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Abstract: Background: Demand for Hamburg’s ambulance rescue system (ARS) in Ger-
many, which is managed by the fire service, increased by more than 10% between 2019
and 2021. This increase was mainly driven by a more than 20% increase in non-critical
ambulance rescues, while critical rescues decreased over the same period. Factors con-
tributing to this trend include demographic changes, longer waiting times in primary care
and declining quality in out-of-hospital care. To address this issue, the introduction of
community emergency paramedics (CEPs)—who provide treatment and advice to patients
at home before ambulance services are called—has been proposed as a potential solution to
alleviate pressure on the ARS. Methods: In this study, 17 ARS stations in Hamburg, catego-
rized into three operational areas (East, South, West), were analyzed using comprehensive
statistical methods such as hypothesis testing, correlation analysis, regression modeling and
clustering. Data from 2019 and 2021 were examined to assess the feasibility of integrating
CEPs into the existing system. Results: Key findings identified specific stations with high
potential for CEP support and optimal mission times (based on time of day, day of week
and calendar week) to improve operational efficiency. The impact of regulatory measures
introduced during the COVID-19 pandemic was also evident in the 2021 data. Conclusions:
Finally, four policy scenarios—taking into account different synergy effects among the
17 stations—are presented, providing projections of the managerial and economic benefits
for Hamburg policymakers. These policy implications aim to support the development of a
robust CEP strategy to improve the overall efficiency and sustainability of the ARS.

Keywords: community emergency paramedics; ambulance rescue system; statistical
analysis; manpower planning; resource allocation

1. Introduction
Recently, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has hit

the world, severely straining health systems and human resources worldwide [1]. Improv-
ing the resilience of health systems has therefore risen dramatically on the agenda [1–6].

As an example, the demand for the ambulance rescue system (for brevity, we will
use ARS throughout the paper) of the City of Hamburg, Germany, which is executed by
the fire brigade, rose by more than 10% from 2019 to 2021 [7]. This increase in demand
can be mainly attributed to the increase in the number of non-time-critical ambulance
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rescue operations by more than 20%, while the number of critical ambulance rescue service
operations even dropped. This trend is caused by demographic changes, long waiting
times in primary care, and the deterioration of the extramural healthcare services, as well
as the COVID-19 (Coronavirus Disease) pandemic. To cope with this situation, fire brigade
staff have often taken over the tasks of the ARS’s duties since then.

1.1. The Ambulance Rescue System in the City of Hamburg, Germany

Following the Second World War, the responsibility for the ambulance rescue service
was transferred to the fire brigade in the City of Hamburg [8], which runs 17 large rescue
stations organized into three directorates located in the East, West and South, as outlined in
Section 2.1. Prior to this, the fire brigade did not undertake such duties. To supplement the
larger fire and rescue stations, there are smaller rescue stations in Hamburg that address
the issue of response times, although these are not included in our study. There are a
total of 26 smaller locations, distributed differently across the city. In some cases, they
have only a single vehicle or just a few emergency vehicles that are assigned to one of the
three directorates; not all of those stations are staffed by the fire brigade, and not all are
operational on a 24/7 basis.

In the event of an emergency, callers should dial 116 117 for minor cases or 112 for more
serious issues [9]. For minor cases, callers will be directed to a health insurance emergency
service. For more serious issues, callers will be directed to the rescue coordination center of
the fire brigade in the City of Hamburg. The health insurance emergency service provides
medical assistance outside the standard hours of medical doctors with private offices.
Their medical staff can assist with identifying nearby medical practices and pharmacies,
arranging doctor visits and scheduling appointments. For more severe cases, they will
refer the caller to the hotline 112, which is staffed by trained firefighters who are at least
all paramedics. The “call taker” can provide first aid instructions or instruct births or
resuscitation via the telephone. The dispatcher’s role is to alert and direct vehicles to the
appropriate location. The “standardized emergency call query” DIASweb from Noratec
is used to process and assess emergency calls, generating an alarm keyword via a query
algorithm with predefined questions, answer options and results. This alarm keyword is
passed to the dispatcher, who then assigns vehicles. If necessary, the call taker remains on
the line with the caller. Vehicles are selected via routing by the operations control computer
or manually by the dispatcher.

1.2. The General Potential of CEP Systems

With an emergent shortage of health professionals, long ambulance journey times and
a lack of sites for new facilities, the conventional strategy for meeting the increasing demand
for pre-hospital emergency care by providing additional human and material resources is
no longer sustainable [7]. An innovative potential solution to alleviate this overburdening
situation could be the introduction of community emergency paramedics (CEPs) to treat
and advise non-severe injured patients at home, before the ambulance service might be
needed [10–15]. Past reviews have shown that the CEP systems can additionally increase
patient health outcomes and satisfaction, better reach disadvantaged communities, enhance
provider satisfaction and reduce emergency department and inpatient utilization, such as in
the United States of America [16] and Western nations [17]. While worldwide CEP systems
vary in terms of their structure and the distribution of competencies among medical staff,
the efficiency of intramural and extramural emergency care and healthcare systems overall
can be enhanced.

In Germany, CEPs are trained at the highest advanced level (Notfallsanitäter), i.e.,
advanced paramedics, below physicians [7]. CEPs have various treatment competencies,
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such as changing urinary catheters or administering follow-up medications, but not certain
competencies such as medical prescription, diagnosis, or performing surgeries. One CEP
takes a small vehicle and emergency equipment without further staff present, differing
from regular ambulances, which carry, at least one general and one advanced paramedic
to visit one non-severely injured patient. If a non-emergency call subsequently results in
an emergency call, the CEP will summon a more advanced ambulance to attend to the
patient, who might then be transported after initial treatment to a hospital [18]. More
advanced vehicles (emergency medical cars, emergency medical vehicles, emergency
transport vehicles, intensive care transport vehicles) are typically equipped with at least
one physician and at least one general paramedic (emergency medical cars), one general
and one experienced general paramedic (emergency transport vehicles), as well as one
general and advanced paramedic (emergency medical vehicles) for the treatment (all of
the abovementioned vehicles) and transport (except emergency medical cars) of severely
injured patients, respectively. However, it should be noted that emergency helicopters are
operated by a dedicated flight crew, which is not usually part of the medical treatment
team and includes at least two advanced paramedics. Consequently, a CEP strategy
would liberate both staff and emergency vehicles for the management of non-severely
injured patients.

To assess the potential for the suitability of the application of CEPs to the ARS of the
City of Hamburg, Germany, for about 1.9 million inhabitants, we focused on countries with
comparable legal foundations and similar structures of rescue systems, such as Austria.
In addition to counselling emergency calls, the lower Austrian CEP system acts as a first
responder to bridge long waiting times until the arrival of the emergency services [19,20].
During a test phase from May 2020 to December 2022, 5367 operations were documented.
In 60% of the operations, nursing was required, while 40% of the operations needed
emergency care, with a rate of 38% of patients not transported to hospitals.

In Germany, pioneer pilot studies can be found, for example, in the cities of Frankfurt
(about 773.000 inhabitants) [21], Bremen (about 569.000 inhabitants) [22], Braunschweig
(about 251.000 inhabitants) [23], and Oldenburg (about 172.000 inhabitants) [10]. The
ambitious aim of the related policymakers is to implement and finance CEPs in those cities
in the upcoming years.

In a pilot study in the train station area of Frankfurt, 176 operations were executed
by CEPs in fall 2022 [21]. In 53.4% of all operations, the resource was alerted alone, and
in 46.6%, it acted as a first responder in addition to the ordinary resource of the rescue
service (ambulance or emergency ambulance vehicles). Only in 14.2% of the independent
operations was the rescue service additionally requested.

A similar success was reported in Bremen, where the CEP concept was first introduced
for visiting COVID-19 patients at home in March 2020 and afterwards applied to study the
potential for non-critical emergency calls [22]. From the about 2500 operations, 72% of the
patients needed no transportation to hospitals, and only 14% of the patients additionally
required the ambulance rescue service. Due to this success, the CEP system—called
“HanseSani”—was introduced in Bremen.

Seeger et al. [10] reported in a pilot study in Oldenburg and its surroundings that 59%
of CEP operations needed no transportation to hospitals in 2019, while Günther et al. [23]
found that 65% of general ambulant emergency cases needed no transportation to hospitals.

To summarize, CEP systems have the capacity to release ARS; however, it is important
for policymakers to acknowledge that the increasing demand is also driven by the treatment
of patients outside business hours in the context of contractual medical care [24], which is
not the primary intention of an ARS. For instance, Seeger et al. [25] found that, in a survey of
over 5000 German patients, many patients attempted to contact the rescue services, despite
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these services not being the intended purpose of the ARS. The solution to this access
problem lies in the extension of the opening hours of contractual medical care, particularly
the concept of primary healthcare centers, the enhancement of emergency hotlines and the
introduction of community nurses. The CEP system also integrates well with modern app-
based first-responder alert systems and publicly located automated external defibrillators,
further reducing response times for first aid [26]. The final aim is a mobile-integrated
healthcare, a patient-centered coordination of a team led by a physician and including
essential healthcare professionals (e.g., CEPs, community nurses, social/mental healthcare
workers, family doctors, other medical specialists) [27].

1.3. The Potential of a CEP System for the City of Hamburg, Germany

Despite the growing interest in CEPs, significant research gaps remain. For example, it
is unclear how non-time-critical call volumes vary across different urban areas and which
staffing strategies might be most beneficial for a particular area or city. To address these
research gaps, we have formulated the following research questions for our need and
demand case study of the City of Hamburg, Germany:

1. Can a station-level analysis for the 17 major rescue stations identify areas with the
greatest potential for non-time-critical CEP interventions?

2. Which time-of-day or seasonal factors significantly influence non-critical call patterns?
3. How could these insights inform policymakers about resource allocation?
4. Does an uneven distribution of call volume (high-demand vs. low-demand areas)

require tailored CEP strategies, especially at peak times?

We demonstrate that the ARS could be released by the introducing a CEP system for
past data from 2019 and 2021, which could be essential for policymakers.

Section 2 describes the ARS of the City of Hamburg, the data used and the methods
applied. We then present the results for the 17 major rescue stations and their regional
operations (areas: East, South and West) of the ARS, which are analyzed in detail using
statistical analysis with DataTab Version 2024, R 4.4.2 and IBM SPSS Statistics 29.0.1, such
as hypothesis testing, correlation analysis, regression models and clustering, to identify
the potential for a sound area- and time-related CEP strategy in Section 3. In Section 4, we
identify specific stations with high potential, as well as the best times (time of day, day of
week, calendar week) for supporting them with CEPs. Section 5 concludes the paper with
policy implications and further research.

2. Materials and Methods
2.1. Purpose of the Case Study

The purpose of this need and demand case study “for the city of Hamburg, Germany”
was to investigate the potential of the introduction of CEPs, who would treat and counsel
non-severely injured patients—at home or in public—that did not require subsequent
transportation to hospital [7]. We therefore focused on non-time-critical, routine ambulance
services provided by the 17 major ambulance stations in the East (six stations), South (five
stations) and West (six stations, including the city center) areas shown in Figure 1. Excluded
from this were special operations, such as police special operations, or other resources used
for technical assistance or firefighting. All ambulances were allocated to stations, except for
two which were assigned to area directorates in 2021 and 2022 [7].
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We aimed to identify certain high-potential stations and the best times (time of day,
day of the week, calendar week) for them to be supported by CEPs. We thus collected data
on the number and type of operations, calendar week, day of the week and time of day
for non-time-critical calls, which included both ordinary non-event and ordinary event
emergency calls with and without patient transport to hospital. Data were collected for the
year 2019, to exclude the COVID-19 effect, and for the years after 2020, when the situation
was more normalized. It was also reported in the literature that the quality of medical
services was highly affected, especially early in the COVID-19 pandemic (see, e.g., [28]).

Our investigation can be used as a starting point for a detailed simulation study
prior to real implementation or as a guideline for a pilot study in the entire city or in
selected stations using more detailed current data. Including the 26 small rescue stations,
considering “neighborhood and overland support” in case of overflow of the systems,
reallocating large and small rescue stations and/or related vehicles, or routing strategies
of vehicles depending on the traffic and hospital locations are subjects of a huge potential
future research project.

Finally, policymakers need to consider that CEPs have a limited scope, mainly for
non-time-critical and less severe patients, as described above. For severe and mostly time-
critical medical cases, more emergency medical personnel and advanced equipment and
vehicles are needed.

2.2. Data of the Case Study

The data used in this system originate from the operations control system of the Ham-
burg Fire Department’s rescue coordination center [7]. The system generates a data record
for every call received via the emergency hotline, 112, or manually entered emergency
operations, which are then stored in a dedicated database. Known as “HELS Hamburg-
erEinsatzLeitSystem”, this system is used jointly by the Hamburg Fire Brigade and the
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Hamburg Police. It is characterized by its monolithic structure and localized operation,
with no external server storage for data.

From this database [7], we obtained anonymous data in an Excel spreadsheet for
further analysis. One of the authors has worked at the Hamburg Fire Brigade for many
years, including during the main part of the study, which is why we obtained full-year data
for 2019 and 2021. For each patient, the ambulance type sent is recorded, from which one
can derive whether the call was classified by the call center as time-critical or non-time-
critical during triage (cf. Section 1.2). We focused on non-time-critical patients to whom an
ordinary ambulance car and related staff without the use of special rights and rights of way
is sent, as these missions could be executed by CEPs. Due to the extraordinary effects of the
COVID-19 pandemic, including strict lockdowns and many emergency measures in 2020,
we excluded data from that year to avoid biasing the analysis. We also partially compared
2021 data with 2022 data. We did not collect data for 2023 because the first few months of
the year were still affected by the COVD-19 pandemic, and the ARS policymakers decided
not to introduce a CEP system.

The data obtained covered all ambulance rescue operations, including details such as
the type of incident, location, time and patient outcome. Prior to analysis, all data were
fully anonymized. Access to the data was granted by the Hamburg Fire Brigade under a
data-sharing agreement in order to ensure compliance with privacy regulations.

2.3. Statistical and Policy Analyses Performed

For our statistical analysis, we focused on the dataset for 2019 by analyzing different
patterns of non-critical ambulance rescues performed by the 17 stations over 365 days,
52 weeks (12 months), seven days/week and 24 h/day, as shown by the associated variables
used in Table 1. We also examined the effect of holidays and events during the weeks of
the year. The following longer holidays were taken into account (variable ‘breaks’): (1) ski
holidays, (2) Pentecost, (3) summer holidays, (4) autumn holidays and (5) Christmas. In
addition, all legal holidays (variable “holidays”) of the City of Hamburg (e.g., New Year,
Easter, Labor Day) were taken into consideration. Finally, all major events were included
(variable “events”): (1) spring, summer and winter fairs, known as “DOM”, (2) Harley
Days, (3) Schlagermove, (4) Christopher Street Day, (5) Harbour Birthday and (6) Christmas
market season.

Table 1. Variables for the statistical models.

Variable Type Number [Range]

Stations Categorial 17 [1 = Altona,. . ., 17 = Wandsbek]

Months Ordinal 12 [1 = January,. . ., 12 = December]

Weeks Ordinal 52 [1. . .52]

Day of the Year Numeric [Time Series] 365 [t0 = 1 January, . . ., t364 = 31 December]

Days of the Week Ordinal 1 [1 = Monday,. . ., 7 = Saturday]

Hours of the Day Ordinal 24 [1 = “0.00–0.59”,. . ., 24 = “23.00–23.59”]

Breaks Binary [1 = true, 0 = false]

Events Binary [1 = true, 0 = false]

Holidays Binary [1 = true, 0 = false]

We performed several statistical analyses to investigate the data in detail using
DataTab, R and SPSS. First, we used hypothesis tests, specifically Kruskal–Wallis [29]
(a non-parametric test was chosen due to normality concerns), to pinpoint statistically
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significant differences among stations, weeks, months, days of the week and hours of the
day, followed by Dunn–Bonferroni [30,31] post hoc comparisons where necessary (using
DataTab and SPSS) in Sections 3.1.1–3.1.4 [7]. However, diagnostic checks (Durbin–Watson
statistics [32,33], residual plots) sometimes revealed significant autocorrelation, violating
linear model assumptions (using DataTab and SPSS) for our initial linear regression mod-
els to investigate time-related patterns. Consequently, we shifted to a Spearman’s rank
correlation approach [34] to capture monotonic relationships without requiring normality
or independence. We therefore employed Spearman’s correlation to assess relationships
between time-related variables (e.g., day of the week) and call volume and incorporated
regression models to explore potential linear or non-linear trends (using DataTab and SPSS).

Furthermore, we identified stations with the highest number of non-time-critical
ambulance operations by applying hierarchical clustering [35] (using average linkage and
Euclidean distance in DataTab) in Section 3.1.1, thereby providing insights into resource
allocation strategies among stations. As a final check, we also tested the validity of our
results using a Bayesian additive regression model with a piecewise linear trend and
Fourier-based seasonalities, commonly referred to as the Prophet model [36], by using R
in Section 3.1.5 (extension of [7]). We evaluated their robustness using a cross-validation
methodology and posterior credible intervals to ensure that they were robust. Then, given
that we had already applied a Fourier decomposition [37] of the time series data for the
Prophet model, we used it to also identify cyclical patterns across different time scales
(yearly, monthly, weekly and daily), while also controlling for workdays, holidays, school
breaks and events. By decomposing the aggregated demand curves into sinusoids, we
were able to isolate both seasonal trends (e.g., annual, monthly and weekly) and short-term
fluctuations (e.g., daily peaks). Additionally, we assessed the most suitable operating
times during the day for CEPs by a need and demand analysis of each of the 17 stations in
Section 3.2. Finally, three different policy strategies for allocating CEPs among the stations
are presented based on the total number of working hours per year.

3. Results
In investigating the best strategy for implementing the CEP concept in the city of

Hamburg, we first performed a descriptive analysis of the number of non-time-critical
ambulance operations, including statistical tests, clustering methods and regression models
(Section 3.1), to find trends and patterns in the data. In Section 3.2, we analyze three practice-
oriented strategies to best implement the CEP concept, taking into account the results of our
statistical investigations depending on key internal and external environmental conditions.

3.1. Descriptive Analysis Including Statistical Tests, Clustering Methods and Regression Models

We analyzed the results regarding patterns in the dataset for non-critical ambulance
operations in the City of Hamburg regarding area effects (Section 3.1.1), weekly effects
(Section 3.1.2), weekday effects (Section 3.1.3), time of the day effects (Section 3.1.4), and
time series effects (Section 3.1.5), and summarized all area- and time-related effects found
(Section 3.1.5).

3.1.1. Area and Station Effects

An initial investigation was conducted of the differences in population density (see
Table 2) and the number of operations performed (see Table 3) in the City of Hamburg,
Germany, according to area and station [7]. The stations are allocated to the three areas (East,
South, West) with huge areas above 50 km2 and below 100 km2 (e.g., Billstedt or Sasel in the
East area above the Elbe River; Finkenwerder or Süderelbe in the South area; Osdorf in the
West area). Population density and operational metrics were analyzed across the three areas
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(East, South, West), with the West area experiencing the highest concentrations of events
(e.g., DOM, Schlagermove, Harbour’s Birthday). The West area is home to a significant
proportion of the city’s population, with some areas, such as Osdorf and Stellingen, having
over 200,000 residents. Similarly, the East area also has a population of over 100,000. The
South area has the lowest population density.

Table 2. The size and population density of the 17 major ARS stations in the City of Hamburg,
Germany, 2019.

Station Abbrevation Station Area Population Size Area Size in km2 Population
Density Per km2

Altona Alo West 70,791 11.42 6199.41

Alsterdorf Als West 152,952 41.88 3652.06

Barmbek Bar East 170,752 25.265 6761.12

Bergedorf Beg East 114,212 129.25 883.68

Berliner Tor Bet East 78,123 13.37 5841.85

Billstedt Bil East 56,125 57.38 978.19

Finkenwerder Fin South 12,846 56.18 228.64

Harburg Har South 109,213 47.08 2319.73

Innenstadt Inn West 21,607 6.87 3145.58

Osdorf Osd West 204,793 57.69 3550.01

Rotherbaum Rot West 109,294 11.01 9928.60

Sasel Sas East 169,192 86.42 1957.72

Stellingen Ste West 272,006 49.08 5542.67

Süderelbe Sue South 58,611 59.26 989.07

Veddel Ved South 22,271 24.72 901.11

Wandsbek Wan East 123,594 45.39 2722.76

Wilhelmsburg Wil South 51,689 26.60 1942.90

Average in East Area East 51,689 47.08 1276.29

Average in South Area South 118,666 59.51 3190.87

Average in West Area West 138,574 29.66 5336.39

Average per Station 105,769 44.05 3385.00

Hamburg Area (Total) 1,798,071 748.85 2401.10

Table 3. Number of time-critical and non-time-critical operations performed by the 17 major ARS
stations in the City of Hamburg, Germany, 2019.

Station Area

Number of Non-Time-Critical Operations

Total
Number

With Transportation to Hospital Without Transportation to Hospital

Number % Number %

Altona West 3877 3322 85.68% 555 16.71%

Alsterdorf West 2168 1752 80.81% 416 23.74%

Barmbek East 4749 3927 82.69% 822 20.93%
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Table 3. Cont.

Station Area

Number of Non-Time-Critical Operations

Total
Number

With Transportation to Hospital Without Transportation to Hospital

Number % Number %

Bergedorf East 3426 2699 78.78% 727 26.94%

Berliner Tor East 2823 2369 83.92% 454 19.16%

Billstedt East 1973 1519 76.99% 454 29.89%

Finkenwerder South 383 314 81.98% 69 21.97%

Harburg South 2431 2076 85.40% 355 17.10%

Innenstadt West 2541 2205 86.78% 336 15.24%

Osdorf West 2982 2557 85.75% 425 16.62%

Rotherbaum West 2086 1784 85.52% 302 16.93%

Sasel East 4842 4203 86.80% 639 15.20%

Stellingen West 4494 3674 81.75% 820 22.32%

Süderelbe South 1959 1669 85.20% 290 17.38%

Veddel South 1063 910 85.61% 153 16.81%

Wandsbek East 4883 3967 81.24% 916 23.09%

Wilhelmsburg South 1355 1140 84.13% 215 18.86%

Average per
Station 2825.59 2358.06 83.47% 467.53 19.93%

Average in
East Area 22,696 18,684 82.32% 4012 17.68%

Average in
South Area 7191 6109 84.95% 1082 15.05%

Average in
West Area 18,148 15,294 84.27% 2854 15.73%

Total 292,856
(100%)

48,035
(16.40%) 40,087 (13.68%) 100% 7948 (2.71%) 100%

The five stations with the highest population density are as follows: (1) Rotherbaum,
(2) Barmbek, (3) Altona, (4) Berliner Tor and (5) Stellingen. The mean population density
was 2401.10/km2 for the City of Hamburg, while the mean population density amounted to
5336.39/km2, 3190.87/km2 and 1276.29/km2 in the West, East and South areas, respectively.

A Kruskal–Wallis test was used to statistically investigate area differences, revealing
a significant population density difference among the three areas (p = 0.023). The Dunn–
Bonferroni test showed that the South area and the West area significantly differed from
each other (adjusted p = 0.018), making this result important for different area strategies.

As shown in Table 3 [7], CEPs were able to execute 48,035 non-time-critical operations.
The West area, which is heavily populated, the East area, which is densely populated, and
the South area, which is sparsely populated, saw 22,696, 18,148 and 7191 of such operations,
respectively (a total of 48,035, or 16.4% of overall operations). The average number of
operations amounted to 2825.59 per station, ranging from Finkenwerder executing only 383
to Wandsbek performing 4883 (italic lines in Table 3). This reveals the potential for applying
the CEP strategy—especially in certain areas and stations—which will be investigated in
more detail.
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Firstly, we investigated differences in the number of non-time-critical operations
performed in the three areas using Kruskal–Wallis and Dunn–Bonferroni post hoc tests.
We found statistically significant differences in the population densities of the areas and
investigated these findings for the operations performed in three areas (East, South and
West), totaling 48,035 operations performed by 17 stations (p < 0.012). However, further
analysis revealed additional variations among the areas: The East area exhibited significant
disparities compared to the South area (adjusted p = 0.011), yet not in relation to the West
area (adjusted p = 0.109). The same pattern was also statistically confirmed for the number
of operations with transportation to hospital (p < 0.017) and without transportation to
hospital (p = 0.004), with a significant difference only among the East and South areas
with an adjusted p = 0.016 and p= 0.003, respectively. Thus, differences among some areas
were found.

Next, we analyzed whether the total number of non-time-critical operations correlates
to the number of non-time-critical operations that did not result in hospital transportation.
A subsequent Spearman correlation revealed a statistically significant, very high positive
correlation (r(15) = 0.90, p = 0.001), confirming that a similar proportion of patients would
not be transported to the hospital across the different stations, ranging from 15.20% (Sasel)
to 29.89% (Finkenwerder). This information is essential for saving resources, because for
those patients not transported to the hospital, no expensive ambulance vehicle and staff are
subsequently required, and only one CEP would be sufficient for treatment.

Finally, we disclosed high potential areas for applying the CEP strategy, along with
their related stations, by using hierarchical clustering techniques. These techniques allowed
for five clusters, as illustrated in Figure 2, based on the data of Table 3 [7].
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As illustrated in Figure 2, the four high-demand stations (Barmbek, Sasel, Wandsbek
and Stellingen) are allocated to cluster #5 (brown), which has a high number of non-time-
critical ambulance operations (above 4000) and a rate of between about 13% and 19% of
patients not being transported to the hospital. Cluster #1 (pink) contains the low-demand
station Finkenwerder (South area) and cluster #2 (lila) includes Veddel and Wilhelmsburg
(South area), which would be poor candidates for introducing a CEP strategy. The other
stations are assigned to cluster #3 (green), except the stations Altona and Bergedorf, which
form cluster #4 (orange). If only four clusters were to be permitted, cluster #4 would be
merged into cluster #3.

3.1.2. Weekly Effects

An assessment was made of seasonal weekly effects for the number of non-critical
operations performed in 2019 (cf. Figure 3) [7]. From the beginning of the year, the number
of operations increased slightly from 1016 due to higher temperatures, and then from
autumn onwards due to the Advent markets, which began in weeks 47/48 and continued
until week 51. The average number of operations was 923.75 per week. The outliers
represented either the weeks of school holidays (e.g., skiing break, summer break, fall
break), event weeks (e.g., Advent season), or the last week of the year between Christmas
and New Year, when the operations dropped down below 1000—around the level before
the Advent season.
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Figure 3. Positive correlation between the week and the number of non-time-critical operations
performed by the 17 major ARS stations in the City of Hamburg, Germany, 2019.

Linear regression for the number of non-time-critical operations depending on the
week did not meet the “non-autocorrelation” criterion of the residual (Durbin–Watson-
test: p = 0.003, which should be above 0.05). Consequently, we proceeded to test for a
positive correlation using the Spearman correlation method, which yielded a high positive
correlation coefficient (r = 0.67, p < 0.001), thereby confirming the above findings. In order
to investigate different non-linear time-related effects, the Prophet model [36] was used in
Section 3.1.5.



Healthcare 2025, 13, 979 12 of 28

3.1.3. Weekday Effects

As shown in Table 4 [7], the number of operations performed each day ranged from
6599 to 7125, with an average for 6862.14 per day.

Table 4. Number of non-time-critical operations performed on weekdays by the 17 major ARS stations
in the City of Hamburg, Germany, 2019.

Weekday Number of
Non-Time-Critical Operations

Percentage of
Non-Time-Critical Operations

Monday 7125 14.83%

Tuesday 6959 14.49%

Wednesday 6599 13.74%

Thursday 6833 14.23%

Friday 6812 14.18%

Saturday 6973 14.52%

Sunday 6734 14.02%

Average per day 6862.14 14.29%

Total 48.035 100.00%

Utilizing a linear regression model, only 17% of the variance in operations could be
explained (p = 0.341; R2 = 0.17; adjusted R2 = 0.01) among the days of the week. A moderate,
negative correlation was obtained, which was not statistically significant, using a Spearman
correlation r(5) = −0.39 (p < 0.383). Consequently, policymakers might not need to consider
a weekday effect, as further explored using the Prophet model [36] (cf. Section 3.1.5).

3.1.4. Time of the Day Effects

During the day, the demand patterns observed in the dataset were found to be de-
pendent on the activity patterns of people, which were separated into four groups (cf.
Figure 4) [7]: (1) night, from 0.00 to 5.59 (low activity: sleeping); (2) morning, from 6.00
to 11.59 (increasing activity: getting up, leaving home, child caring, studying, working);
(3) afternoon from 12.00 to 18.59 (high activity with a decreasing trend: e.g., child caring,
studying, working, arriving home); and (4) evening, from 19.00 to 23.59 (lower activity
with a decreasing trend: e.g., relaxing, sleeping).

The hourly demand pattern was found to be non-linear for the entire day, and this
will be further investigated by the Prophet model [36] in the next Section 3.1.5.
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Figure 4. Number of non-time-critical operations with and without transportation to the hospital
during the hours of the day in the City of Hamburg, Germany, 2019.

3.1.5. Time Series Effects

To validate and refine the temporal patterns identified in Sections 3.1.1–3.1.4, we
employed the Prophet model [36]. The Prophet model is a Bayesian additive regression
method that integrates piecewise linear trends, Fourier-based multiple seasonalities and
holiday/event effects in a single comprehensive framework. We modeled the counts of
non-time-critical ambulance calls (including normal days, school breaks, holidays and
events) for the year 2019. We then isolated distinct cyclical structures (these being yearly,
monthly, weekly and daily) and assessed their relevance using posterior credible intervals
and cross-validation.

Overview of the Prophet Model

The Prophet model [36] comes from the assumption that the observed time series y(t)
can be decomposed into three main deterministic components plus noise:

y(t) = g(t) + s(t) + h(t) + ϵt (1)

where

• g(t), trend: To capture any trend effects, the Prophet model uses a piecewise linear
specification that accommodates “changepoints” (dates when the slope changes), thus
capturing gradual or abrupt shifts in call volume over the year. For the most part, there
is no long-term increase or decrease in call volume. The trend is slightly positive, but
that is due to the increase in end-of-year seasonality and is therefore non-informative.

• s(t), seasonality: To capture the multiple seasonalities needed for this analysis, the
Prophet model utilizes Fourier series. Each series reflects a different cycle: daily (24 h),
weekly, monthly and yearly.
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• h(t), holiday or event effects: Known holidays, major events and school breaks were
entered as time-limited regressors. This allows the Prophet model to estimate specific
localized changes in call volumes.

• ϵt, residual error.

Fourier Decomposition of Seasonalities

To handle multiple types of cyclical patterns simultaneously, the Prophet model
incorporates a Fourier decomposition [37]. This approach allows us to capture daily,
weekly, monthly and annual cycles by expressing each seasonal period P by sine and cosine
terms (e.g., P = 7 for weekly patterns, P = 365.25 for annual):

s(t) =
K

∑
k=1

(αKcos
(

2πkt
P

)
+ βksin

(
2πkt

P

)
) (2)

Here, the K parameter controls how many terms (harmonics) are used, or, in other
words, how flexible the model’s seasonality is. Larger K values allow for more intricate
(complex) oscillations of the modeled seasonal pattern. The model estimates the amplitude
and phase parameters (αk, βk) of each sinusoid to best fit the observed patterns (e.g., a 24 h
cycle, a 7-day weekly cycle, or a 365.25-day annual cycle).

Bayesian Estimation and Posterior Credible Intervals

We use the Hamiltonian Monte Carlo [38] method to fit the Prophet model. This
methodology allows us to assign a posterior distribution for each model parameter (e.g.,
trend slopes, Fourier amplitudes, holiday/event coefficients) based on its likelihood and
prior [39]. From these posterior distributions, we can derive credible 95% intervals, which
indicate the plausible ranges of the parameter values.

A 95% credible interval for a specific parameter that does not include zero is regarded
as “significant”, in the Bayesian sense. For example, a significant yearly amplitude indicates
that the yearly cycle’s effect on call volume is consistently non-zero across the posterior
samples.

(Time Series) Cross-Validation

Having specified the components of the Prophet model, we used time series cross-
validation (CV) to determine the out-of-sample performance of the model. We also used
CV to validate the results from the posterior credible intervals by comparing models with
differing components (e.g., to test for differences in predictive performance between a
model with and a model without a yearly trend component). The CV results agree fully
with the posterior credible interval assessment. Unlike CV for independent data, time
series CV must respect chronology. Here, we use a sliding window approach using the
following steps:

1. Train on data up to a cut-off date.
2. Forecast the next horizon (e.g., 14 or 30 days).
3. Compare predictions to actual values using the RMSE (root mean squared error).
4. Roll the cut-off forward and repeat.

By aggregating the errors over multiple windows, we ensure that our seasonali-
ties and holiday/event effects are generalizable and not over-fitted to short-term shocks
or anomalies.

Summary of the Area- and Time-Related Effects Found

From our Prophet-based Fourier decomposition (see Figure 5), we extracted four main
cycles regarding seasonality. We tested each cycle under different “treatments” of the data
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(normal days, breaks, holidays, events) using both their 95% posterior credible intervals
and CV. Here is what we observed for the policymaking illustrated in Figure 5:

1. Yearly Seasonality: Informative and “significant” for all data subsets (normal days,
holidays, events, school breaks). All 95% posterior credible intervals show an effect
different from 0 and including them gives a much better performance when using
cross-validation compared to the alternative model (one without). This shows a robust
yearly pattern, with higher volumes typically around the semester break, mid-summer
and pre-Christmas.

2. Monthly Seasonality: Not informative under any treatment. The posterior intervals
included zero, offering no consistent monthly effect. Including a monthly effect did
not increase the model’s performance in terms of RMSE.

3. Weekly Seasonality: Informative only when we explicitly model weeks with holidays.
For normal days, breaks and event weeks, the weekly pattern was non-informative
(credible intervals included zero, and the performance did not increase when do-
ing CV).

4. Daily Seasonality (24 h cycle): Informative across all categories, showing a pro-
nounced morning-to-afternoon peak and lower overnight volumes. When comparing
different treatments, the main difference among holidays, events and breaks com-
pared to normal days is that the trend is slightly shifted left or right, which indicates
an on average earlier or later start of day. The overall shape of the trend, however,
remains the same.

When we analyzed the 2021 dataset, we found that major restrictions on business
openings and closures (and a reduced frequency of Advent markets) or contact restrictions
had led to a reduction in operations to curb the effects of the COVID-19 pandemic [7].
However, due to the impact of the disease, there was an increase in overall operations in the
less populated East and South areas by about 19% and 22% compared to 2019, respectively,
while those operations only increased by about 14% in the highly populated West area
compared to 2019. As the demand for services has risen, a post-COVID-19 dataset [40] for
2024 or onwards would be ideal for further analysis. Some of the increase in demand is
caused by the fact that COVID-19 has become prevalent and long COVID-19 effects have
manifested in the population as well as in the workforce, which might increase the demand
for ambulance services, and thus, CEPs [41–43].

In conclusion, for policymakers especially, these hourly time effects are a significant
consideration when allocating resources among stations and areas, particularly in regard to
peak hours or half-shifts of CEPs. In addition, several stations in the West and East areas
are highly suitable candidates for the CEP strategy. For instance, the Wandsbek station in
the East area, which conducted 4883 operations, and the stations of Barmbek, Sasel and
Stellingen in the East area, which conducted over 4000 operations, would be the optimal
starting points for the introduction, as outlined in Section 3.2 on the allocation strategies of
CEPs among the 17 stations.
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3.2. Allocation Strategies for the Community Emergency Paramedics Concept in the City
of Hamburg

A CEP concept would require additional staff, vehicles, equipment and parking space
for vehicles at stations [7,44]. As medical staff is the most crucial and costly element, we
focused on the number of additional staff members and their working hours per year as a
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first step, in addition to the current resources. The other cost components would have been
too complex and costly to include in this preliminary analysis and could be the subject
of further research in a comprehensive cost-effectiveness analysis [45]. Then, the total
running costs of a basic situation would have to be compared to the total running costs of
situations including CEPs. This could be done using advanced simulation methods with a
comprehensive cost-effectiveness analysis [46–50].

In the emergency services sector, the requirements plan [44] (p. 167) specifies suitable,
medically necessary, efficient and economically justifiable reserve capacities for emergency
rescue. In addition, the required response time, size and condition of the catchment area,
population size and other aspects should be considered. As we deal with non-time-critical
ambulance operations, they are labeled as non-emergencies. Ambulance cars do not have
any special rights or rights of way. In our policy scenario, one CEP would drive one vehicle
for such an operation and would be assigned to one or more predefined stations #1–#17.
The idea of free-floating CEPs among stations could be a topic for further research. Thus,
an ordinary frequency average calculation can be performed for each of the stations.

As outlined in Section 3.1.5, we found that significant demand patterns emerged
during the day and among stations, as well as during certain holiday seasons. Therefore,
when engaging with policymaking, the general concept for staff planning for emergency
services [25] (p. 73) can be utilized as a foundation. In this instance, the necessary number
of vehicles—and, in our case, CEPs—is calculated based on the average frequency rate
of operations at the time of day (average number of alerts per hour per year/365 days)
multiplied by the required average operating time. In the pilot study of Oldenburg and the
surrounding area (3131 km2) by Seeger et al. [25], CEPs required approximately 63.3 min per
operation. For the city of Hamburg (755 km2), a value of 60 min would be an appropriate
upper point for a preliminary calculation. Furthermore, a workload of 75–85% per staff
member in the ambulance sector would be adequate to allow time for administration,
recovery and accounting for differences between weeks. Based on such a calculation, the
number of CEPs required per station can be determined.

Currently, the working hours of the staff members of the fire brigade and ambulance
system of the City of Hamburg are 12 h (from 7 a.m. to 7 p.m. or from 7 p.m. to 7 a.m.) or
24 h (from 7 a.m. to 7 a.m.), with 48 working hours per week for civil servants. Therefore,
we designed three implementation scenarios for CEP strategies for the policymakers of the
City of Hamburg, as shown in Figure 6 (revised based on [7]). CEP strategies #1 [a, b, c]
and #2 [a, b, c] would allocate resources to only one station, while in CEP strategy #3
[a, b], geographically nearby low-demand stations would share resources, forming a group.
Depending on economic and political reasoning, policymakers would then decide which of
the strategies might be most adequate for them, as illustrated in Section 4.
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3.2.1. CEP Strategy #1

CEP strategy #1[a] would be an equal distribution of resources among the 17 stations
without considering their different demand patterns, as illustrated in Section 3.1. Policy-
makers would assign one CEP to each of the 17 stations over 365 days for 24 h, which
would amount to 17 × 365 × 24 = 148,920 staff hours per year.

For example, the Wandsbek station performed the highest number of non-time-critical
operations, amounting to 4883. If one CEP were provided for the entire day, then the
workload per hour would be below 85%, except for the time slot from 10 to 11 a.m. (marked
in bold in Table 5, revised based on [7]). However, the estimated average workload was
always below 100% for this station. In the time slot from 10 to 11 a.m., the average
rate of non-time-critical operations would be about 0.8877, with an assumed average
operations time of 60 min amounting to an average operation time demand of about
53.26 min (60 × 0.88). As one CEP was available, the operational readiness time amounted
to 1 × 60 = 60 min, with an average workload of 53.26/60 × 100 = 88.77%. In particular,
during the night hours from 2 a.m. to 7 a.m., the workload was <35.34% per hour.

For the 17 stations, we found that one CEP for 24 h per day would have an average
workload of about 51–56% per hour for the high-demand stations (indicated with “b, c” in
Table 6) of Barmbek (East area), Sasel (East area), Stellingen (West area) and Wandsbek (East
area) in the pre-COVID-19 dataset for 2019. However, for the Stellingen and Wandsbek
stations in 2019, the average workload per day hour was above 85% but below 100% for
the time slot from 9.00 to 10.00, as illustrated for the Wandsbek station above. When
we analyzed the COVID-19 dataset for 2021, this effect was also true for the two other
high-demand stations, Barmbek and Sasel. Thus, all four high-demand stations would be
good candidates for the introduction of CEP strategy #2 [a], in which a second CEP would
be assigned to each of them from 9.00 to 19.00 to account for a realistic shift and to cover
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the main peak hours. Finkenwerder is not a realistic candidate for the introduction of a
CEP strategy, which was also shown in the cluster analysis.

Table 5. Wandsbek station, 2019: workload calculation for the CEP strategy #1.

Hourly
Time Slot

Average Rate of
Non-Time-Critical

Operations

Operation
Time

(in Minutes)

Average
Demand

(in Minutes)

Number of
Community
Paramedics

Supply
(in Minutes)

Average Workload
[Demand/Supply]

(%)
00.00–00.59 0.3534 60 21.21 1 60 35.34%

01.00–01.59 0.3370 60 20.21 1 60 33.70%

02.00–02.59 0.3233 60 19.40 1 60 32.33%

03.00–03.59 0.2301 60 13.81 1 60 23.01%

04.00–04.59 0.2767 60 16.60 1 60 27.67%

05.00–05.59 0.2356 60 14.14 1 60 23.56%

06.00–06.59 0.3452 60 20.71 1 60 34.52%

07.00–07.59 0.4740 60 28.44 1 60 47.40%

08.00–08.59 0.6548 60 39.29 1 60 65.48%

09.00–09.59 0.7562 60 45.37 1 60 75.62%

10.00–10.59 0.8877 60 53.26 1 60 88.77% (*)
11.00–11.59 0.8301 60 49.81 1 60 83.01%

12.00–12.59 0.7616 60 45.70 1 60 76.16%

13.00–13.59 0.7397 60 44.38 1 60 73.97%

14.00–14.59 0.7178 60 43.07 1 60 71.78%

15.00–15.59 0.6110 60 36.66 1 60 61.10%

16.00–16.59 0.7699 60 46.19 1 60 76.99%

17.00–17.59 0.7178 60 43.07 1 60 71.78%

18.00–18.59 0.6247 60 37.48 1 60 62.47%

19.00–19.59 0.6575 60 39.45 1 60 65.75%

20.00–20.59 0.5945 60 35.67 1 60 59.45%

21.00–21.59 0.5534 60 33.21 1 60 55.34%

22.00–22.59 0.4466 60 26.80 1 60 44.66%

23.00–23.59 0.4685 60 28.11 1 60 46.85%

Total 0.5569
(average)

1400
(sum) 1 1440

(sum)
55.70%

(average)

* Above the required 85% limit.

Table 6 (new based on [7]) illustrates the average hourly workload per station for
strategies #1 [a, b, c]. Regarding the other stations of the West area, the average workload
per hour varied between about 23.79% (Rotherbaum) and 44.26% (Altona), while the
other stations of the East area had higher average workloads per day hour, ranging from
22.51% (Billstedt) to 39.09% (Bergedorf). Policymakers would have to decide which average
workload per hour might be acceptable for the introduction of this CEP strategy #1 in the
two higher-demand stations of Altona and Bergedorf (indicated with “b” in Table 6).

However, the low-demand stations in the South area would be poor candidates for
the introduction of this CEP strategy #1 (indicated with “a” in Table 6). For example, in
the low-demand Finkenwerder station, the average workload amounted to 4.37% per day
per hour, but for all hourly time slots, it was below 10%. Therefore, the low-demand
Finkenwerder station of the South area would not be a candidate for the introduction of
a CEP strategy, as well as the Veddel and Wilhelmsburg stations of the South area, with
a 12.13% and 15.47% average workload per day hour, respectively. The Süderelbe and
Harburg stations would be poor candidates for the CEP strategy, with an average workload
per day hour between about 22.35% and 27.72%, respectively.
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Table 6. Average hourly workload of the 17 stations and the related feasibility of strategy #1 in the
years 2019 and 2021.

Station Average Hourly Workload
Strategy #1 in 2019 Feasibility 2019 Feasibility 2021

Altona [b] 44.26% sufficient sufficient

Alsterdorf [a] 24.75% sufficient sufficient

Barmbek [b, c] 54.19% sufficient 6 time slots over 85% and 1 time slot over 100%

Bergedorf [b] 39.09% sufficient sufficient

Berliner Tor [a] 32.23% sufficient sufficient

Billstedt [a] 22.51% sufficient sufficient

Finkenwerder [a] 4.37% sufficient sufficient

Harburg [a] 27.73% sufficient sufficient

Innenstadt [a] 28.98% sufficient sufficient

Osdorf [a] 34.03% sufficient sufficient

Rotherbaum [a] 23.79% sufficient sufficient

Sasel [b, c] 55.26% 1 time slot over 85% 1 time slot over 85% and 3 time slots over 100%

Stellingen [b, c] 51.27% sufficient 3 time slots over 85%

Süderelbe [a] 22.35% sufficient sufficient

Veddel [a] 12.13% sufficient sufficient

Wandsbek [b, c] * 55.70% 1 time slot over 85% 6 time slots over 85% and 2 time slots over 100%

Wilhelmsburg [b, c] 15.47% sufficient sufficient

* As an example, the feasibility table for 2019 for the Wandsbek station is presented in Table 5.

To summarize, CEP strategy #1 [a] would waste resources by equally distributing
one CEP to each of the stations, especially those in the South area. The four high-demand
stations, especially stations in the East area (Barmbek, Sasel and Wandsbek) and the Stelling
station in the West area, were clear candidates for the introduction of CEP strategies #1 [b, c].
However, during several time slots (e.g., morning slots), the average workload per hour
was above 85% but remained below 100% only at the Stellingen and Wandsbek stations in
the dataset for 2019. This could be especially critical in weeks 48 to 51 of the year, during
the Advent season, as the average number of operations during these weeks was 19% to
28% higher than the weekly average of operations, potentially pushing workloads over
100%, especially during high-demand time slots in the morning. In the dataset for 2021,
CEP strategy #1 [c] would be insufficient for the four high-demand stations during several
time slots in the morning, with capacity even exceeding 100% during three times slots
at the Sasel station. Thus, policymakers should consider a second CEP to cover critical
high-demand time slots, using appropriate shifts similar to CEP strategies #2 [b, c], as
illustrated in the next Section 3.2.2.

3.2.2. CEP Strategy #2

CEP strategy #2 [a] would be similar to CEP strategy #1 [a] (equal distribution of one
24 h CEP to each of the 17 stations without considering their different demand patterns,
as illustrated in Section 3.1.1) but assign a second 12 h CEP to the four high-demand
stations (Barmbek, Sasel, Stellingen, and Wandsbek) so that the average workload per
hour would mostly be below the critical 85% for all time slots [7]. Thus, policymakers
would assign one CEP to each of the 17 stations for 24 h for 365 days, which would
amount to 17 × 24 × 365 = 148,920 staff hours per year. Then, the demand for a second
12 h CEP to the four high-demand stations (Barmbek, Sasel, Stellingen and Wandsbek)
would have to be added for an appropriate shift from 9.00 to 19.00 to cover most of the
peak hours to account for the findings in the post-COVID-19 datasets 2021 [7] and 2022
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(4 × 12 × 365 = 17,520 staff hours per year). In total, 166,440 staff hours per year would
be needed.

However, again, similar to CEP strategy #1 [b], policymakers might only decide to
introduce this strategy #2 [a] in the four high-demand stations (Barmbek, Sasel, Stellingen
and Wandsbek) and in the two intermediate-demand stations (Altona and Bergedorf),
amounting to 6 × 24 × 365 × 24 + 4 × 12 × 365 = 70,080 staff hours per year for this
strategy #2 [b]. Therefore, eleven 24 h CEPs could be saved compared to strategy #2
[a]. CEP strategy #2 [c] would then even save further costs by only implementing the
strategy in the four high-demand stations (Barmbek, Sasel, Stellingen and Wandsbek):
4 × 24 × 365 × 24 + 4 × 12 × 365 = 52,560 staff hours.

3.2.3. CEP Strategy #3

The CEP strategies #3 [a, b] account for synergy effects to increase efficiency and
effectiveness, with a lower number of total staff hours needed compared to strategies #1
[a, b, c] and #2 [a, b, c], but would induce a higher workload and stress for the CEPs.
In CEP strategy #3 [a], low-demand stations would share resources (one 24 h CEP) and
high-demand stations would obtain their own 24 h CEP, but some time slots might have
high or uncovered demand, especially in the COVID-19 years [7]. In addition, a second
shared or non-shared 12 h CEP would be assigned to high-demand stations in CEP strategy
#3 [b] to release high-workload time slots. We proposed the following ten groupings of the
17 stations by accounting for neighborhood and appropriate shift times for CEP strategies
#3 [a, b]:

• Group #1: Stations Süderelbe and Finkenwerder (South area):

• one shared CEP for 24 h between these stations [a, b]

• Group #2: Stations Harburg, Veddel and Wilhelmsburg (South area):

• one shared CEP for 24 h among these stations [a, b]

• Group #3: Stations Billstedt and Bergedorf (East area):

• one shared CEP for 24 h between these stations [a, b]

• Group #4: Stations Innenstadt and Berliner Tor (East area):

• one shared CEP for 24 h between these stations [a, b]

• Group #5: Stations Altona and Osdorf (West area):

• one shared CEP for 24 h between these stations [a, b]

• Group #6: Station Rotherbaum (East area):

• one CEP for 24 h for this station alone

• Group #7: Stations Stellingen and Alsterdorf (West area):

• one shared CEP for 24 h between these stations [a, b]
• one second shared CEP from 7.00–19.00 between these stations [b]

• Groups #8, #9, and #10: Station Barmbek, Sasel and Wandsbek (East area):

• one CEP for 24 h for each of the groups [a, b]
• one second non-shared CEP from 7.00–19.00 for each of the groups [b]

We approximated a minimum average hourly workload per CEP by summarizing the
average hourly workloads of the stations assigned to a group, depending on the assignment
and floating strategy. Such a strategy could be assigning a CEP to the more frequent station
and covering other less frequent station(s) or assigning him/her to the nearest station after
an operation However, by accounting for an average mission time of 60 min, used from a
pilot study with larger catchment areas [8], our approximated results would provide a first
insight for policymakers to choose appropriate candidate strategies for a pilot study or a
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simulation study. Then, policymakers should investigate different allocation and floating
strategies of shared CEPs such as (1) the station to which they are assigned and (2) the
station to which they have to return after an operation or at the end of their shift. Therefore,
insights from reviews on ambulance emergency management studies might be essential for
designing suitable allocation and floating strategies for CEPs [51–56].

When pooling stations, policymakers have to consider that the average hourly work-
load per CEP might have a realistic buffer up to 100%. Therefore, policymakers use a
realistic workload limit of 85%, which is considered in Table 7. For example, in strategy #3
[a], the pooling the stations of group #5 (Altona and Osdorf) might not be possible due to
the high average hourly workload of 78.29% plus the fact that ten hourly time slots would
result in a workload above 85% and below 100% in 2019, while in strategy #3 [b], this group
#5 would obtain a second 12 h CEP, resulting in a lower minimum hourly workload per
CEP of about 55.09%. The same is true for group #7 (Stellingen and Alsterdorf). The other
three high-demand stations from groups #8 (Barmbek), #9 (Sasel) and #10 (Wandsbek),
as well as group #2 (Harburg, Veddel and Wilhelmsburg), might not urgently require a
second CEP in 2019 because the minimum average hourly workload per CEP was below
70% for these groups, and no more than one hourly time slot was above 85%. However,
as the demand was rising, as seen in the COVID-19 datasets for 2021 and 2022, additional
resources would then be needed for them too.

Table 7. Average hourly workload of the 17 stations and the related feasibility of strategy #3 in the
years 2019 and 2021.

Groups
Average Hourly Workload

Strategy #3 [a]
(Feasibility in 2019 and 2021)

Average Hourly Workload
Strategy #3 [b]

(Feasibility in 2019 and 2021)
(1) Süderelbe and Finkenwerder 26.72% -

(2) Harburg, Veddel and Wilhelmsburg 55.33% (2019: 1 > 85%;
2021: 3 > 85%, 1 > 100%) 38.08%

(3) Billstedt and Bergedorf 61.60% (2021: 8 > 85%; 2 > 100%) 40.45% (2021: 1 > 85%)
(4) Innenstadt and Berliner Tor 61.21% (2021: 10 > 85%) 43.83% (2021: 1 > 85%)

(5) Altona and Osdorf 78.29% (2019: 10 > 85%, 2 > 100%;
2021: 3 > 85%, 13 > 100%)

55.09% (2019: 1 > 85;
2021: 3 >85%; 2 > 100%)

(6) Rotherbaum 23.79% -

(7) Stellingen and Alsterdorf 76.02% (2019: 11 > 85%;
2021: 3 > 85%,12 > 100;)

52.08% (2019: 1;
2021: 2 > 85%; 1 > 100%)

(8) Barmbek 54.19% (2021: 6 > 85%; 1 > 100%) 36.55%

(9) Sasel 55.26% (2019: 1 > 85%;
2021: 3 > 85%; 3 > 100%) 37.28%

(10) Wandsbek 55.70% (2019: 1 > 85%;
2021: 6 > 85%; 2 > 100%) 37.89%

From 2021 onwards, the second 12 h CEP plays an important role in strategy #3 [b],
because the average hourly workload per CEP might then be frequently above the 85%
without that additional resource, as illustrated in Table 7 (new based on [7]). Group #1
(Süderelbe and Finkenwerder) and group #6 (Rotherbaum) would not be assigned a second
12 h CEP. For groups #2, #8, #9 and #10, the additional resource was essential, and the
demand of all hourly time slots for 2021 could be met, while for groups #3 and #4, only one
hourly time slot in the morning would have a workload above 85%. However, for group #7
(Stellingen and Alsterdorf), the second 12 h CEP is highly essential, resulting in a lower
average hourly workload per CEP of about 52.08% in strategy #3 [b] compared to 76.02% in
strategy #3 [a]. The same applies to group #5 (stations Altona and Osdorf). Both groups #5
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and #7 might need the second CEP, not only for 12 h but for three and five more hours after
19.00, respectively, to cope with the increased demand.

CEP strategy #3 [a] would require a total of only ten 24 h CEPs instead of 17 compared
to CEP strategies #1 [a] and #2 [a], amounting to 10 × 24 × 365 = 87,600 staff hours per
year, but with a high workload for groups #5 and #7. For example, in group #7, ten hourly
time slots would have a workload over 85% and two hourly time slots over 100% in 2019.
To meet the increased demand for 2021 onwards and also the higher demand of weeks
47/48 to 51, all groups would require at least a second 12 h CEP, except groups #1 and #6,
as illustrated by strategy #3 [b]. Groups #5 and #7 might need the second 12 h CEP for a
few hours longer, or policymakers could consider not pooling these groups. Strategy #3
[b] would require eight 12 h CEPs (8 × 12 × 365 = 35,040 staff hours per year) compared
to strategy #3 [a] amounting to 87,500 + 35,040 = 122,640 staff hours per year in total.
Policymakers could expand the working hours of the second CEP in groups #3 (one hour),
#4 (one hour), #5 (three hours) and #7 (five hours) to meet the demand of all time slots,
which would require 126,290 staff hours per year in total.

4. Discussion
Our findings align with prior research in other countries where CEPs have success-

fully decreased non-urgent transport [10,12,13,16,17,19–22]. However, due to differing
regulations and autonomy regarding CEPs in different countries, a direct comparison is
difficult. For example, in a Finnish study [12], CEP deployment resulted in over 40% of
patients avoiding hospital transport compared to approximately 20% in our 2019 dataset.
However, it should be noted that, in contrast to the Canadian CEP model [13], which grants
paramedics greater autonomy, German regulations currently limit the scope of CEPs to
specific interventions. This may potentially mitigate the immediate impact on the demand
for emergency medical services. Our study underscores the significant potential for CEPs
and highlights the regulatory constraints that policymakers should address to facilitate the
full integration of CEPs within Hamburg’s ARS.

By conducting statistical analyses for non-time-critical operations (approximately
16.4% in 2019), we investigated variations in demand patterns across the 17 stations located
in three areas (East, South and West). Our findings revealed differences in the number of
non-critical operations among these areas and within them. For policymakers, the high-
demand stations in the East and West areas (Stellingen, Barmbek, Sasel and Wandsbek),
followed by the higher-demand Altona (West area) and Bergedorf (East area) stations,
are the best candidates for a CEP concept. Significant statistical differences were also
reported for holidays in the weekly demand patterns. The time-of-day effects are a crucial
consideration for effective resource allocation among stations, especially during peak hours
(9:00–19:00). Based on these first and limited findings, we have proposed three viable,
implementable resource allocation strategies for a CEP concept in Hamburg, contingent on
the budget coverage and pooling strategies illustrated in Table 8 (new based on [7]).

The range of the workload among the stations varied (see Table 6), especially when
assigning one 24 h CEP to low-demand stations, especially those in the south, such as
Finkenwerder, with an average hourly workload of less than 5% (strategies #1 [a] and
2 [a]). Consequently, policymakers may consider implementing strategies #1 [b, c] and
strategies #2 [b, c] to reduce costs by assigning one 24 h CEP to only the six higher-demand
stations (Altona, Barmbek, Bergedorf, Sasel, Stellingen and Wandsbek) or only to the four
high-demand stations (Barmbek, Sasel, Stellingen and Wandsbek), respectively. However,
strategies #1 [a, b, c] would not be sufficient to meet increasing demand in the years 2021
onwards for the four high-demand stations of Barmbek, Sasel, Stellingen and Wandsbek,
as illustrated in Tables 7 and 8. By assigning a second 12 h CEP from 9.00 to 19.00 to the
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four high-demand stations (Barmbek, Sasel, Stellingen and Wandsbek) in strategies #2
[a, b, c], demand could be met in all stations in the year 2021. In terms of coverage and
CEP resources needed, strategies #3 [a, b] would be the most promising. These strategies
would see low-demand stations grouped together, with ten 24 h CEPs required to account
for synergy effects.

Table 8. Comparison of the CEP strategies regarding coverage, resource utilization and feasibility for
the City of Hamburg, Germany in the year 2021.

CEP Strategy
Number of 24 h

Community
Paramedics

(Area Coverage Rate)

Number of
12 h

Community
Paramedics

Number of
Staff Hours

Per Day

Number of
Staff Hours
Per Year *

Feasibility
in 2021

Strategy #1 [a]: one 24 h
CEP
for each station

17 (100%) 0 408 148,920 four high-demand
stations

Strategy #1 [b]: one 24 h
CEP
for the six higher-demand
stations

6 (35.3%) 0 144 52,560 four high-demand
stations

Strategy #1 [c]: one 24 h
CEP
for the four high-demand
stations

4 (23.5%) 0 96 35,040 four high-demand
stations

Strategy #2 [a]: one 24 h
CEP
for each station and
a second 12 h one for four
higher-demand stations

17 (100%) 4 456 166,440

Strategy #2 [b]: one 24 h
CEP
for six higher-demand
stations and
a second 12 h one for the
four high-demand
stations

6 (35.3%) 4 192 70,080

Strategy #2 [c]: one 24 h
CEP
for four high-demand
stations and
a second 12 h one for the
four high-demand
stations

4 (23.5%) 4 144 52,560

Strategy #3 [a]: one
shared 24 h CEP for each
group (ten groups
including 17 stations)

10 (100%) 0 240 87,600 high feasibility for
eight groups

Strategy #3[b]: one shared
24 h CEP for each group
and
a second 12 h one for the
eight higher-demand
groups (ten groups
including 17 stations)

10 (100%) 8 336 122,640

Slight feasibility
for two groups and

intermediate
feasibility for two

groups

* Calculation: number of staff hours per day∗365.

Depending on the budget and coverage strategy, policymakers would select one of the
above options. For tight budgets, strategies #1 [b, c] and strategies #2 [b, c] would be an
option to introduce the CEP strategy in only the six higher-demand stations (about 35%
area coverage rate) or even in just the four high-demand stations (23.5% area coverage rate),
respectively. However, to ensure the feasibility of the CEP strategy for high-demand years,
such as 2021, strategies #1 [a, b, c] might not be sufficient, as the high-demand stations
would then require a second CEP for 12 h, as in strategies #2 [a, b, c]. If geographical
pooling of stations is a viable option, strategies #3 [a, b] would be the most favorable to
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fully cover the City of Hamburg with 17 stations (100% area coverage rate). To be feasible
for a higher-demand year such as 2021, only strategy #3 [b] would be viable with the
consideration of providing a second CEP to four groups for more than 12 h, which would
then require 126,290 staff hours per year.

In general, the increasing demand for the ARS is partly due to the treatment of patients
outside of business hours in the context of contractual medical care [24], which is not the
main intention of an ARS. The solution to this access problem lies in the extension of the
opening hours of contractual medical care providers, especially the concept of primary
healthcare centers, improving emergency hotlines and introducing community nurses. For
instance, Seeger et al. [25] found that, in a survey of over 5000 German patients, many
patients attempted to contact the rescue services, despite these services not being the
intended purpose of the ARS. The CEP system also integrates well with modern app-based
first-responder alert systems and publicly located automated external defibrillators, further
reducing response times for first aid [26]. The final aim is mobile-integrated healthcare,
with patient-centered coordination of physician-led teams that include essential healthcare
professionals (e.g., CEPs, community nurses, social/mental healthcare workers, family
doctors, other medical specialists) [27]. Furthermore, the hospital sector of the City of
Hamburg needs to adapt by improving the handling and treatment of emergency patients,
as well as enlarging the related necessary capacities.

In 2023, the ambulance rescue system’s policymakers in Hamburg decided against
adopting the CEP strategy due to the high costs and efforts of changing the current system,
despite the presentation of the initial results of our promising study. Instead, they opted to
procure ten additional ambulance vehicles to address the rising demand. These vehicles are
primarily operated by relief organizations such as the Arbeiter-Samariter-Bund, Johanniter
and the German Red Cross, which play a vital role in meeting the increasing demand of
the City of Hamburg.

However, should the diffusion of successful paramedic strategies in Germany continue
to progress, and/or should the healthcare coverage situation worsen, it is possible that these
policymakers might change their position in the future. In that case, our preliminary, albeit
limited, findings could form the basis for a subsequent, more extensive pilot or simulation
study. Such a study could utilize recent post-COVID-19 data due to the increased demand
for services across the entire emergency rescue system and incorporate a broader cost-
effectiveness analysis for the City of Hamburg, Germany. Some of the increase in demand
is caused by the fact that COVID-19 has become prevalent and long COVID-19 effects have
manifested in the population as well as in the workforce, which might increase the demand
for ambulance services, and thus, CEPs [41–43].

5. Conclusions
For healthcare policymakers, CEP units (one parametric on a basic vehicle) play a

crucial role in enhancing first-responder networks for non-critical patients worldwide.
This is achieved by reducing response time and conserving vital ambulance resources.
It supports the concepts of community nurses for home-based care, medical emergency
hot-lines, medical doctors in private offices and emergency departments in hospitals. The
CEP units also integrate well with modern app-based first-responder alert systems and
publicly located automated external defibrillators, further reducing response times for
first aid. This is why such a CEP approach presents a viable solution to address the
growing demand for ambulance healthcare services provided by the fire brigade in the
City of Hamburg, Germany. To address the research question of how the number of non-
time-critical operations varies across different city areas and which time-related staffing
strategies might be most beneficial for a certain area or the city, a demand and supply
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analysis was conducted using statistical methods. Three viable, implementable resource
allocation strategies for a CEP concept in Hamburg have been proposed, which could form
the basis for a subsequent pilot or simulation study, contingent on budget, coverage and
pooling strategies.

Whilst the study’s findings offer valuable insights into potential CEP deployment in
Hamburg, there remain several limitations that should be noted. Firstly, the data reflect
only 2019 (pre-pandemic) and 2021 (during the pandemic) operations, which may not
fully capture post-pandemic changes in ambulance demand. Secondly, we assumed an
average of 60 min per CEP call based on the existing literature, but real operation times
could vary significantly. Thirdly, our analysis used aggregated station-level data, which
might overlook local socioeconomic or demographic nuances. Fourthly, no comprehensive
cost-effectiveness comparison was performed between the CEP concept and the concept of
increasing conventional ambulance staff and vehicles to meet the increasing demand. Fi-
nally, the entire emergency healthcare, rescue and treatment system of the City of Hamburg
could be incorporated and examined due to the increasing demand for emergency services.
Future research should address these issues by employing more granular, up-to-date data
and broader economic evaluations.
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