
Simulating plant functional acclimation & trait evolution 
using an eco-evolutionary vegetation model (PlantFATE)
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Introduction: representation of plant functional ecology

Blanco, et al., (in prep.). Trait-based vegetation modeling and data integration to advance our knowledge on the functional ecology of ecosystems.

Trait-based Eco-evolutionary
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Method: simulate processes across multiple scales

Image Credits: Muffet, Huw Williams, Falster et al. (2017)
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Study-site: apply model to a hyperdiverse Amazonian forest

1. Forced with periodic extension of 
observed meteorological data 
from 2000-2015 (CO2+200ppm)

2. Species defined as unique 
combinations of 4 plant traits:       
LMA, height, wood density, P50 

3. Start with 100 species with equal 
abundance & random trait values

➢ Let community composition evolve 
via competitive exclusion

Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575
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Eco-evolutionary adaptations of plants to soil moisture regimes
Jaideep Joshi, Benjamin Stocker, Florian Hofhansl, Shuangxi Zhou, Åke Brännström, Iain Colin Prentice, and Ulf Dieckmann 

Image credits: 
Muffet, Huw Williams
Falster et al. (2017)
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2. Demographic change 
due to changing light 
environment 500 years

3. Evolutionary change 
due to changing species 
composition 2000 years

1. Physiological response 
in increased leaf-level 
photosynthesis 1 year
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Hypothesis: community response on three timescales

Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575
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Results: vegetation dynamics capture forest succession

6 Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575

Successional forest dynamics:

Consistent with ecological theory 

fast-growing species with low 
wood densities initially dominate, 

but are gradually and successively 
replaced by slow-growing species 
with longer lifespan.



Results: eCO2 enhances aboveground biomass and turnover

7 Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575

→ increase in productivity GPP (a), NPP (b), 
and respiration (e)

→ decrease in stomatal conductance (c) and 
photosynthetic capacity (d) 

→ Leaf area and aboveground biomass 
increase (g-h), but also mortality rate (f)

→ Heights of canopy layers increase (i), 
making the understory darker. 

→ Traits evolve towards higher wood density 
(j), higher maximum height (k), and less 
negative xylem hydraulic vulnerability (l). 



Results: reverse trends with progressively increasing eCO2

8 Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575

Each point represents the respective steady 
state with CO2 level indicated by point color 
(400 ppm – 1200 ppm)

with increasing CO2 concentrations: 

productivity increases monotonically 
(a,b), 

wood density and aboveground biomass 
initially increase but then peak and 
decrease beyond 600 ppm (d,e).

canopy layer heights increase, causing 
intensifying competition for light and thus 
increasing understory mortality (j).



Results: eCO2 affects wood density, but feedbacks!

9 Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575

Fitness of individual trees as a function of wood density under the 
scenario: aC+aI+aT/eC+aI+aT/eC+eI+aT/eC+eI+eT

→ Fitness peaks at different values of wood density (vertical lines), 
reflecting the trade-off between growth and survival. 

Optimal wood density (corresponding to the fitness maxima):

→ under elevated CO2 but in the absence of environmental 
feedbacks, trees with higher wood density are fitter. 

→ However, when environmental feedbacks are accounted for 
optimal wood density decreases as compared to baseline.



Results: increased respiration and belowground allocation 
reduce the CO2-fertilization effect on aboveground biomass

10

• Elevated CO2 (614.2 ppm)

eCO2 + 50% increase in feedback

• sapwood respiration (+Rs)

increase in sapwood respiration rate, 
(due to increasing temperature)

• belowground allocation (+ζ)

increased belowground allocation 
(response to nutrient limitation)

Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575
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Outlook: account for belowground processes

References: Rödig et al., (2017); Quesada et al. (2012); Rius et al., (2023); Hofhansl et al., (2021)

Above-ground

Below-ground

Plant life strategy (PLS):

→ Functional response

Eco-Evolutionary Optimization (EEO):

→ Functional process



Thank you for your attention – contact me!

For further info (and follow-up questions) please scan QR code to my profile!

Joshi, J., Stocker, B.D., Hofhansl, F., et al., (2022). Nature Plants 10.1038/s41477-022-01244-5.
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