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23 Abstract
24 Declines in resilience have been observed in several climate tipping elements over the past decades, 
25 including the Atlantic Meridional Overturning Circulation (AMOC) and the Amazon rainforest (AR). 
26 Large-scale nonlinear and possibly irreversible changes in system state, such as AMOC weakening 
27 or rainforest-savanna transitions in the Amazon basin, would have severe impacts on ecosystems 
28 and human societies worldwide. In order to improve future tipping risk assessments, understanding 
29 interactions between tipping elements is crucial. The AMOC is known to influence the Intertropical 
30 Convergence Zone, potentially altering precipitation patterns over the AR and affecting its stability. 
31 However, AMOC-AR interactions are currently not well understood. Here, we identify a previously 
32 unknown stabilising interaction pathway from the AMOC onto the Southern AR, applying an 
33 established causal discovery and inference approach to tipping element interactions for the first time. 
34 Analysing observational and reanalysis data from 1982-2022, we show that AMOC weakening leads 
35 to increased precipitation in the Southern AR during the critical dry season, in line with findings from 
36 recent Earth system model experiments. Specifically, we report a 4.8% increase of mean dry season 
37 precipitation in the Southern AR for every 1 Sv of AMOC weakening. This finding is consistent across 
38 multiple data sources and AMOC strength indices. We show that this stabilising interaction has offset 
39 17% of dry season precipitation decrease in the Southern AR since 1982. Our results demonstrate 
40 the potential of causal discovery methods for analysing tipping element interactions based on 
41 reanalysis and observational data. By improving the understanding of AMOC-AR interactions, we 
42 contribute toward better constraining the risk of potential climate tipping cascades under global 
43 warming.
44
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45 Main Text
46
47 INTRODUCTION

48 Climate tipping elements are large-scale bi- or multistable subsystems of the Earth system that can 
49 display nonlinear shifts in response to small environmental changes, in particular changes in global 
50 mean temperature, with potential repercussions onto the Earth system as a whole (Armstrong McKay 
51 et al 2022). Examples of systems that may be able to display such nonlinear behaviour include the 
52 Greenland Ice Sheet, the Antarctic Ice Sheets, the Atlantic Meridional Overturning Circulation 
53 (AMOC), and the Amazon rainforest (AR). High uncertainties remain, in regard to the ability of these 
54 systems to actually display tipping dynamics under current climatic conditions, their critical drivers, 
55 potential spatially diverse behaviors, the respective critical parameters such as thresholds and time 
56 scales, and impacts (Armstrong McKay et al 2022). The evolution of fast tipping elements such as the 
57 AMOC or the AR, with tipping time scales potentially on the order of decades, are of particular policy-
58 relevant concern (Möller et al 2024). The possibility that they could tip within this century with severe 
59 global impacts cannot be excluded, and early warning signals of destabilisation have been detected 
60 for both (Boulton et al 2022, van Westen et al 2024). Interactions among climate tipping elements can 
61 enhance or alleviate this threat (Wunderling et al 2021). For delivering robust tipping risk 
62 assessments, it is important to understand these interactions, most of which have been assessed as 
63 destabilising, triggering self-amplifying feedbacks (Wunderling et al 2024). Some interactions are still 
64 accompanied by considerable uncertainties, this includes the strength and sign of the interaction 
65 between AMOC and AR, so far assessed as unknown (Wunderling et al 2024).

66 The AR is the Earth’s largest rainforest ecosystem and contributes to global temperature regulation 
67 via carbon storage and net cooling from evapotranspiration. It is home to over 10% of the world’s 
68 biodiversity (Flores et al 2024). Due to increasing stress from warming temperatures, extreme 
69 droughts, and deforestation, AR ecosystem health is in decline in many places and parts of the forest 
70 have already turned from carbon sink to source (Gatti et al 2021). AR stability was recently 
71 summarised to critically depend on global mean temperature, mean annual precipitation, dry season 
72 length and intensity, and deforestation (Flores et al 2024). AR tipping would imply (partial) forest 
73 dieback and vegetation changes towards seasonal forest or savanna, threatening the significant 
74 ecosystem services it provides (Armstrong McKay et al 2022).

75 The AMOC is driven by deep-water formation from temperature- and salinity-induced density 
76 gradients, convection, evaporation, and wind in the subpolar North Atlantic. It redistributes heat from 
77 the equator to higher latitudes. Paleoclimatic evidence indicates past multistability with abrupt 
78 changes between a strong and a weak AMOC mainly driven by freshwater influx near Greenland from 
79 precipitation and ice sheet melting (Lynch-Stieglitz 2017) and modulated by aerosol concentrations 
80 (Schleussner and Feulner 2013, Menary et al 2020). AMOC collapse would impact temperature and 
81 precipitation patterns globally, reduce Northern Hemisphere warming, shift the ITCZ southward 
82 (Bellomo and Mehling 2024), and alter monsoon systems with repercussions on the biosphere across 
83 the tropics and beyond (Armstrong McKay et al 2022, Feulner et al 2013). For this reason, we expect 
84 a causal influence from a weakening AMOC onto the AR, however, the sign and strength of the 
85 interaction are yet unclear (Wunderling et al 2024).

86 Given the different hydrological cycles in the Southern and Northern AR (Marengo 2006), we expect 
87 differences in potential respective causal interaction pathways. We here focus on the Southern AR. 
88 An outlook on possible future analysis for the Northern AR is included in the discussion. Earlier Earth 
89 system model (ESM) experiments that induced AMOC weakening or collapse through freshwater 
90 hosing in the North Atlantic found significant changes in AR precipitation, however, the different 
91 studies reported precipitation changes of contradictory signs for the Southern AR (Parsons et al 2014, 
92 Jackson et al 2015). This disagreement was subsequently attributed to biases in modelling the shift of 
93 the Intertropical Convergence Zone (ITCZ) (Good et al 2022). A more recent study utilising ESM 
94 simulations and a conceptual Stommel two-box model found a competing effect between global 
95 warming and AMOC weakening, with AMOC weakening potentially counteracting warming-induced 
96 decreases of precipitation in the Southern AR (Ciemer et al 2021). This competing effect was further 
97 explored in a series of ESM experiments, and evidence for a path-dependency was found, where 
98 vegetation is more resilient in scenarios with a weak AMOC, particularly in the South-eastern AR 
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99 (Nian et al 2023), unless AR dieback occurs before AMOC weakening. In the latter case, the 
100 weakened AMOC was not found to aid forest regeneration. Another series of North Atlantic freshwater 
101 hosing experiments exploring the impacts of AMOC collapse on monsoon systems across several 
102 ESMs found a pronounced increase in precipitation and a shortened dry-season length in the 
103 Southern AR region (Ben-Yami et al 2024a). In summary, ESM-based studies seem to converge 
104 towards a stabilising effect from a weakening AMOC onto the Southern AR via increasing 
105 precipitation. Paleo-evidence from the AR region indicates a long-term southward shift of the ITCZ 
106 (Zhang et al 2017) during Heinrich stadials that are associated with a weak AMOC, leading to 
107 increased vulnerability of Northern Amazon forests (Akabane et al 2024) and suggesting a 
108 corresponding increase of Southern AR precipitation. However, evidence from Earth observation data 
109 supporting this interaction is still lacking. Here, we utilise a mix of reanalysis and observational time 
110 series data to fill this gap.
111
112 A recent study provided observation-based evidence of teleconnections between tipping elements of 
113 the Earth system for the first time, using correlation-based functional network analysis (Liu et al 2023). 
114 Here, we use causal discovery, an advanced statistical method that allows us to identify an 
115 appropriate structural causal model of the interaction mechanism from data. The idea for this 
116 originated in Judea Pearl’s theory of causality (Pearl 2009b) and was first introduced to the Earth 
117 sciences in 2012 (Ebert-Uphoff and Deng 2012). It has since found wide application in the study of 
118 atmospheric teleconnections (Kretschmer et al 2017, Di Capua et al 2020a, Samarasinghe et al 2020, 
119 Di Capua et al 2023, Saggioro et al 2024). Pearl showed that causal relationships between variables 
120 can be derived purely from observational data, without additional measurements or experimental 
121 interventions, under a set of conditions (see Text S1) (Pearl 2009a). This is possible, because a 
122 causal graph describing the data contains testable assumptions about the conditional (in)dependence 
123 structure among the included variables (Pearl 2009a). As opposed to correlation analysis, causal 
124 analysis is able to identify actual causal relations, including the directionality of effects from one 
125 variable onto another, mediating variables that do not act as drivers themselves, as well as 
126 confounding effects. Causal discovery allows for the identification of pathways and timelines of effect 
127 propagation without intervention. An observation- and reanalysis-based study of AMOC-AR 
128 interaction has not been done before and adds a strong perspective to the existing model-based 
129 literature.
130
131 An established implementation of causal discovery and inference for time series analysis, that also 
132 includes time-lagged versions of the variables, is the PCMCI+ algorithm (Runge 2020) (Peter and 
133 Clarke algorithm with Momentary Conditional Independence step). It has been used, for example, for 
134 the analysis of atmospheric teleconnections (Di Capua et al 2020a, 2023), for detecting relationships 
135 between modes of long-term internal variability of the climate system (Saggioro et al 2020), and for 
136 the evaluation of ESMs’ ability to represent such relationships (Karmouche et al 2023).
137
138 Interactions between AMOC and AR are expected to take place on multiple time scales, involving 
139 slower oceanic as well as faster atmospheric processes and anthropogenic and biospheric processes 
140 on multiple timescales. We conduct the analysis on monthly time resolution as a good compromise 
141 between minimum data requirements of the causal discovery method, the limited length of existing 
142 observational records, and the time scales of interest. We here use PCMCI+ to detect causal 
143 interaction pathways between the AMOC and the Southern AR. The AMOC strength/variability is 
144 represented by an established sea surface temperature (SST) fingerprint (Caesar et al 2018). The 
145 Southern AR state is characterised by mean precipitation as well as the Normalised Difference 
146 Vegetation Index (NDVI) that describes vegetation greenness. Out of a larger range of potential 
147 drivers, mediators, and confounders suggested by the literature, we identify the Caribbean Low Level 
148 Jet (CLLJ) as a mediator required in the analysis. By adding a data-driven perspective, our findings 
149 deepen the understanding of the interaction between AMOC and Southern AR and narrow the 
150 uncertainty around its sign and strength, a crucial step towards improved tipping risk assessments.
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151
152
153 METHODS
154
155 Data. The analysis was conducted using monthly resolution data from 1982–2022. The precipitation, 
156 wind, and SST-based indices are constructed from ERA5 reanalysis data (Hersbach et al 2020), 
157 provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The AR 
158 vegetation index is derived from the Global Inventory Modeling and Mapping Studies-3rd Generation 
159 V1.2 (GIMMS-3G+) satellite dataset (Pinzon et al 2023) that provides NDVI data in bi-weekly 
160 resolution.  For sensitivity tests, we also construct the AMOC index using COBE-SST2 (Hirahara et al 
161 2014), HadCRUT5 (Morice et al 2021), HadSST4 (Kennedy et al 2019), and NOAA ERSSTv5 (Huang 
162 et al 2017) SST data (Figure S1). For an additional precipitation index, we use data from the Global 
163 Precipitation Climatology Centre (GPCC) by the Deutscher Wetterdienst (DWD). This is an in-situ 
164 reanalysis dataset of global land-surface precipitation from 1981–2020, based on rain gauge data 
165 from about 86,000 stations world-wide (Schneider et al 2022).
166
167 Index selection. Beside the main indices representing the two tipping elements (AMOC index, mean 
168 precipitation index and NDVI), we need to identify the correct mediators, drivers, and confounders to 
169 include in our analysis. For this purpose, we compile a larger selection of indices representing 
170 physical processes that the literature suggests as potentially relevant (Table 1) (Högner and 
171 Wunderling 2025). We conduct causal discovery on a range of preliminary possible networks from 
172 these variables and identify the CLLJ as a relevant mediator. All other variables from the larger 
173 selection do not form stable links that contribute to the interaction directly or alter it in significant ways, 
174 suggesting that they do not act as significant drivers, mediators, or confounders on the here analysed 
175 timescale and hydrological season. Furthermore, we test the robustness of the finally selected causal 
176 effect network against the inclusion of some of the here excluded variables, as well as the substitution 
177 of indices through related processes (Text S2, Figure S2).
178
179 Index aggregation. The main analysis uses four indices: the AMOC index, the CLLJ index, and a 
180 mean precipitation index, as well as an NDVI for the Southern AR. The AR indices and CLLJ index 
181 are constructed as spatial means aggregated across the respective domains (Figure 1, Table 1). We 
182 use the actual Amazon basin outlines and divide it into a Northern and Southern part along 5° S, 
183 along the different monsoon seasonalities, as done in previous studies (Ciemer et al 2021, Ben-Yami 
184 et al 2024a). The CLLJ is described as the mean zonal wind speed at 925 hPa in the box bounded by 
185 7.5–12.5° N and 85–75°W (Hidalgo et al 2015). We denote easterly wind speed as positive. The AR 
186 vegetation index is resampled from bi-weekly into monthly resolution by averaging. The AMOC SST 
187 index is adapted from Caesar et al. (Caesar et al 2018) by subtracting the global mean SST signal 
188 from the mean SST signal in the subpolar gyre region, here using monthly resolution. Additionally, we 
189 analyse an alternative SST AMOCdipole index (Figure S3) adapted from Pontes & Menviel (Pontes and 
190 Menviel 2024) as the difference between SST averaged over a box in the western South Atlantic (60–
191 30°W; 15–35°S) and the subpolar gyre SST, then subtracting twice the global mean SST, which adds 
192 a recently proposed polar amplification correction (Ditlevsen and Ditlevsen 2023). We also present 
193 analysis that includes direct AMOC strength at 26°N from reanalysis data in the Supplement (Text 
194 S3), however, given the short length of the available data, this has to be considered preliminary. All 
195 time series are detrended and deseasonalised by subtracting a first order polynomial least squares fit 
196 grouped by the respective month. For a description of the aggregation of the indices used in the 
197 preliminary causal discovery and robustness checks, see Table 1.
198
199
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Index Variable Region Aggregation Data source
AMOC fingerprint sea surface 

temperature
subpolar gyre region as 
defined in Caesar et al. 
(Caesar et al 2018)

mean SST anomaly in 
subpolar gyre region 
minus mean global SST 
anomaly, detrended and 
deseasonalised

ERA5 (ECMWF) 
(Hersbach et al 2020)
HadCRUT5 (Met Office) 
(Morice et al 2021)
HadISST4 (Met Office) 
(Kennedy et al 2019)
COBE-SST2 (JMA) 
(Hirahara et al 2014)
ERSSTv5 (NOAA) 
(Huang et al 2017)

Caribbean Low 
Level Jet (CLLJ)

zonal wind speed at 
925 hPa

7.5–12.5°N, 85–75°W spatial mean, detrended 
and deseasonalised

ERA5 (ECMWF)

Southern AR 
precipitation 
(PREC)

total precipitation AR basin (Moulatlet 2017) 
South of 5°S

spatial mean, detrended 
and deseasonalised

ERA5 (ECMWF)
GPCC (DWD) 
(Schneider et al 2022)

Southern AR 
vegetation (NDVI)

Normalised Difference 
Vegetation Index

AR basin (Moulatlet 2017)
South of 5°S

spatial mean, detrended 
and deseasonalised

GIMMS-3G+ (Pinzon et 
al 2023)

AMOCdipole index sea surface 
temperature

subpolar gyre region (see 
above) and a Southern 
Ocean box 15–35°S, 60–
30°W

Mean SST anomaly in 
subpolar gyre region 
minus mean SST in 
Southern Ocean box 
minus twice the global 
SST anomalies

ERA5 (ECMWF)
HadCRUT5 (Met Office)
HadISST4 (Met Office)
COBE-SST2 (JMA)
ERSSTv5 (NOAA)

ENSO1+2 sea surface 
temperature

0–10°S, 90–80°W spatial average SST 
anomalies

ERA5 (ECMWF)

ENSO3.4 sea surface 
temperature

5°N–5°S, 170–120°W spatial average SST 
anomalies

ERA5 (ECMWF)

ITCZ precipitation 15°N–15°S, 35–15°W(Good 
et al 2008)

latitudinally weighted 
zonal mean precipitation

ERA5 (ECMWF)

North Atlantic SST 
(NATL)

sea surface 
temperature

5–25°N, 70–15°W Spatial average ( Good 
et al. 2008), detrended 
and deseasonalised

ERA5 (ECMWF)

South Atlantic SST 
(SATL)

sea surface 
temperature

25–5°S, 40°–20°W Spatial average ( Good 
et al. 2008), detrended 
and deseasonalised

ERA5 (ECMWF)

Atlantic North South 
Gradient (ANSG)

sea surface 
temperature

NATL - SATL difference ERA5 (ECMWF)

South Atlantic 
Anticyclone (SAA) 
longitude

sea level pressure 10–50°S, 60°W–20°E longitude of maximum 
pressure centre

Taken pre-aggregated 
from Gilliland & Keim 
2018 (Gilliland and Keim 
2018)

South Atlantic 
Anticyclone (SAA) 
latitude

sea level pressure 10-50°S, 60°W–20°E latitude of maximum 
pressure centre

Taken pre-aggregated 
from Gilliland & Keim 
2018

North Atlantic 
Oscillation (NAO)

500-mb height 
anomalies

Principal Component centred 
in the subpolar North Atlantic

Rotated Principal 
Component Analysis

Taken pre-aggregated 
from Dool et al. 2000 
(Dool et al 2000)

200 Table 1. Indices used in the causal analysis. All indices utilised in the analysis, the underlying 
201 variable and region on which they are constructed, respective method of aggregation, and data sources. 
202 The indices used in the main analysis are printed in boldface, all other indices were used in the 
203 preliminary analysis and robustness testing.
204
205
206 Causal discovery and inference. The analysis is conducted with the tigramite v5.2 python package 
207 (Runge et al 2023) using the PCMCI+ algorithm, which iteratively tests conditional independence 
208 between time series variables, including time lagged versions, here using a linear partial correlation test 
209 (Runge et al 2019). This algorithm consists of 1) a Markov discovery step that uses an adapted version 
210 of the PC-algorithm (Spirtes et al 2000) (named after its inventors, Peter and Clarke) to identify a 
211 preliminary set of causal parents for each variable included in the analysis. This is done by assuming 
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6

212 full connectivity between all variables and their time-lagged versions, then iteratively eliminating links 
213 between them. 2) a Momentary Conditional Independence (MCI) step that iteratively tests the 
214 conditional independencies between all variables and their time-lagged versions using the preliminary 
215 sets of parents for conditioning, eliminating all spurious links. The partial correlation between each 
216 possible pair of variables is then estimated through a regression on their combined set of preliminary 
217 parents. The strength of the causal effects (CE) of the links found in the causal discovery is determined 
218 using multiple linear regression. For a detailed description of the methodology, see Text S1 in the 
219 Supplementary Material. All causal graphs shown in the figures display causal links with time lags in 
220 months, shaded by CE strength. Blue (red) links indicate a negative (positive) CE, i.e. a change in the 
221 driver variable causes a change of the opposite (same) sign in the target variable (see Text S1 for 
222 details).

223 Causal stationarity analysis. The causal stationarity analysis was performed on extended data from 
224 1940-2022, excluding the NDVI that is only available from 1982. To evaluate the evolution of the CE 
225 over time, we split the data into windows of 40 years length and conduct our analysis in a sliding 
226 window approach in the two following ways: (1) We conduct causal discovery on the full length of the 
227 data, then prescribe the discovered links, and employ the CE analysis for the prescribed links within 
228 each window; (2) we conduct causal discovery and subsequent CE analysis on each window.

229 Causal maps. Following the methodology first introduced in (Di Capua et al 2020b), we finally resolve 
230 the Southern Amazon region spatially and evaluate the CE strength on the grid cell level using two 
231 time series indices (AMOC, CLLJ), and two fields (PREC, NDVI). The fields are provided as spatially 
232 resolved grid cell level time series. We prescribe the links between the variables from the previous 
233 causal discovery on the aggregated indices and evaluate the CE strength of those prescribed links. 
234 We repeat the analysis for AMOC indices constructed from four other SST datasets and identify areas 
235 of high/low agreement between the respective causal maps, defining areas of low agreement as 
236 those grid cells, in which less than two of the four causal maps based on an alternative data source 
237 for SST find a CE within one or two standard deviations from the CE found for the respective grid cell 
238 using ERA5. The reference standard deviation for the CE for each link is taken from the analysis of 
239 the variance of each link under bootstrapping.

240

241 RESULTS
242
243 Causal pathway from AMOC index to Southern AR. We identify a robust network of causal 
244 interactions between the AMOC index (Caesar et al 2018) and the Southern AR precipitation (PREC) 
245 and vegetation greenness (NDVI) during dry season (May-September) (Nobre et al 2009) with a 
246 mediated link via the CLLJ and a direct link from the AMOC index to Southern AR precipitation 
247 (Figure 1) using the PCMCI+ algorithm for causal discovery. The time lags of the links are in the 
248 range of 2-4 months. In this causal effect network, negative SST anomalies in the subpolar gyre 
249 region that indicate a weakening AMOC (Caesar et al 2018, Rahmstorf et al 2015) lead to an 
250 intensified CLLJ and higher Southern AR precipitation. The intensified CLLJ increases Southern AR 
251 precipitation. Higher precipitation increases the NDVI. In summary, we find that a weakening AMOC 
252 increases dry season precipitation and NDVI in the Southern AR. We present a hypothesis for the 
253 physical explanation of this pathway in the discussion.
254
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7

255
256
257 Figure 1. Causal effect network from Atlantic Meridional Overturning Circulation (AMOC) index 
258 to the Southern Amazon rainforest (AR), a) displayed with the indices placed in their respective 
259 location of aggregation: the AMOC index (purple), the Caribbean Low-Level Jet index (CLLJ, magenta), 
260 the Southern AR region (green) represented by mean precipitation (PREC, dark green) and mean 
261 Normalised Difference Vegetation Index (NDVI, light green). b) The time series of the indices 
262 aggregated across the regions shown in panel a), deseasonalised and detrended, as used in the causal 
263 discovery. c) An example of the masking and time lag showing data for the year 2000 for the 
264 AMOC→CLLJ link, in which the CLLJ as target variable is evaluated for the dry season (May-
265 September), and the driver variable with a time lag of 2 months (March-July).
266 We perform a series of sensitivity tests on the causal effect network (Text S2), finding it robust against 
267 the inclusion of additional variables (Table 1, Figure S3a,b), against the substitution of variables with 
268 related processes (Figure S3c), and against the use of different conditional independence tests in the 
269 causal discovery (Figure S4). We repeat the analysis constructing the AMOC index from five different 
270 SST data sources (ERA5, HadCRUT5, HadISST4, Cobe-SST2, ERSSTv5) and the PREC index from 
271 GPCC data (Figure S5), as well as for an alternative AMOCdipole index (Figures S6,S7). We find that 
272 the interaction has the correct sign and consistent order of magnitude of the CE across all data 
273 sources and AMOC index combinations, confirming the robustness of our results.
274
275
276 Causal effect strength. Having identified the interaction structure from the AMOC to Southern AR, 
277 we derive the CE strength using multiple linear regression (Text S1). We find that a decrease of the 
278 AMOC fingerprint SST anomaly by 1 standard deviation leads to an increase of 0.31 standard 
279 deviations in precipitation and 0.12 standard deviations in NDVI in the Southern AR during the dry 
280 season (Figure 2a,c). Translating this back into absolute units from the pre-processed time series and 
281 utilising the relationship between subpolar gyre SST and AMOC strength from Caesar et al. (Caesar 
282 et al 2018), we find a monthly precipitation increase of 3.6 mm for 1 Sv of AMOC weakening. This 
283 represents a dry season precipitation increase of 4.8%. For a dry season length of five months, this 
284 means a total annual dry season precipitation increase of 18 mm per 1 Sv AMOC weakening. Given 
285 the current estimate of 0.46 Sv of AMOC weakening per decade (Pontes and Menviel 2024), this 
286 translates to a 33.1 mm precipitation increase over the period 1982-2022 expected from the analysed 
287 causal effect network alone. However, due to other effects of global warming, observations from 
288 ERA5 precipitation data show a drying trend of 4 mm/year dry season precipitation in the Southern 
289 AR for 1982-2022 (Figure S8). This corresponds to a cumulative observed dry season precipitation 
290 decrease of 160 mm over these four decades. Our results indicate that without the additional 
291 precipitation from the interaction from the weakening AMOC, we would have seen a cumulative drying 
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292 of over 193 mm by 2022 compared with 1982. Thus, the AMOC→AR interaction has offset this drying 
293 trend by about 17%.
294
295 In order to evaluate the sensitivity of the CE to small changes in the data, we assess its variance 
296 under bootstrapping, omitting five random years of data from the initial time series in 500 iterations, 
297 and respectively evaluating the CE of the prescribed links (Figure 2b). We find that all links are 
298 constrained within an interquartile range of around 0.03 or lower around their mean CE. All links are 
299 robust in regard to their sign.
300

301
302
303 Figure 2. Causal effect (CE) strength of the AMOC→Southern Amazon rainforest (AR) 
304 teleconnection. a) The network derived with causal discovery using the PCMCI+ algorithm, between 
305 AMOC, CLLJ, Southern AR PREC and NDVI. The auto-links constitute self-links of the respective 
306 variables. b) CE for the links in the network under 500 iterations of bootstrapping, each randomly 
307 omitting 5 years from the data. The whiskers show an added 1.5 IQR to the first and third quartile 
308 respectively. c) CE for the links in the network, as listed in b), here evaluated on the full data.
309
310
311 Causal maps of the Southern AR. We resolve the Southern Amazon region spatially and evaluate 
312 the CE strength for each link in the causal graph between AMOC, CLLJ, PREC, and NDVI that points 
313 to one of the AR variables (PREC and NDVI) on the grid cell level (Figure 3). We conduct the analysis 
314 for AMOC indices constructed from five different SST datasets (ERA5, HadCRUT5, HadISST4, Cobe-
315 SST2, ERSSTv5). We show the causal maps produced using the ERA5 AMOC index and the 
316 distribution of CE for the respective link for all data sources below (Figure 3). All other causal maps, 
317 derived with the alternative AMOC index data sources, are available in the Supplementary Material 
318 (Figures S9-S12).
319 The density distributions show agreement on the sign of the respective link across most grid cells, 
320 with only tail ends crossing the zero line. While there is some spread in the densities, in particular for 
321 the AMOC→PREC links, the overall qualitative agreement across AMOC data sources is good. The 
322 central estimates of the distributions of the links are consistent with the CEs previously found in the 
323 aggregated analysis (Figure 2) in terms of sign and order of magnitude, although on average a bit 
324 weaker when assessed on the grid cell level. We see almost full agreement for the links 
325 CLLJ→PREC, AMOC→NDVI, PREC→NDVI across the different SST data sources. We find areas of 
326 low agreement based on our threshold definition for the AMOC→PREC links (Figure 3a,b) mainly in 
327 the central Southern AR, where the interaction strength is strongest. This is largely due to weaker 
328 interaction strength detected in the HadCRUT5 and HadISST4 based AMOC indices (Figures 
329 S9,S10). It is worth noting, however, that the agreement on the sign of the interaction across all 
330 datasets and links is high.
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9

331
332 Figure 3. Causal maps of links into the Southern Amazon rainforest. The causal effect strength is 
333 shown on a grid-cell level for the pathways in the network that point into the Southern Amazon rainforest 
334 region, with links to precipitation (PREC) in the left column (a-c) and links to Normalised Difference 
335 Vegetation Index (NDVI) in the right column (d, e) for the causal effect network shown in Figure 1a. 
336 Hatched regions indicate low agreement between the causal maps (less than three of the five causal 
337 maps in agreement). Underneath each causal map, a density plot shows the distribution of the grid cell 
338 level CE for the respective map (in blue) and for four maps from alternative data sources for the AMOC 
339 index (see Figures S9-S12). f) shows the larger geographical context, with the purple box indicating the 
340 bounds of the causal map plots.
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341 Causal stationarity. In order to test the validity of the assumption that the causal relationships 
342 between the analysed variables are stationary (Text S1), we investigate the evolution of the causal 
343 effect network over time for 1940-2022 with a sliding window approach in yearly steps. The network 
344 now consists of AMOC, CLLJ, PREC, as NDVI is only available from 1982.
345
346

347
348  
349 Figure 4. Causal stationarity analysis. Evolution of causal effect (CE) for the AMOC, CLLJ, Southern 
350 AR PREC network for the years 1940-2022 derived with a sliding window of 40 years length. Each point 
351 denotes the CE for the 40-year window centred around the year shown on the x-axis. a) The network 
352 is derived with causal discovery from the data for the full length of the time series (see inset). The CE 
353 over time is derived with multiple linear regression at each time step for links prescribed from this 
354 network. b) Causal discovery is conducted for each time step on the data in the respective 40-year 
355 window and the CE subsequently derived. We show the evolution of the same links as in a). The causal 
356 graphs from the causal discovery for every 5th window (in 5-year steps) are displayed in the inset. Some 
357 of them include additional links, however in the time evolution of the CE we only show the links that are 
358 detected in the causal discovery across the entire time series.
359
360
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361 We first conduct causal discovery on the full length of the time series to derive the causal graph (inset 
362 Figure 4a), then prescribe its links to derive the CE within each sliding window using multiple linear 
363 regression (Figure 4a). We find that all assessed links are consistent in their sign but gain strength 
364 over time. We then perform the full causal discovery on each window separately, with a subsequent 
365 multiple linear regression to assess the CE (Figure 4b), evaluating the same links as previously 
366 prescribed. This way, we are only able to detect a CE if the links are discovered by PCMCI+. We find 
367 that all links are only detected in the later half of the windows. Additional links are found in some 
368 windows (inset Figure 4b). Once discoverable, the CE is in a similar range to the CE when links are 
369 initially prescribed (Figure 4a). This underlines that although the links are present throughout, they not 
370 only become stronger from the 1980s onwards, but also more statistically significant.
371
372
373 DISCUSSION
374
375 In this study, we identify a previously unknown long-range interaction from an established AMOC SST 
376 fingerprint (Caesar et al 2018) to the Southern AR analysing observational and reanalysis data with 
377 causal discovery and inference methods. We find that AMOC weakening leads to increased dry 
378 season precipitation in the Southern AR. This is in agreement with recent ESM based studies that 
379 report overall precipitation increases in the Southern AR under a weakening AMOC (Ciemer et al 
380 2021, Nian et al 2023, Ben-Yami et al 2024a). However, we specifically find a precipitation increase in 
381 the dry season, which is particularly critical for forest stability. We, thereby, add an observational data-
382 driven perspective to the evolving body of knowledge on this climate tipping element interaction, 
383 establishing not only correlation but causality.
384
385 Causality here depends on the inclusion of sufficient variables. We have attempted to ensure that 
386 sufficiency is met by investigating a range of potential drivers, mediators, and confounders of this 
387 interaction. Other variables may still be relevant in AMOC-AR interactions on other time scales, during 
388 the wet season and for the Northern AR, which should be investigated in future studies.
389
390 Paleo-climatic evidence was recently presented, showing that a weakening AMOC has increased the 
391 vulnerability of the Northern AR in the past (Akabane et al 2024). ESM-based studies with North 
392 Atlantic Hosing experiments that weaken the AMOC show mixed responses of Northern AR 
393 precipitation and vegetation. One study finds that AMOC weakening leads to precipitation decreases 
394 in the Northern AR (Jackson et al 2015), while another study finds increased AR vegetation stability 
395 across the entire forest region (Nian et al 2023). A recent study of monsoon patterns under AMOC 
396 weakening finds changes in the seasonal cycle in the Northern AR, with reduced wet season and 
397 increased dry season precipitation, however, the overall changes are spatially heterogeneous (Ben-
398 Yami et al 2024a). The relevant variables are likely to differ to the Southern AR, for example, an 
399 influence from ENSO is expected (Yoon and Zeng 2010). A causal analysis of Northern AR 
400 responses to AMOC changes based on observations and reanalysis as we have presented here for 
401 the Southern AR could, thus, contribute to a better understanding of potential interactions.
402
403 Deviations among precipitation data across datasets can be considerable (Sun et al 2018, Hassler 
404 and Lauer 2021) and reanalysis datasets differ in the observations they are constructed from, in the 
405 applied assimilation and bias correction methods, as well as in the utilised interpolation and 
406 imputation methods (Calvert 2024). These pre-processing steps frequently prioritise the preservation 
407 of mean characteristics of the data over higher-order statistical properties (Ben-Yami et al 2024b). 
408 We, therefore, repeat our analysis on indices derived from multiple data sources. To strengthen the 
409 claim that the AMOC index indeed represents the AMOC, we additionally analyse an alternative 
410 AMOCdipole SST index (Pontes and Menviel 2024). We consistently detect a causal interaction 
411 pathway from AMOC→Southern AR.
412
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413 The detected causal effect network starts with the AMOC SST fingerprint in the subpolar North 
414 Atlantic, that impacts Southern AR precipitation directly and along a pathway mediated by the CLLJ, 
415 subsequently affecting vegetation, with a propagation time of 2-4 months. We hypothesise that the 
416 physical interaction pathway unfolds as follows: subpolar North Atlantic SSTs correlate with AMOC 
417 strength, cooling when the AMOC weakens (Caesar et al 2018, Rahmstorf et al 2015), and are linked 
418 to the NAO, an atmospheric teleconnection pattern characterised by the exchange of air masses 
419 between a low pressure system south-east of Greenland and the North Atlantic Subtropical High 
420 (NASH) (Lamb and Peppler 1987). Cooler subpolar North Atlantic SSTs were found to precede 
421 positive NAO phases in which the NASH is intensified and shifted to the West (Gastineau and 
422 Frankignoul 2015). This strengthens the north-easterly trade winds (Chiang et al 2008, Wang and Lee 
423 2007) and leads to a higher moisture influx into Central America (Marengo 2006, Wang and Lee 
424 2007), intensifying the CLLJ (Cerón et al 2021, Cook and Vizy 2010). The CLLJ has two annual 
425 maxima correlated to the NASH (Cook and Vizy 2010, Wang and Lee 2007), one of which is in July, 
426 during the Southern AR dry season. In years of an intensified CLLJ, the ITCZ is shifted southward in 
427 June-August (Hidalgo et al 2015), leading to higher Southern AR precipitation.
428
429 Assessing the evolution of the identified links over time for the reduced network of AMOC, CLLJ, and 
430 PREC for the period 1940-2022, we find qualitative continuity of the links and a strengthening of the 
431 CEs from the 1980s onwards. Several explanations for this are possible, including 1) changes in data 
432 quality given the onset of the satellite era, and 2) decreasing aerosol forcing, which increases drought 
433 risk in the AR (Cox et al 2008) and contributes to AMOC weakening (Schleussner and Feulner 2013, 
434 Hassan et al 2021).
435
436 A particular pressure on AR stability stems from ongoing deforestation (Flores et al 2024). 
437 Deforestation has been found to reduce precipitation in the Amazon region (Pires and Costa 2013, 
438 Smith et al 2023), with particular impact during dry season (Khanna et al 2017) and the ability to alter 
439 teleconnection patterns (Avissar and Werth 2005). The Southern AR is particularly affected by 
440 deforestation (Arias et al 2020). Due to data limitations, we did not include deforestation as a 
441 confounding variable in our analysis.
442
443 Our findings indicate that a weakening AMOC leads to increased precipitation in the Southern AR 
444 during the critical dry season, with an effect size of 3.6 mm mean monthly precipitation increase for 
445 every 1 Sv of AMOC weakening. This quantitative relationship holds in the current regime, where 
446 global warming has reached 1.2 °C (Forster et al 2024) relative to pre-industrial global mean 
447 temperature and AMOC weakening has been shown to amount to 0.46 Sv per decade since 1950 
448 (Pontes and Menviel 2024). This translates to an additional dry season precipitation of 33.1 mm in 
449 2022 compared to 1982. With an observed dry season precipitation decrease of 160 mm in the same 
450 period, our results suggest that without the additional precipitation from the interaction with the 
451 AMOC, dry season precipitation would have decreased by 17% more than what is currently observed. 
452 The AR is particularly water-limited during the dry season (Gutierrez-Cori et al 2021), and dry season 
453 intensity was identified as one of the critical drivers of AR stability (Flores et al 2024). We, thus, 
454 interpret the AMOC→Southern AR interaction as a stabilising interaction between tipping elements.
455
456
457 CONCLUSION
458
459 We presented evidence for a stabilising interaction from a weakening AMOC onto the Southern AR. 
460 Our results contribute to improving climate tipping risk assessments, that so far have largely relied on 
461 expert elicitation for estimates to quantify tipping element interactions (Wunderling et al 2021, Möller 
462 et al 2024). We here apply advanced causality-based statistical methods for the first time in the study 
463 of tipping element interactions. These methods allow us to use observation and reanalysis data, 
464 strengthening the evidence base for the AMOC-Southern AR interaction considerably. This 
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465 methodology can be applied in the future to investigate other interactions between fast-responding 
466 tipping elements, such as the Northern AR, Arctic sea ice, monsoon systems, permafrost (Armstrong 
467 McKay et al 2022).
468
469 Our analysis does not allow a direct extrapolation onto future global warming conditions. Therefore, 
470 examining the causal stationarity of the interaction across longer time periods and under more 
471 extreme conditions and alternative Earth system states should be subject to future study using ESM 
472 simulation data. Follow-up studies with targeted ESM experiments should also assess how 
473 deforestation, aerosols, and potential path dependencies affect the interaction identified in this work 
474 and need to investigate multiple time scales of interest.
475
476 In conclusion, our findings suggest that without a weakening AMOC, the AR might be losing resilience 
477 even more rapidly under ongoing global warming and other anthropogenic pressures such as 
478 deforestation. However, despite the stabilising interaction between the two assessed tipping 
479 elements, concurrent resilience losses have been observed for both the AMOC (van Westen et al 
480 2024) as well as the AR (Boulton et al 2022) in recent decades. This implies that other critical drivers 
481 of AR stability, such as global warming and deforestation, have destabilising effects that the 
482 interaction from the AMOC cannot fully compensate for. Thus, all possible measures to mitigate and, 
483 if possible, reverse (Schleussner et al 2024) additional global warming need to be pursued and further 
484 deforestation of the AR needs to be terminated.
485
486
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