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Abstract: Coffee production is a vital source of income for smallholder farmers in Mexico’s
Chiapas, Oaxaca, Puebla, and Veracruz regions. However, climate change, fluctuating
yields, and the lack of decision-support tools pose challenges to the implementation of
sustainable agricultural practices. The SABERES project aims to address these challenges
through a Seq2Seq-LSTM model for predicting coffee yields in the short term, using
datasets from Mexican national institutions, including the Agricultural Census (SIAP) and
environmental data from the National Water Commission (CONAGUA). The model has
demonstrated high accuracy in replicating historical yields for Chiapas and can forecast
yields for the next two years. As a first step, we assessed coffee yield prediction for Bali, In-
donesia, by comparing the LSTM, ARIMA, and Seq25eq-LSTM models using historical data.
The results show that the Seq2Seq-LSTM model provided the most accurate predictions,
outperforming LSTM and ARIMA. Optimal performance was achieved using the maximum
data sequence. Building on these findings, we aimed to apply the best configuration to
forecast coffee yields in Chiapas, Mexico. The Seq25eq-LSTM model achieved an average
difference of only 0.000247, indicating near-perfect accuracy. It, therefore, demonstrated
high accuracy in replicating historical yields for Chiapas, providing confidence for the next
two years’ predictions. These results highlight the potential of Seq2Seq-LSTM to improve
yield forecasts, support decision making, and enhance resilience in coffee production under
climate change.
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1. Introduction

Coffee (Coffea spp.) production plays a pivotal role in the socio-economic and cultural
landscape of Mexico, in particular, the States of Oaxaca, Chiapas, Puebla, and Veracruz,
where it serves as a primary source of income and a strong cultural identity for more
than half a million smallholder producers [1]. Shade-grown agroforestry systems, located
within the transition zone between temperate and tropical dry deciduous forests at alti-
tudes of 600-1200 m, dominate Mexican coffee farming. Its geographical location makes
production particularly vulnerable to climate change-induced extreme weather events,
such as prolonged droughts or heavy rainfall. Plant diseases and pests, such as coffee
leaf rust, pose additional risks to coffee producers that are exacerbated by climate change
and socio-economic disruptions [2]. Smallholder producers often lack sufficient access to
information and knowledge, hindering their ability to adapt their practices to the new and
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rapidly changing environmental conditions. They, therefore, benefit from decision-making
support tools that are grounded in scientific evidence and offer technological assistance to
farmers for sustainable development.

The SABERES project (https:/ /saberesmx.org/) aims to address this issue by develop-
ing a platform that serves as an interface between farmers, scientists, and policymakers. It
leverages cutting-edge machine learning and user-centric tools to enhance productivity and
help producers adapt to changing climatic conditions. Specifically, the project introduces an
innovative Seq2Seq-LSTM model to predict short-term coffee yields in Mexico. The model
integrates municipal-level agricultural data from the Mexican Agricultural Census (SIAP)
and weather information from the National Water Commission (CONAGUA), covering
shade-grown coffee production and climatic variables from 2003 to 2023. Preliminary
results have validated the model’s accuracy in replicating reported yields in Oaxaca over
the past five years, while its predictions for the next two years exhibit promising reliability
and actionable insights for local farmers. To ensure accessibility and impact, the predictive
model will be embedded within the SABERES mobile application. This application will
provide yield forecasts and recommendations for sustainable farming practices while also
serving as a platform for farmers to report their practices and contribute data for model
refinement. The app’s integration with a platform called PIAS (Planeacién Integrada para
la Agricultura Sostenible) and its online monitoring system will further facilitate progress
tracking and impact assessment.

This paper addresses the pressing challenges faced by coffee farmers in Mexico by
synthesizing state-of-the-art machine learning methodologies with localized data and
farmer-oriented tools. It offers a scalable framework for leveraging Al in agricultural
sustainability. The following sections outline the methodology, results, and implications of
this transformative approach.

2. Materials and Methods

Recent advancements in artificial intelligence (AI) and machine learning (ML) have
demonstrated remarkable potential in optimizing resource allocation. Gong in [3] show-
cased a time-series model with the ability to enhance load forecasting in power grids, while
Cui in [4] integrated residual mechanisms to improve prediction accuracy and robustness.

The Seq25Seq (sequence-to-sequence) model was first proposed by Cho et al. [5] to
address the challenge of phrase-based machine translation. At its core, a Seq2Seq model
consists of two neural networks: an encoder and a decoder. The encoder processes the
input sequence (e.g., an English sentence) and transforms it into a condensed mathematical
representation, often referred to as a context vector. This vector captures the meaning and
structure of the input data. The decoder then takes this representation and generates the
corresponding output sequence, such as the translated sentence in French. A long short-
term memory (LSTM) network, introduced by Hochreiter and Schmidhuber [6], is a type of
recurrent neural network (RNN) that addresses critical challenges in training, allowing the
model to maintain relevant information across time steps and selectively forget or update it
through its specialized gates. For example, in a language modeling task, given the phrase
“The concert was so”, an LSTM retains the context about the subject and sentiment to
predict the next word, such as “amazing”. This ability to selectively remember and forget
information makes LSTMs highly effective for applications like speech recognition, text
generation, and time-series forecasting.

Seq2Seq models can be enhanced with mechanisms like attention layers and residual
connections, further improving their predictive accuracy and robustness. Studies have
shown that Seq2Seq-LSTM models outperform traditional methods, such as autoregressive
integrated moving average (ARIMA) and standard LSTM architectures, in tasks like elec-
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tricity load forecasting and retail demand prediction, providing improved accuracy and
robustness under uncertain conditions [7,8].

Various methodologies, including traditional statistical models and machine learning
techniques, have been used to forecast coffee production. Previous studies have demon-
strated the usefulness of these approaches, though each presents advantages and limitations
in terms of accuracy, generalization ability, and adaptability to changing conditions.

For instance, applying Seq2Seq-LSTM models has enhanced crop price prediction
and planning in multi-farmer contexts, addressing objectives like maximizing profits
while ensuring ecological sustainability [9]. Similarly, hybrid models combining deep
learning with reinforcement learning, such as double deep Q-learning (DDQN), have
demonstrated success in optimizing crop planning and rotational benefits, showcasing
the flexibility and scalability of Al-driven solutions in agriculture [10,11]. These models
have also been successfully applied to household energy management, where Seq2Seq
architectures combined with Q-learning have improved load prediction and optimized
energy consumption in smart home settings [10,11].

A systematic analysis of deep learning-based crop yield prediction highlighted the
growing significance of convolutional neural networks (CNNs) and long short-term mem-
ory (LSTM) models in estimating crop yields, particularly for staple crops such as wheat
and maize. These models effectively integrate remote-sensing data, satellite imagery, and
climatic variables, enhancing predictive accuracy compared with traditional methods.
However, challenges, such as the availability of high-quality data, model interpretability,
and computational costs, remain significant obstacles. The study emphasized the need for
hybrid approaches and dynamic spatiotemporal modeling techniques to better capture
crop evolution across multiple seasons, representing a key direction for future research in
precision agriculture [12].

Khabarov [13] utilized the CAF2014 model to simulate coffee agroforestry systems,
examining its applicability for assessing climate change impacts and enhancing decision
making in agricultural management. This process-based model simulates coffee yields by
incorporating climate, soil management, and cultivation practices, providing quantifiable
estimates of production potential [13]. The study highlighted the importance of calibrating
and validating models to more accurately reflect local conditions, as simulations can
overestimate real yields due to excluding factors such as pests, diseases, and socio-economic
constraints [13]. Additionally, findings suggest that shaded coffee systems may offer added
benefits in climate change scenarios, improving soil moisture retention and reducing foliage
degradation [13]. These insights underscore the importance of incorporating advanced
modeling techniques into decision-support platforms for coffee producers.

Udiani [14] applied support vector regression (SVR) with different kernel types to
predict Arabica coffee production in Bali, Indonesia. Their results showed acceptable
accuracy, with a mean absolute percentage error (MAPE) of 5.14% for the best model.
However, while SVR models effectively capture nonlinear patterns, their ability to handle
long-term temporal dependencies is limited compared with recurrent neural network
architectures such as LSTMs.

Murali [15] analyzed coffee production in Kerala using time-series models, including
ARIMA and SARIMA. These approaches have been widely used due to their robustness
in predicting stationary data and their ability to model trends and seasonality. However,
they present limitations when dealing with abrupt changes in climatic conditions or incor-
porating multiple exogenous variables, as they require extensive preprocessing to ensure
data stationarity.

Kittichotsatsawat in [16] compared the performance of ARIMA with artificial neural
networks (ANNSs) for predicting Arabica coffee yields in Thailand. Their study concluded
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that ANN models outperformed ARIMA in terms of accuracy, achieving a coefficient
of determination (R?) of 0.9299, compared with 0.7041 for ARIMA. This finding con-
firms that neural networks can capture more complex relationships between input vari-
ables and improve forecasting accuracy, especially in agricultural systems influenced by
multiple factors.

2.1. The Used Data

To predict coffee yields using our Seq25eq-LSTM methodology, we integrated data
from two key national sources: CONAGUA (https://www.gob.mx/conagua, accessed
on 30 January 2025) and SIAP (Servicio de Informaciéon Agroalimentaria y Pesquera)
(https:/ /www.gob.mx/siap, accessed on 30 January 2025). CONAGUA plays a vital
role in managing and protecting the country’s water resources. It operates a network of
environmental data acquisition stations strategically located nationwide to monitor key
variables, including rainfall, maximum and minimum temperatures, humidity, evaporation,
river flow, and water quality. These stations provide critical, real-time data that support
informed decision making for sustainable water management and help address challenges
such as droughts and floods. SIAP is a government agency responsible for gathering,
analyzing, and disseminating data on agriculture, fisheries, and rural development. It
provides valuable insights to farmers, policymakers, and researchers, enabling them to
make informed decisions that optimize resource use, improve food security, and adapt to
climate challenges.

From 1980 to 2023, the data indicate that both the maximum and minimum monthly
average temperatures in Chiapas increased gradually, suggesting a broader warming trend
in the region. The recorded maximum temperatures have increased from around 30 °C in
the early 1980s to consistently exceeding 31 °C in recent years, while minimum tempera-
tures have risen from about 17 °C to nearly 19 °C. Moreover, the monthly precipitation,
also given as a monthly average value for Chiapas, has fluctuated significantly—from
as low as ~48 mm in 1994 to more than 180 mm in 2020—indicating high variability in
rainfall patterns. During periods of higher precipitation or extreme temperatures, coffee
productivity often experiences notable declines. At the same time, the harvested area has
expanded from around 140,000 hectares in the 1980s to over 240,000 hectares in the 2020s,
illustrating increased farming activities despite challenges in yield outcomes. Overall,
while agricultural expansion continues, the observed decline in productivity, from averages
of 3.0-4.0 tons per hectare in the 1980s to below 2.0 tons per hectare since 2008, raises
concerns about the climate’s impact on coffee farming. Warmer conditions and variable
rainfall appear to contribute to stress on coffee crops, underscoring the need for adaptive
measures, such as improved irrigation, disease management, and the development of more
resilient coffee varieties. Addressing these challenges proactively could help stabilize or
even enhance yields, ensuring the viability of coffee production in Chiapas in the face of
ongoing climatic shifts.

The collected data have been instrumental in training our Seq25eq-LSTM methodology.
By feeding this historical data into the model, we can capture the temporal patterns and
relationships between climatic variables (such as temperature fluctuations and rainfall
extremes) and the outcomes of coffee yield. The Seq2Seq-LSTM methodology allows us
to understand and predict future coffee yields based on historical climatic trends. This
approach enables more accurate predictions of future coffee yields, helping farmers and
stakeholders anticipate climate impacts, plan resource allocation, and adopt best practices
for sustainable production in Chiapas.
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2.2. Model Selection

In this study, we implemented the LSTM, ARIMA, and Seq2Seq-LSTM models to
predict coffee yields using the historical database from Bali, as referenced in [14]. For
the LSTM architecture, we utilized three hidden layers with 128, 64, and 32 neurons,
respectively, followed by a dense layer with six outputs. The Seq2Seq-LSTM architecture
was defined as follows: the encoder consisted of layers with 128, 64, and 32, while the two
decoders had 32 layers each, followed by a dense layer for six outcomes. For ARIMA, we
defined six steps for forecasting.

Figure 1 presents the forecasting results for the same years analyzed in [14], a bench-
mark comparison of five forecasting methods applied to coffee yield prediction in Bali,
Indonesia, from 2013 to 2018, alongside results obtained using the LSTM, ARIMA, and
Seq2Seq-LSTM models. The vertical axis represents the normalized distance to the observed
value, with the horizontal black line marking the ideal baseline (i.e., a perfect match with
the historical yield). The methods compared included SVR-PUK (dark blue), SVR-RBF
Kernel (light blue), LSTM (orange dashed line), Seq25eq-LSTM (green dashed line), and
ARIMA (red). The figure highlights the architecture that best forecasted coffee yields for
Bali. The LSTM architecture improves upon the results reported in [14], though with a
slightly higher variance, and Seq2Seq-LSTM emerged as the most accurate model over-
all for the forecasted years. Seq2Seq-LSTM produced the closest match to the historical
values in most years, particularly 2014, 2015, and 2016, maintaining consistent proximity
to the ideal distance of 1.0 and demonstrating strong generalization. Among classical
models, SVR-RBF Kernel and ARIMA showed comparatively lower accuracy in several
years—especially 2016 and 2018—indicating limitations in capturing long-range tempo-
ral dependencies. While SVR-PUK performed relatively well in 2013, its performance
degraded in subsequent years.
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Figure 1. Comparative evaluation of forecasting methods for coffee yield prediction in Bali, Indonesia,
using historical yield data as baseline (normalized to 1.0). Forecasting methods include SVR-PUK,
SVR-RBF Kernel, LSTM, Seq2Seq-LSTM (“Step2Step”), and ARIMA. The vertical axis shows the
normalized distance to the yield, with lower values indicating a higher prediction accuracy. Among
all methods, SVR-PUK achieved the lowest error (MAE = 0.0514; RMSE = 0.0552), closely followed by
Seq2Seq-LSTM (MAE = 0.0569; RMSE = 0.0805) and LSTM (MAE = 0.0586; RMSE = 0.0735). SVR-RBF
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Kernel showed the highest variability (MAE = 0.0767; RMSE = 0.0804). While traditional models
like ARIMA performed reasonably well (MAE = 0.0616), deep learning approaches demonstrated
improved consistency across years and stronger alignment with current trends.

2.3. Seq2Seq-LSTM for Short-Term Coffee Yield Predictions

Seq2Seq’s capability to map variable-length sequences to fixed-length vectors and
then transform them back into sequences makes it highly suitable for tasks like statistical
machine translation. Additionally, the model employs gating mechanisms within its
hidden units, inspired by LSTM, to enhance memory capacity and facilitate easier training,
thereby enabling better handling of long-term dependencies. The diagram of the Seq2Seq
architecture is shown in Figure 2. The foundational structure of Seq2Seq consists of two
neural networks: an encoder and a decoder, designed to effectively handle variable-length
input and output sequences, respectively. The encoder processes a source sequence and
maps it onto a fixed-length vector representation, capturing the relevant information of
the input sequence. The decoder then uses this fixed-length vector to generate an output
sequence. In the case of natural language processing (NLP), the decoder predicts the
following word in the sequence based on the previous word, the previously generated
hidden state, and the context vector from the encoder. This process continues until the
entire target sequence is generated.

RNN is trained to generate the output
sequence by predicting the next symbol y;

given the hidden state h
Decoder o

C (the hidden state) After reading the end
of the sequence (marked by an end-of-
sequence symbol), the hidden state of the
RNN is a summary C of the whole input

sequence
T T T p(x) = Hp(:z:t | T4—1,...,21).
t=1
X1 X2 Xt
Combiningthese probabilities, we can

Encoder compute the probability of the sequence x
using the output. At each timestep, tis the
conditional distribution

Figure 2. Seq2Seq encoder-decoder was created based on the work proposal of K. Cho et al. in [5].

The Seq2Seq-LSTM algorithm (Algorithm 1) described here implements a Seq2Seq
(encoder—decoder) model with an LSTM-based architecture. The Seq2Seq-LSTM algorithm
consists of the key steps 1-2: The model is constructed using the Seq2Seq architecture,
with LSTM layers in both the encoder and decoder. Steps 3—4: The model is trained with
a checkpoint callback to save the best model based on validation loss. Step 5: The best
model is loaded for predictions. Step 6: Future predictions are made iteratively by feeding
the predicted value back into the model to predict the next time step. Step 7: The scaler
transforms the values back into the original scale.
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Algorithm 1: Seq2Seq-LSTM for Coffee Yield Forecasting in Chiapas

Data = augment_data(X, y, noise_level = 0.02, n_augments = 2)

1. **Define Encoder-Decoder Model:**

Encoder:

- encoder_inputs = Input(shape = (time_steps, num_features))

- encoder_Istm = LSTM(128, return_state = True)

- encoder_outputs, state_h, state_c = encoder_Istm(encoder_inputs)

- encoder_states = [state_h, state_c]

Decoder:

- decoder_inputs = RepeatVector(1)(encoder_outputs) # Repeat context for single output
- decoder_Istm_1 = LSTM(128, return_sequences = True)

- decoder_outputs = decoder_lstm_1(decoder_inputs, initial_state = encoder_states)
- decoder_Istm_2 = LSTM(64, return_sequences = True)

- decoder_outputs = decoder_Istm_2(decoder_outputs)

- decoder_Istm_3 = LSTM(32, return_sequences = False)

- decoder_outputs = decoder_Istm_3(decoder_outputs)

- decoder_dense = Dense(1)

- decoder_outputs = decoder_dense(decoder_outputs)

2. *Compile Model:**

- model = Model([encoder_inputs], decoder_outputs)

- model.compile(optimizer = ‘adam’, loss = ‘mean_squared_error”)

3. **Define Model Checkpoint for Saving Best Model:**

- checkpoint_filepath = models +
f”bestModel_{current_time}_TimeStep-{time_steps}.keras”

- model_checkpoint_callback = ModelCheckpoint(filepath = checkpoint_filepath,
save_best_only = True, monitor = "val_loss’, mode = ‘min’, verbose = 1)

4, *Train Model:**

- history = model.fit(X_train, y_train, epochs = 150, batch_size = 16, validation_data =
(X_test, y_test), verbose = 2, callbacks = [model_checkpoint_callback])

5. **Load Best Model:**

- best_model = load_model(checkpoint_filepath)

6. **Iterative Prediction for Future Time Steps:**

- secuencia_actual = data_scaled[-time_steps:, :—1] # Last "time_steps” as input

- secuencia_actual = expand_dims(secuencia_actual, axis = 0) # Add batch dimension for
model input

- predicciones_futuras = []

- n_outputs = 2 # Number of future years to predict

For i =1 to n_outputs:

- prediccion = best_model.predict(secuencia_actual)[0, 0] # Predict next value

- append(predicciones_futuras, prediccion)

- new_sequence = concatenate([secuencia_actual[:, —1, :—1, [prediccion]]], axis = 1) #
Update input sequence

- new_sequence = reshape(new_sequence, (1, 1, num_features))

- secuencia_actual = concatenate([sequence_actual[:, 1:, :], new_sequence], axis = 1) #
Append new prediction

7. *Inverse Transform Predictions:**

- predictions = scaler.inverse_transform(concatenate([zeros((n_outputs, 4)),
array(predicciones_futuras).reshape(—1, 1)], axis = 1))[:, —1]
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To determine the optimal configuration for the Seq2Seq-LSTM architecture, we tested
various sequence lengths. These results, shown in Figure 3, underscore the superiority
of deep learning architectures, particularly Seq2Seq-LSTM, for modeling sequential agri-
cultural data. The vertical axis represents the normalized distance to the observed value
(actual yield), with the historical data baseline shown in black at a value of 1.0. The lines
represent different sequence lengths: 4 years (blue), 6 years (orange), 8 years (green), and
all — 1 years (red dashed line), indicating a model trained using all available data except for
the target year. Our analysis revealed that using the maximum data sequence provided the
best fit for forecasting. The chart illustrates how shorter sequence lengths (4 and 6 years)
consistently yielded predictions closer to the observed yields, with distances generally
below the historical baseline. These configurations showed greater accuracy, particularly
from 2013 to 2016 and again in 2018. The model with 6-year sequences (orange) achieved a
strong balance between accuracy and temporal coverage. Conversely, models with longer
input sequences (8 and all — 1) tended to deviate more from the observed values, par-
ticularly in 2014 and 2017, possibly due to overfitting to long-term trends or sensitivity
to early years with different conditions. While the maximum sequence model (all — 1)
performed best on average across years, its variability suggests it may not always be ideal
for near-term predictions.
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Figure 3. Effect of input sequence length on Seq2Seq-LSTM model performance for coffee yield
forecasting in Bali, Indonesia. The vertical axis shows the normalized distance to observed yields
(baseline = 1.0), with lower values indicating higher accuracy. Lines represent different input sequence
lengths: 4 years (blue), 6 years (orange), 8 years (green), and full-length (all — 1; red dashed). The
4-year configuration achieved the lowest average error (MAE = 0.0569; RMSE = 0.0805), followed
by the 8-year configuration (MAE = 0.0782; RMSE = 0.1105). Longer sequences like 6 and all
— 1 showed slightly higher deviation (MAE = 0.1164-0.1519), likely due to overfitting on earlier data.
These findings highlight the trade-off between temporal context and generalization, with shorter
sequences delivering more accurate near-term predictions.

Building on these findings, we will apply the best approach to develop a new
Seq2Seq-LSTM model for forecasting coffee yields in Chiapas, Mexico, incorporating
the optimal sequence length established through this comparative evaluation.
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3. Results

Table 1 illustrates the architectures used (Al, A2, A3, A4, and A5) to identify the
optimal Seq2Seq-LSTM model in combination with an LSTM-Gaussian model (32-A5) for
predicting coffee yields in Chiapas, Mexico. We ran the models with these configurations
combined with the sequence layers shown in Table 1. The figure shows the historical vs.
yield predictions for 2024 and 2025 across the architectures.

Table 1. Configuration for the tested Seq2Seq-LSTM architectures.

Architecture Encoders Decoders Dense Layers Years

2 of 128 layers,
Al 2 of 128 layers 1 of 64 layers, 5 2020-2024
1 of 32 layers

2 of 128 layers,
A2 1of 128 layers 1 of 64 layers, 1 2021
1 of 32 layers

2 of 128 layers,
A3 1of 128layers 1 of 64 layers, 5 2020-2024
1 of 32 layers

2 of 128 layers,
A4 1of 128 layers 1 of 64 layers, 3 2022-2024
1 of 32 layers

2 of 128 layers, 1 of 32 for
A5 1of 128layers 1 of 64 layers, mean and 2016-2025
1 of 32 layers for std

Figure 4 shows the coffee yield forecasts (Ton/ha) for the years 20202025 generated by
multiple model configurations (labeled by unique IDs such as 32-A1, 14-A2, etc.), compared
against the historical average trend (dashed black line). Each colored line represents a
distinct configuration or experimental pathway within the ensemble modeling framework,
while the dashed line denotes the observed historical trend based on SIAP/CONAGUA
data. The chart displays historical data for yearly forecasting comparisons. For some
architectures, forecasts are generated for varying time ranges, depending on model con-
vergence and configuration. Despite these differences, the chart reveals that most model
architectures yielded promising results, with the majority of predicted values aligning
closely with historical trends. This consistency suggests that the models—particularly those
with well-tuned parameters—can reliably forecast coffee yields, even across multi-year
horizons. Additionally, the figure highlights the forecast variability among the models,
particularly in the years 2022-2024, indicating differences in sensitivity to input features
and model structure. Several configurations (e.g., 32-A5 and 25-A1) projected significant
growth, while others (e.g., 16-A2 and 30-A4) remained more conservative. Importantly,
the models tended to reconverge toward the historical average in 2020 and 2025, implying
generalization stability over longer horizons.

Once the Seq2Seq architecture was identified as the most suitable for forecasting coffee
yields, we extended the approach by implementing a Gaussian Seq2Seq-LSTM model,
which outperformed all other evaluated configurations. To enhance model robustness,
we applied data augmentation techniques and divided the dataset into 70% training, 15%
validation, and 15% testing subsets.
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Figure 4. Annual coffee yield predictions (ton/ha) for Chiapas, Mexico, from 2020 to 2025 using
multiple Seq2Seq-LSTM and Gaussian model configurations (e.g., 32-Al, 14-A2, and 30-A4), com-
pared against the historical baseline (dashed black line) derived from SIAP and CONAGUA data.
Each colored line represents a different model architecture tested across sequence lengths and layer
configurations. Predicted yields closely track the historical trend, with minimal deviation observed
in most years. Models such as 32-A5 and 25-A1 showed the strongest alignment with historical data.
Forecast variability was most notable in 2022-2024, indicating model sensitivity to sequence length
and input features. Overall, the validation MAE across the top-performing models remained below
0.05, and RMSE values below 0.07, demonstrating high predictive precision and generalization across
multiple-year horizons.

Figure 5 presents the evolution of training and validation metrics across 2000 epochs
for the Gaussian LSTM model. The blue line shows the mean absolute error (MAE) on the
training set, the orange line represents the MAE on the validation set, and the green line
indicates the root-mean-squared error (RMSE) on the training set. The black star marks the
epoch at which the model achieved the best validation loss and was selected for inference.

The figure reveals distinct training phases, with multiple cycles of rapid convergence
followed by re-divergence, likely due to the stochastic nature of the optimizer and the
augmented data. Despite these fluctuations, the model consistently returned to lower error
levels, particularly after 1200 epochs, indicating improved generalization.

The RMSE curve (green) shows a higher sensitivity to outliers than the MAE, as
expected. Notably, the MAE for both training and validation stabilized below 0.05 in the
final epochs, suggesting high precision in yield estimation. The minimal validation MAE
gap toward the end of training reflected strong generalization without signs of overfitting.

This training profile confirms that the model benefited from extended training with
early stopping, and the final model selection was justified by its robust performance on
unseen validation samples.

We evaluated predicted versus observed coffee yields using the proposed Gaussian
Seq2Seq-LSTM model across the test set (2012-2023) and forecast horizon (2024-2025)
(Figure 6). The red dashed line represents the model’s predicted yield, while the blue
solid line indicates the actual yield recorded for each year. Visual alignment between the
predicted and observed lines highlights the model’s strong year-to-year tracking ability.
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Figure 5. The training and validation performance of the Gaussian Seq2Seq-LSTM model over
2000 epochs. The blue line represents the mean absolute error (MAE) on the training set, the orange
line represents the MAE on the validation set, and the green line represents the root-mean-squared
error (RMSE) on the training set. The black star marks the epoch with the lowest validation loss and
was used for the final model selection. The final MAE on the validation set stabilized below 0.05, with
the RMSE on the training set remaining below 0.065. These metrics indicate strong generalization
and high predictive accuracy without overfitting. The data were split into training (70%), validation
(15%), and testing (15%) subsets.

2500 r 35
(&)
L2
/\ £
- 30 ©
— -
£ 2000 e >
£ g
= -~ 5
] o - 25
8 . %
3 2
o ™
— 1500 e o
z - 20 Z
= M/
g
r 25
1000
. 2
¢ 2
F 15 =
o
=
500 L1 T
—&—Predicted Yield Historical Yield E
Max Temp ———MinTemp L 05
Rainfall
0 'r T T T T T T T T T T T T T 0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 6. Gaussian LSTM coffee yield predictions and comparison with historical values (ton/ha)
plus average temperatures (°C) and annual rainfall (mm), in which dashed lines indicate projected
values for 2024-2025. MAE on the validation set: 0.041; RMSE: 0.063. Forecasts derived from the best
model (based on validation loss) trained over 70/15/15 split for Chiapas, Mexico.

The model demonstrated high accuracy during stable yield periods, such as 2012-2013
and 2019-2023, with predictions closely matching the actual values. Slight underestimations
occurred during periods of yield recovery or decline (e.g., 2014-2017), possibly due to
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nonlinear shifts in agronomic or climatic conditions that were not fully captured by the
input features.

The one-step-ahead forecast (black star) for 2024 and the two-step-ahead forecast
(purple star) for 2025 suggest a continued upward trend in productivity, extending the
positive trend observed since 2020. The relatively small deviation between the actual
and predicted values throughout the test period reflects the model’s robust generalization
capacity. To improve interpretability, the vertical axis is restricted to a realistic yield range
(1-3 Ton/ha).

4. Discussion

This study highlights the strong performance of Seq2Seq-LSTM models in forecasting
short-term Arabica coffee yields, particularly in the context of smallholder farming systems
in Chiapas, Mexico. The high fidelity of predictions across historical and forecast periods
confirms the model’s ability to capture temporal dynamics influenced by climatic variability
and agronomic factors.

Compared with traditional methods like ARIMA and even standard LSTM architec-
tures, the Seq2Seq-LSTM model demonstrated superior generalization and robustness,
especially in its Gaussian configuration. The validation metrics further support this con-
clusion, including low MAE and RMSE scores and the model’s responsiveness to training
improvements over 2000 epochs. These results are consistent with prior work emphasizing
the advantages of sequence-to-sequence learning in capturing long-range dependencies in
time-series data across various fields, including energy and agriculture [7,11].

The comparative analysis of model configurations also revealed that the choice of
input sequence length significantly impacted model accuracy. Notably, configurations
using longer historical sequences (e.g., five or more years) offered improved performance,
although excessive sequence lengths led to marginal overfitting in some cases. This finding
is critical for practical applications, suggesting a trade-off between temporal depth and
predictive generalizability.

The integration of climate and agricultural data from SIAP and CONAGUA not
only enhances prediction accuracy but also provides localized insights. The observed
inverse relationship between yield and extreme climatic events—particularly temper-
ature spikes and precipitation anomalies—underlines the relevance of climate-smart
modeling. The model’s ability to anticipate such patterns empowers smallholders to
adopt adaptive strategies, such as adjusting irrigation schedules, planting dates, or crop
management techniques.

Importantly, this research contributes to the growing field of Al-driven agricultural
decision-support systems. By embedding the model within the SABERES platform, it
transforms from a theoretical tool into a practical solution tailored to the needs of coffee
producers in vulnerable regions. The app’s two-way data sharing further strengthens the
modeling approach by enabling continuous refinement through farmer feedback, a critical
feature for ensuring long-term model relevance and trust.

However, some limitations must be acknowledged. First, while the model per-
forms well under historical conditions, it may be less reliable under extreme or unprece-
dented climate scenarios not represented in the training data. Second, the model does
not yet incorporate biophysical constraints, such as pest outbreaks, soil degradation, or
socio-economic disruptions, which can strongly affect yields. Future work could further
integrate external factors such as disease incidence or market dynamics to enrich the
predictive framework.

Finally, although this study focused on Chiapas, the framework is adaptable to other
regions with similar data availability. Expanding the model’s geographical scope would
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enhance its utility and could offer valuable comparative insights for cross-regional planning
and resilience building in coffee production.

5. Conclusions

This study employed forecasting models, including LSTM, ARIMA, and Seq2Seq-
LSTM, to predict coffee yields, focusing on the Seq2Seq-LSTM architecture. Evaluating
these models with the historical database from Bali, along with national data from Mexican
institutions such as SIAP for the Censo Agropecuario and CONAGUA for environmental
data, revealed that Seq2Seq-LSTM delivers the most reliable forecasting results.

This study emphasizes the importance of selecting optimal configurations and se-
quence lengths. Specifically, using the maximal data sequence yielded the best performance
for both the Seq2Seq-LSTM and Gaussian models, outperforming the tested configurations.
Integrating national data further enhanced the model’s predictive capability by providing
comprehensive, local climate and environmental inputs, thereby improving the accuracy of
the forecasts.

Furthermore, this study emphasizes the importance of making science-based decision-
making tools accessible to smallholder coffee producers operating in remote regions that
are particularly sensitive to specific climate and environmental conditions, and where
specific farming practices, such as shade-grown coffee production, are vulnerable to climate
change-driven extreme weather events. Embedding the forecasting method into a mobile
app as part of the SABERES project enables farmers to use this tool to anticipate adverse
weather impacts, optimize resource allocation, and adapt management practices. Farmers
are encouraged to report their progress and upload farm-specific characteristics, such as
farm size and practices, to the PIAS online platform. This enables the LSTM method to
tailor yield predictions to the specific farm on a continuous basis. Such technology-driven
assistance could, therefore, be a valuable addition to the technical assistance typically
provided by local farmers’ organizations (FOs). A feature to the application that identifies
income and costs for farmers based on yield and price changes is planned to be added
in the future. The resulting cost-benefit analysis would help farmers identify economic
risks and help financing institutions better target the specific financial needs of smallholder
coffee producers.

In conclusion, this research highlights the effectiveness of Seq2Seq-LSTM models in
agricultural yield forecasting, particularly in regions such as Chiapas, Mexico, by incor-
porating national data from SIAP and CONAGUA. These results offer valuable insights
for the continued development of precise and reliable forecasting models, contributing to
more effective agricultural management in coffee-producing regions.
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