on all existing farmland, estimated a maximum 
of 7% loss in species richness and 13% loss in abundance from closing 
yield gaps. This contrasts with our projections, which suggest that 
almost 54% of cultivated grid cells will lose more species richness and 
47% will lose more abundance than Kehoe et al.’s estimated maxima. 
Kehoe et al.50 used modelled estimates of biodiversity loss from a 
global study of land-use impact on biodiversity, using the same dataset 
from which we derived our data31. The difference in results is probably 
owing to the focus of Newbold et al.31 on agriculture in general rather 
than crop type, and the absence of interactions between intensity and 
natural habitat or geographic region in their statistical models31. As 
indicated by our analysis, these elements can have opposing effects 
on biodiversity, and therefore the negative impacts can be obscured 
in simpler models. Comparisons with existing assessments of the 
biodiversity costs of closing yield gaps is complicated further by the 
use of different biodiversity metrics. For example, Egli et al.77 used a 
metric capturing the value of each pixel with any amount of farmland 
for the global survival of terrestrial mammals, birds and amphibians. 
Based on assumed responses of species persistence to agricultural 
intensification based on habitat preferences, the authors estimated a 
decrease of 11.1% in the global biodiversity value of agricultural lands 
due to closing yield gaps. Although the biodiversity metric used by Egli 
et al.77 is not directly comparable to our metrics, the spatial patterns of 
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high biodiversity loss tend to agree, especially with our RCAR patterns 
in the tropics.

Considering the reduced biodiversity in primary vegetation in 
modified landscapes (Fig. 2) and the strong association between yield 
and negative biodiversity outcomes in some landscapes (Fig. 3), it 
is not surprising that agricultural intensification is not always the 
best solution for increasing agricultural production in terms of local 
biodiversity outcomes (Fig. 5), as suggested by other authors in the 
case of European agricultural landscapes78. In contrast, previous 
global analyses have emphasized the land-saving potential of agricul-
tural intensification79–81, which on its own is positive for biodiversity. 
Land-sparing/sharing studies at regional scale also usually conclude 
that land sparing, that is, intensification, results in better outcomes in 
terms of reducing extinction risks10. To the extent that biotic homogeni-
zation of communities as measured here does lead to higher extinction 
risks, our results disagree with the land-sparing/sharing research, as 
many tropical areas in our results experience higher biotic homog-
enization when raising yields than when expanding cropland at the 
expense of primary vegetation in agricultural landscapes. Unlike most 
land-sparing/sharing studies, we were not able to compare the bio-
diversity costs of extreme sharing and sparing, which could involve 
contraction of cropland and restoration of biodiversity, as that would 
involve additional modelling and assumptions regarding restoration 
approach and timeline of biodiversity recovery82–84 (but see Supple-
mentary Fig. 36 for a simplified partial restoration scenario). In our 
study, models also do not account for the configuration of cropland 
and primary vegetation areas in our pixels, which is an important 
aspect of the land-sparing/sharing framework, which recommends 
sharing or sparing of patches of at least 1–10 km2 (ref. 10). Moreover, 
it is important to emphasize that we are comparing intensification and 
expansion within existing agricultural landscapes, and that expanding 
agriculture into new landscapes will lead to considerable decreases in 
biodiversity (Fig. 2).

Our study has several limitations that need to be considered when 
interpreting the results. First, our focus on the direct association 
between biodiversity metrics and yields means that relationships may 
change if agricultural management practices differ from those used 
at the sampled locations and times. As a consequence, our results are 
most representative of the time window represented by the EarthStat 
and Projecting Responses of Ecological Diversity in Changing Terres-
trial Systems (PREDICTS) data, which is the time period between 2000 
and 2005, and of the agricultural intensification type predominant 
during this time span, which relied on conventional approaches such 
as input increases. Although it is reasonable to assume that agricultural 
practices have not changed dramatically since then, closing yield gaps 
or sustainable intensification would probably result in considerable 
changes in management practices in some areas, which might change 
the biodiversity impacts presented here. The focus on yield will prob-
ably also obscure specific impacts of agricultural management that 
are not necessarily reflected in yields85. Moreover, our results are rel-
evant for the set of crops considered here, and it is uncertain whether 
they would generalize to other crops. For example, agroforestry or 
multiannual cultivation systems might have different requirements 
for increasing yields24,27, and these requirements may have different 
impacts on biodiversity from those presented here. Second, our crop-
land data were not sampled necessarily within cropland cultivated 
with the particular crops for which we are using landscape-scale yield 
estimates. Therefore, our models capture landscape-scale but not 
local-scale impacts of crop-specific management. In addition, our 
yield data might not capture effectively the intensity levels of the 
management of other crops in the landscape. We reduced the impact 
of this limitation by weighting our data points in the statistical analysis 
by the proportion of the respective crop in the landscape. Third, our 
choice of classifying sites into tropical or non-tropical regions based 
on latitude, although avoiding other limitations (Methods), leads to 

unnatural artefacts in our figures where the border between positive 
and negative impacts in tropical and non-tropical areas is often artifi-
cially straight (for example, Figs. 4 and 5), whereas any changes in the 
relationship between biodiversity and yield in real landscapes would 
be more gradual. Fourth, all the limitations inherent to the datasets 
we use, such as geographical and taxonomical biases in PREDICTS86, 
and data and downscaling uncertainties in EarthStat47, are carried over 
to our own study. Fifth, there are several limitations of using spatial 
biodiversity data to infer changes through time, most importantly an 
inability to consider time lags in biotic changes and responses to envi-
ronmental changes87. Sixth, some of our models were less robust to the 
choice of yield data source (Supplementary Table 9) and their results 
should be interpreted with caution. Finally, predicting biodiversity 
values when closing yield gaps relies on novel combinations of variable 
values, which are likely to go beyond those used for model fitting (and 
those present within real-world systems). In the case of models using 
log links or log-transformed variables, as our models are, this is likely 
to lead to particularly unrealistic extreme values88, which we counter-
acted by focusing here on the broad patterns of biodiversity change.

Both land conversion and increasing agricultural yields have sub-
stantial biodiversity impacts. In particular, closing yield gaps will proba-
bly lead to a much higher biodiversity cost than previously estimated50, 
and the increase in biotic homogenization with agricultural yields in 
the tropics is particularly worrying from a global biodiversity perspec-
tive. Given the mostly positive impact of natural habitat on biodiversity 
and ecosystem services, there is probably a balance that can be struck 
between intensification and expansion in agricultural landscapes, but 
this balance might change depending on geographic region, crop, 
conservation goals and remaining natural vegetation in the landscape. 
While avoiding expansion of agriculture in unmodified landscapes 
remains critical for global biodiversity, a reassessment of the approach 
of closing yield gaps might be necessary, especially in terms of defining 
safe intensification levels that can preserve functioning local com-
munities. Moreover, agricultural management must consider other 
essential ecosystem services in addition to biodiversity, such as carbon 
storage and water provisioning89. Hopefully, our results will motivate 
a renewed focus on important management questions, such as how 
much natural habitat is necessary in agricultural landscapes to maintain 
biodiversity at sustainable levels44,90, how to obtain yield increases with 
lower biodiversity impacts43 and how to reduce the overall demand 
for agricultural products, which will avoid the hard choice between 
intensification and expansion4.

Methods
Biodiversity data
For biodiversity data, we used the 2016 release of the PREDICTS data-
base, which contains 3,250,404 biodiversity records, mostly sampled 
from 2000 to 2012, from 666 published studies86,91. Each study con-
tains data sampled with the same method across a gradient of land 
use or land-use intensity. The data in each study are grouped into one 
or more spatial blocks, each containing data from one or more sites. 
Each site is attributed one of six predominant land-use classes based 
on the information provided in the original papers, or by the authors 
of those papers: primary vegetation, secondary vegetation, plantation 
forest, cropland, pasture and urban. For our purposes, we selected 
only those sites located in cropland or primary vegetation, resulting 
in 1,318,867 records from 10,094 sites from 489 studies. The dataset 
included 18,853 species of which there were 3,994 vertebrates, 6,693 
invertebrates, 7,269 plants, 894 fungi and 3 protists. For each of the 
statistical analyses on relative biodiversity of human-modified and 
natural landscapes, henceforth land-conversion models, and biodi-
versity impact of yield, henceforth yield–biodiversity models, we used 
subsets of these data (Supplementary Tables 1–5 and Supplementary 
Figs. 1–4), which we selected based on the methods described in the 
section ‘Data processing for statistical analysis’.
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We used three metrics: sampled species richness, total sampled 
relative abundance and RCAR. Sampled species richness represented 
the count of all species sampled at a site, as identified by the authors 
of the original study (not necessarily always resolving taxonomic syn-
onymy). Total sampled relative abundance was calculated as the sum 
of abundance measures for all taxa at a site, which was available for 
approximately 85% of all sites. Abundance was reported in a variety of 
measurements, such as individual counts (~87% of sites with abundance 
data), coverage or frequency of occurrence across plots (~10%), group 
or pair counts (~1%), abundance of animal signs (~1%) and biomass 
(~0.05%). In cases in which abundance measurements were sensitive 
to sampling effort and where that effort differed among sampled 
sites within a study (~1% of records), we corrected the raw abundance 
measure by dividing it by its relative effort as a proportion of the effort 
of the most sampled site within a study31. RCAR is a measure of how 
widely or narrowly the species in a community are distributed, on 
average. An increase in RCAR metrics indicates a shift towards more 
widely distributed species on average, which could be caused either by 
increases in the number or relative abundance of wide-ranging species 
and/or by decreases in narrow-ranging species. Similarly, a decrease 
in RCAR indicates a change towards more narrow-ranged species, on 
average, which could be caused by increases in narrow-ranged species 
and/or decreases in wide-ranging species. We used an RCAR metric as 
calculated in ref. 42 based on occurrence data from the Global Biodi-
versity Information Facility (GBIF) database (https://www.gbif.org) and 
extracted at 55 km × 55 km resolution. Modelled responses of RCAR to 
land use and land-use intensity have previously been shown to be robust 
to using different grid resolutions to calculate area or occupancy from 
GBIF records, and also to using alternative measures of range size42.

Model explanatory variables
Global agricultural estimates. We used two global agricultural data-
sets: EarthStat47 for model selection and visualizations, and MapS-
PAM92–96 for robustness testing. Although MapSPAM has the advantage 
that it covers three years (200093, 200594 and 201095) instead of only 
one year (2000 for EarthStat), EarthStat provides information on the 
resolution (that is, administrative level of reporting) of the initial agri-
cultural data, which impacts the quality of the spatial modelling47, and 
which we used to discard spatial estimates based on data of lower qual-
ity. MapSPAM also used biophysical potential of crops as an assump-
tion underlying the spatial disaggregation of agricultural data, which 
risked creating circularity in our statistical models, because we control 
for agricultural suitability (see section ‘Subsistence yield as proxy for 
agricultural suitability’).

EarthStat. EarthStat agricultural estimates include global agricultural 
estimates for 175 crops in 206 countries around the year 2000 at a 
spatial resolution of 5′ × 5′ (~10 km × 10 km at the Equator)47,97. Given the 
widely variable data quality and limited availability of proxies for agri-
cultural suitability across crops, we selected four of the major crops for 
which estimates are likely to be more reliable97: maize, soybean, wheat 
and rice. We selected for our analysis the EarthStat yield estimates 
that relied on subnational-level data at one and two administrative 
levels below national level (top two data quality scores in the yield data  
quality spatial layer).

MapSPAM. MapSPAM agricultural estimates were created with the 
Spatial Production Allocation Model (SPAM) at a global resolution of 
5′ x 5′ (~10 km x 10 km at the Equator). The SPAM modelling approach 
combines several types of data (for example, market access models, 
biophysical suitability, information on agricultural management) to 
create an informed spatial prior covering the territory over which the 
agricultural statistics are disaggregated92. Together with land-cover 
information, this spatial prior was used to allocate agricultural area 
and production.

Percentage of natural habitat. We included percentage of natural 
habitat in our models because research has indicated its importance 
independently55 and in interaction with other variables17 for determin-
ing biodiversity patterns. For each data point, we extracted the percent-
age of natural habitat from the land-use estimates of ref. 98, which were 
obtained by downscaling the Land-Use Harmonization dataset48,99. The 
year 2005 of the land-use dataset is within the sampling time span of 
the PREDICTS data and therefore a suitable data source. We projected 
primary and secondary vegetation proportional cover estimates onto a 
Behrmann equal-area projection and resampled them to the EarthStat 
resolution and extent. We then summed them to obtain an estimate for 
natural vegetation cover.

For the yield–biodiversity models, we used percentage of natural 
habitat as a continuous variable. For the land-conversion models, we 
used percentage of natural habitat to select sites that were located 
in pixels with less than 30% natural vegetation (‘human-modified 
landscapes’), and pixels with more than 70% natural vegetation 
(‘natural landscapes’; Supplementary Table 1). We then combined 
this landscape classification based on natural vegetation with the 
PREDICTS land-use classification to create a combined land-use–
landscape variable with four categories: primary vegetation in 
natural landscapes, primary vegetation in human-modified land-
scapes, cropland in natural landscapes and cropland in human- 
modified landscapes.

Land use. In addition to assessing biodiversity within cropland, we were 
also interested in how agricultural management affects biodiversity 
in adjacent primary vegetation, which plays a key role in preserving 
biodiversity and ecosystem services62 but is also impacted by nearby 
farming activities100. We used the land-use classification from the 
PREDICTS database to define whether a data point is in cropland or 
primary vegetation.

Geographic region. Environmental and socioeconomic differences 
between tropical and non-tropical areas can influence the biodiversity 
impacts of land-use change and intensity55,101,102. Data points located 
between 23.5° N and 23.5° S were identified as tropical, and otherwise 
as non-tropical.

Subsistence yield as proxy for agricultural suitability. The suit-
ability for growing crops varies widely, resulting in large differences 
in inputs and biodiversity impacts at similar yield levels. Moreover, 
agricultural suitability can correlate positively with different biodi-
versity metrics because conditions that are favourable for crops are 
often also favourable for other species103,104. As a proxy for agricultural 
suitability, we used yields modelled by a version of the Environmen-
tal Policy Integrated Climate (EPIC) model105, which was specifically 
adapted to estimate yields at different management intensities106–108 
by researchers at the University of Natural Resources and Life Sci-
ences (BOKU) in Vienna, Austria. Specifically, we used EPIC-BOKU 
model simulations under a subsistence system without fertilization 
or irrigation at 0.5° × 0.5° resolution. Although termed subsistence 
yields in the literature and here, these estimates do not represent 
real-world subsistence yields, which typically involve some inputs 
and management. For analysis with the EarthStat yield estimates for 
the year 2000, we averaged EPIC-BOKU subsistence-yield estimates 
between the years 1997–2003. For MapSPAM models, we also used a 
five-year averaging window around the focus years (2000, 2005 and 
2010) in order to have subsistence yield values consistent with those 
in the EarthStat models.

We tested for the robustness of our statistical models to choice of 
subsistence yield by replacing EPIC-BOKU estimates with MapSPAM 
subsistence estimates in both the EarthStat and MapSPAM models. 
MapSPAM estimates of subsistence yield were obtained through a 
combination of data and expert opinion92,109.
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Other variables. Crop diversity was found to have a positive effect 
on local biodiversity in some studies110. We calculated a Shannon crop 
diversity index based on all EarthStat estimates for all 175 crops:

H′ = −
n
∑
i=1

pilnpi (1)

where H' is the Shannon index and pi is the proportion of cropland 
covered by crop i out of the total cropland for all n crops in the pixel.

To account for potential effects of agricultural management and 
expansion at a larger scale than the raster cell, we used percentage of 
natural habitat, as well as yield data from EarthStat and MapSPAM, 
to calculate an average percentage of natural habitat and yield 
in a buffer of one raster cell (~10-km radius) around the focal cell 
where the PREDICTS site was located. Because the average yield/
percentage of natural habitat in the buffer was highly correlated 
with the value in the focal raster cell, we used the difference between 
the buffer and the focal cell value (buffer–focal difference) in the 
statistical models.

To account for the duration of substantial human landscape 
modification59, we used the History database of the Global Environ-
ment (HYDE) database111,112 to calculate the number of years since 30% 
of a grid cell (0.5° × 0.5° resolution) is estimated to have become cov-
ered by human land uses. Finally, we added climate variables in our 
models because climate is an important determinant of biodiversity. 
We extracted climate information based on the WorldClim estimates 
of historical annual mean temperature and annual precipitation for 
the period 1970–2000113.

We loge-transformed variables with right-skewed distributions: 
annual precipitation, MapSPAM yield, MapSPAM subsistence for all 
crops, EPIC-BOKU subsistence for maize and wheat, and EarthStat 
yield for rice. We added a value of 0.01 (less than 1% of the highest 
value) to deal with 0 values for MapSPAM subsistence yields for all 
crops, and for EPIC-BOKU subsistence-yield estimates for maize. 
Variables with left-skewed distributions were transformed with the 
formula:

Vt = loge(C − V), (2)

where Vt is the transformed variable and C is a constant used to avoid 
negative values, and determined by adding a small number to the 
highest value of the respective variable and rounding it up. Variables 
with a left-tail distribution were duration of substantial human land-
scape modification for all crops (with C = 2,005, obtained by rounding 
up the sum of the maximum value 1,981.6 and 20) and annual mean 
temperature for rice (with C = 30, obtained by rounding up the sum 
of the maximum value 28.5° and 1°). This transformation flips the 
order of the values of these two variables (that is, the highest values 
become the lowest) and the direction of their statistical effects. We 
then scaled all continuous variables to have a mean of 0 and a standard 
deviation of 1.

Data processing for statistical analysis
All spatial estimates were transformed to the Behrman equal-area 
projection and resampled to the EarthStat resolution and extent in R 
with the projectRaster and resample functions, respectively, from the 
raster package, version 3.6–23114. We used bilinear interpolation for 
spatial averaging. We then extracted the values within spatial layers 
at the locations of the PREDICTS sites based on geographical coordi-
nates. For the yield–biodiversity models for each crop, we selected 
PREDICTS sites that fell within pixels that contained cultivated areas 
with the respective crop according to EarthStat estimates. The PRE-
DICTS cropland classification does not differentiate according to 
the crop cultivated at the precise sampling location. Therefore, the 
biodiversity data were sampled in landscapes used to grow the focal 

crops (according to EarthStat estimates), even if the actual sample 
may have been taken in a different crop. In doing so, we assume that 
intensification levels tend to be similar across different crops within 
an agricultural landscape.

For the MapSPAM yield, we chose either the 2000, 2005 or 2010 
estimates based on which of the three years was closest to the year of the 
midpoint of the collection dates for each PREDICTS site. If a midpoint 
year was equally close to two MapSPAM years, we chose the earlier 
year because that would be more likely to represent the agricultural 
management impacting biodiversity by virtue of preceding in time.

Statistical analysis
We modelled the three biodiversity metrics—species richness, abun-
dance and RCAR—using mixed-effects models with random effects for 
study identity and spatial block nested within study, to account for 
non-independence of sites. The random effect for study accounted 
for differences in sampling methods, sampling effort, focal taxonomic 
group and broad geographic regions among the different studies 
in PREDICTS. The random effect for spatial block accounted for the 
spatial structuring of sampling within a study. To account for overd-
ispersion, we included a random effect for site in the models for spe-
cies richness115. To reduce the right skew in the abundance data due to 
measurements across many taxonomic groups and with a variety of 
methods, we scaled total abundance by dividing values by the maxi-
mum abundance within each study55. We then loge-transformed the 
rescaled values to further reduce the skew of the distribution adding 
0.01 to deal with 0 values.

For the yield–biodiversity models, each data point/site was 
weighted in the statistical analysis by the area of the respective crop as 
a fraction of all crops grown in the pixel to account for the differences in 
crop composition of agricultural landscapes according to the formula:

RAC =
AC

∑175
i=1Ai

(3)

where RAC is relative area for crop C, where C is maize, soybean, wheat 
or rice, AC is the harvested area in hectares for crop C and Ai is the har-
vested area for each of the 175 crops available in the EarthStat dataset. 
We rescaled the area fractions such that the average weight is equal  
to 1, to avoid an apparent reduction in total sample size, which would 
have an adverse influence on some statistical properties:

Rescaled_RAC = NSites
RAC

∑NSites
j=1 RAj

(4)

where RAj is the relative area for a given crop in each site j of the total 
NSites where that crop is cultivated.

The default set of initial variables for the land-conversion models 
was:

BD = LU–LS categories + Duration of human landscape modification

+Mean annual temperature + Annual precipitation

+Geographic region + LU–LS categories

×Duration of human landscape modification

+LU–LS categories × Geographic region
(5)

where BD is one of the three biodiversity metrics and LU–LS categories 
represent the combined land-use–landscape categories. We included 
interaction terms between the combined land-use–landscape variable, 
and geographic region and duration of substantial human landscape 
modification to account for the clustering of natural and modified 
landscapes according to geographical patterns and historical human 
land use111.
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The default set of initial variables for the yield–biodiversity  
models was:

BD = Yield + %natural habitat + Land use

+Geographic region + Subsistence yield + Crop diversity

+Yield buffer–focal difference

+%natural habitat buffer–focal difference

+Duration of human landscape modification

+Mean annual temperature + Annual precipitation

+Yield × Subsistence yield + Yield × Biome type

+Yield × %natural habitat + Yield × Land use

+%natural habitat × Subsistence yield

+%natural habitat × Biome type

+%natural habitat × Land use

(6)

where Yield is the landscape yield for each of the four crops, % natural 
habitat represents the percentage of natural habitat in the landscape, 
and Yield buffer–focal difference and % natural habitat buffer–focal 
difference represent the differences between the one-cell buffer aver-
age value and the focal cell value for yield and percentage of natural 
habitat, respectively. All other variable names are self-explanatory. We 
considered yield and percentage of natural vegetation interactions 
with each other and with land use, geographic region and subsistence 
yield because research has suggested that these interactions impact 
biodiversity17,55.

In cases of strongly correlated variables (correlation above 0.6), 
we removed one of them from the initial, full model by prioritizing 
yield, percentage of natural habitat and subsistence yield measures (in 
this order) to be kept for modelling (Supplementary Table 6). For the 
soy RCAR model, owing to model convergence issues we removed the 
following interactions: % natural habitat × subsistence yield, % natural 
habitat × biome type, % natural habitat × land use, yield × subsistence 
yield and yield × land use. We removed these interactions because they 
either have less support in the literature or they are less relevant for the 
focus of our study. Annual mean temperature was also removed as a 
main effect from the initial model structure. The convergence issues 
were probably triggered by a reduction in data points (1,482 RCAR data 
points compared with 2,404 for species richness).

For both yield–biodiversity and land-conversion models, we 
modelled species richness using generalized linear mixed-effects 
models with a Poisson distribution, while for loge-transformed abun-
dance and log10-transformed RCAR we used linear mixed-effects 
models. We performed backward stepwise selection based on 
likelihood-ratio tests with a P-value threshold of 0.05 to select the 
fixed-effects structure for each model (Supplementary Table 7). As 
an alternative way to deal with overdispersion, we reran the species 
richness models substituting the Poisson distribution with a negative 
binomial distribution and dropping the random effect for site (Sup-
plementary Table 20). To test the robustness of our results, we also 
ran the final model structures using a Bayesian modelling framework 
(Supplementary Table 21) with uninformative priors, 4 Markov chains 
and 5,000 iterations with 2,500 warmup iterations. We considered 
that the models converged if the Rhat convergence diagnostic was 
≤1.01 and rank-normalized effective sample size was ≥400, which 
represents 100 times the number of chains116. For the species rich-
ness models, we had to increase the number of iterations to 6,000 
to achieve convergence.

We conducted all statistical analyses and projections of biodiver-
sity impacts of yield increases in R version 3.6.3117. For the mixed-effects 
modelling, we used the glmmTMB package, version 1.1.5118. For model 
selection, we adapted several functions from the packages associated 
with the PREDICTS data119. For checks of the models assuming a Poisson 

distribution we used DHARMa package120, and for the Bayesian models 
we used the brms package121.

Projections of the impact of closing yield gaps
We used the best EarthStat–EPIC-BOKU models to project biodiversity 
change when closing yield gaps for the global areas occupied by the 
four crops in the year 2000. Yield gaps where defined by ref. 6 as the 
difference between attainable yields, which are the area-weighted 
95th percentiles of observed yields within zones of similar annual 
precipitation and growing-degree days, and yields given by the Earth-
Stat estimates for the year 2000 that are below attainable yield values 
for the area. We first projected biodiversity levels in cropland and 
primary vegetation for yield levels in the year 2000. We then used the 
same models to project biodiversity levels in cropland and primary 
vegetation at yields equal to those necessary to close yield gaps. We 
calculated an aggregated estimated biodiversity value across all four 
crops for each pixel, for each metric at each of the two yield levels, 
using the following formula:

BD =
n=4
∑
i
pi(BDCroplandpCropland + BDPVpPV) (7)

where BD is the biodiversity metric in the respective pixel, pi is the pro-
portion of crop i in the total cropland of the respective pixel, BDCropland 
and BDPV are values of the biodiversity metric estimated by the yield–
biodiversity model for cropland and primary vegetation, respectively, 
and pCropland and pPV are the proportion of each land-use type of the total 
area of the pixel. We calculated the percentage change in biodiversity 
relative to the biodiversity corresponding to the year 2000 yields by 
subtracting in each pixel the biodiversity metric at gap-closing yields 
from the biodiversity metric corresponding to year 2000 yield and 
dividing the difference by the biodiversity metric corresponding to year 
2000 yields. The biodiversity contribution of the other land uses and 
crops in the pixel cannot be estimated by our models and, therefore, 
were not included in the calculation.

Comparison of intensification and expansion impacts
We used the EarthStat–EPIC-BOKU models to project biodiversity 
metrics for expansion and intensification scenarios that would result 
in identical increases in total production in each pixel for each crop, 
including raster cells without a yield gap6. Although the available area 
for farmland expansion in each pixel might be less suitable than exist-
ing farmland, requiring more intense management to obtain similar 
yields, we are not able to consider such variation in our projections. 
Therefore, we made the assumption that the areas to be converted to 
farmland are of the same average suitability as existing local farmland.

We aggregated each biodiversity metric in each pixel for each crop 
according to the formula:

BD = BDCroplandpCropland + BDPVpPV (8)

where BD is the biodiversity metric in the respective pixel, BDCropland 
and BDPV are the model-estimated values of the biodiversity metric 
for cropland and primary vegetation, respectively, and pCropland and pPV 
are the proportion of each land-use type of the total area of the pixel.

For the expansion scenario, we kept the yield equal to the year 
2000 yield but increased the area cultivated with the respective crop 
by 1% at the cost of primary vegetation in the pixel. This meant also a 
decrease by the equivalent area in the total percentage of natural habi-
tat. For the intensification scenario, the only variable that changed was 
the yield for each crop, which increased by 1% for the proportion of the 
grid cell equal to the proportion of the respective crop in the cropland 
area. The rest of the grid cell was modelled as having the same yield level 
as in 2000. We then calculated a percentage change in biodiversity by 
extracting the biodiversity calculated for the intensification scenario 
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from the biodiversity calculated for the expansion scenario and divid-
ing the difference by the biodiversity metric corresponding to year 
2000 yields and landscape composition.

We tested the robustness of our results to the choice of production 
increase by repeating the analysis for an increase in production of 10% 
and of 1% of local yield gap. We also tested the robustness of results to 
three different intensification patterns resulting in a total production 
increase of 1%: a 2% yield increase on 50% of the cropland area, a 10% 
yield increase on 10% of the cropland area, and a 10% yield increase on 
91.8% of the cropland area and ‘restoration’ to primary vegetation of 
the remaining 8.2% of cropland area.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The PREDICTS database used for this study is available from https://
data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-database. 
PREDICTS site-level biodiversity data with estimates of community- 
average range size are available via figshare at https://doi.org/10.6084/
m9.figshare.7262732.v1 (ref. 122). The EarthStat data are available from 
http://www.earthstat.org/. The MapSPAM data are available from 
https://mapspam.info/. The EPIC-BOKU subsistence yield data are avail-
able via figshare at https://doi.org/10.6084/m9.figshare.25780953.v1  
(ref. 123). The land-use data from ref. 98, on which we based our calcu-
lations of the percentage of natural habitat, can be downloaded from 
https://doi.org/10.4225/08/56DCD9249B224. The HYDE database112 
underlying the duration of substantial human modification data can 
be downloaded from https://landuse.sites.uu.nl/datasets/. The cli-
mate variables can be downloaded from https://www.worldclim.org/
data/index.html. Source data for Fig. 4 are available via figshare at 
https://doi.org/10.6084/m9.figshare.28592318.v1 (ref. 124). Source 
data for Fig. 5 are available via figshare at https://doi.org/10.6084/
m9.figshare.28592387.v1 (ref. 125). The datasets for running the sta-
tistical analyses are available via figshare at https://doi.org/10.6084/
m9.figshare.28592393.v1 (ref. 126). Source data are provided with  
this paper.

Code availability
The code required to run the analyses presented here can be down-
loaded from https://github.com/SilviaCeausu/BiodivYield.
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Extended Data Fig. 1 | The modelled effect of land conversion on species 
richness in landscapes with different histories of substantial human 
landscape modification. The modelled effect on species richness (SR) of 
land conversion at local and landscape scale for areas that experienced late 
substantial human landscape modification (~500 years ago) (a) and areas that 
experienced early substantial human landscape modification (~2000 years ago) 
(b) in primary vegetation and cropland, in natural landscapes (>70% natural 
habitat, green dots and error bars) and in human-modified landscapes  

(<30% natural habitat, black dots and error bars). Models are fitted with 
PREDICTS data sampled in primary vegetation and cropland. Median estimated 
values (points), and 2.5th and 97.5th percentiles (error bars) were calculated 
by sampling the fixed effects of the conversion models 1,000 times based on 
the variance-covariance matrix. The N values represent the number of sites for 
each class of the combined land use-landscape variable that were sampled in 
landscapes with at most 500 years (a) and at least 1950 years (b) since substantial 
human landscape modification, respectively.
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Extended Data Fig. 2 | The modelled effect of land conversion on RCAR 
in landscapes with different histories of substantial human landscape 
modification. The modelled effect on relative abundance-weighted average 
range-size (RCAR) of land conversion at local and landscape scale for areas that 
experienced late substantial human landscape modification (~500 years ago) 
(a) and areas that experienced early substantial human landscape modification 
(~2000 years ago) (b) in primary vegetation and cropland, in natural landscapes 
(>70% natural habitat, green dots and error bars) and in human-modified 

landscapes (<30% natural habitat, black dots and error bars). Models are fitted 
with PREDICTS data sampled in primary vegetation and cropland. Median 
estimated values (points), and 2.5th and 97.5th percentiles (error bars) were 
calculated by sampling the fixed effects of the conversion models 1,000 times 
based on the variance-covariance matrix. The N values represent the number 
of sites for each class of the combined land use-landscape variable that were 
sampled in landscapes with at most 500 years (a) and at least 1950 years (b) since 
substantial human landscape modification, respectively.
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