

Developing a Safe Operating Space framework for water resources in the Danube River basin

Silvia Artuso, Emilio Politti, Sylvia Tramberend, Mikhail Smilovic, Taher Kahil

International Institute of Applied System Analysis

EGU2025/Vienna

The Danube river basin

Danube River Basin District

- 19 countries
- 801,000 km²

Main challenges:

- Water quantity
- Water quality
- Groundwater management
- Biodiversity

The Danube river basin

These challenges are projected to intensify due to climate and societal changes in the coming decades.

Climate change threatens water resources for major field crops in the Serbian Danube River Basin by the mid-21st century

Jamshid Jalali ^a, Nishan Bhattarai ^b, Jillian Greene ^a, Tao Liu ^c, Oskar Marko ^d, Mirjana Radulović ^d, Molly Sears ^e, Sean A. Woznicki ^a Ӓ 🖾

Show more 🗸

RESEARCH ARTICLE 👌 Open Access 🛛 😨 😱

Three hundred years of past and future changes for native fish species in the upper Danube River Basin—Historical flow alterations versus future climate change

Martin Friedrichs-Manthey 🐹 Simone D. Langhans, Florian Borgwardt, Thomas Hein, Harald Kling, Philipp Stanzel, Sonja C. Jähnig, Sami Domisch

First published: 15 January 2024 | https://doi.org/10.1111/ddi.13808 | Citations: 1

Sonja C. Jähnig and Sami Domisch contributed equally. Editor: Murilo Dias

River Research and Applications

RESEARCH ARTICLE 👌 Open Access 🛛 😨 🕥

Implications of climate-change-induced stressors and water management for sterlet populations in the Middle and Upper **River Danube**

Martin Šindler 🔀, Maroš Kubala, Dušan Senko, Martin Mišík, Gábor Guti, Ladislav Pekárik, Bořek Drozd First published: 14 August 2024 | https://doi.org/10.1002/rra.4361

S sciendo

A Journal o

Conservation

Biogeography

Journal of Environmental Geography 11 (3-4), 25-36.

DOI: 10.2478/jengeo-2018-0010 ISSN 2060-467X

FUTURE PROJECTIONS OF WATER SCARCITY IN THE DANUBE RIVER BASIN DUE TO LAND USE, WATER DEMAND AND CLIMATE CHANGE

Berny Bisselink¹*, Ad de Roo¹, Jeroen Bernhard², Emiliano Gelati¹

¹European Commission, DG Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra (VA), Italy ²Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands *Corresponding author, e-mail: berny.bisselink@ec.europa.eu

Research article, received 17 September 2018, accepted 31 October 2018

Friday 2nd May 2025 EGU2025 Session HS2.1.7

River Research and Applications

SPECIAL ISSUE PAPER 👌 Open Access 🛛 🚱 😱

Management challenges related to long-term ecological impacts, complex stressor interactions, and different assessment approaches in the Danube River Basin

T. Hein 🔀 A. Funk, F. Pletterbauer, W. Graf, I. Zsuffa, G. Haidvogl, R. Schinegger, G. Weigelhofer

First published: 25 January 2018 | https://doi.org/10.1002/rra.3243 | Citations: 40

What is the Safe Operating Space (SOS)?

Image Source: Time, https://time.com/5930093/amsterdam-doughnut-economics/

A sustainability concept for the complex Earth System (including for water resources).

Social foundation

- Environmental/Ecological ceiling
- Environmentally safe and socially just space for humanity to thrive

Develop a SOS framework for the Danube river basin

Support water planning and management at local to regional levels

- Ensure a sufficient and reliable supply of water
- Both for human activity and natural ecosystems

Castelletti, Xia et al., unpublished; modified by Silvia Artuso

Castelletti, Xia et al., *unpublished*; modified by Silvia Artuso

MODEL	Function	Process	Indicator	[I-DIMENSIONAL
Globa	Regulatory functionality	Natural flow regime	Monthly mean flow alteration	OPERATING SPAC
		Longitudinal connectivity	Structural connectivity index	Safe
Local i	Water state	Uphold state	Aquifers recharge rate	Increasing Risk
		Drought resilience	Resilience index	TIGH NISK
		Extreme flood events	High pulses duration	,0 ⁵
**		Ecosystem state	% of implemented eflows	
		Sectoral water demand	Water supply reliability	
	Water supply	Agricultural demand	% of met demand	1 .
managemet		Renewable supply	Share of demand met by renewable	Indicators
FUTURE	Productivity	Navigation	Navigable days/year	
ADA PA		Habitat	Habitat availability	
	Chemical loads	Chemical status	WFD limits of P and N concentrations	

Castelletti, Xia et al., unpublished; modified by Silvia Artuso

Friday 2nd May 2025 EGU2025 Session HS2.1.7

SOS

Nate

Castelletti, Xia et al., unpublished; modified by Silvia Artuso

Castelletti, Xia et al., *unpublished*; modified by Silvia Artuso

Castelletti, Xia et al., *unpublished*; modified by Silvia Artuso

How can the SOS be used for water management?

Pathways that are consistently remain within the safe zone for all key indicators

There is an obvious tradeoff between the performance of Sector A and sector B

Spot the precise points at which changes in actions or scenarios results in large shift in safety

Friday 2nd May 2025 EGU2025 Session HS2.1.7

Castelletti, Xia et al., unpublished

Thank you very much for your time!

International Institute for Applied Systems Analysis (IIASA) Schlossplatz 1, A-2361 Laxenburg, Austria

<u>www.iiasa.ac.at</u>

www.sos-water.eu

Silvia Artuso Water Security Group artuso@iiasa.ac.at

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101059264.

Integrated water modelling system (IWMS) for the Danube basin

Community Water Model (CWatM)

https://cwatm.iiasa.ac.at/

Community Water Model (CWatM) is a hydrological model simulating the water cycle daily at global and local levels, historically and into the future, maintained by IIASA BNR Water Security group.

CWatM assesses water supply, demand, and environmental needs, including water management and human influence within the water cycle. CWatM includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate and management.

CWatM is open-source and community-driven, and its modular structure facilitates integration with other models.

