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Abstract. In this paper, we present a telegraph diffusion model with variable
exponents for image despeckling. Moving beyond the traditional assumption

of a constant exponent in the telegraph diffusion framework, we explore three

distinct variable exponents for edge detection. All of these depend on the
gray level of the image or its gradient. We rigorously prove the existence and

uniqueness of weak solutions of our model in a functional setting and perform

numerical experiments to assess how well it can despeckle noisy gray-level
images. We consider both a range of natural images contaminated by varying

degrees of artificial speckle noise and synthetic aperture radar (SAR) images.

We finally compare our method with the nonlocal speckle removal technique
and find that our model outperforms the latter at speckle elimination and edge

preservation.

1. Introduction. In practice, due to various factors, images are often degraded by
different types of noise, resulting in loss of pixel information in images. Therefore,
image restoration is an essential step before beginning high-level image analysis.
Hence, a crucial challenge in digital image processing is eliminating noise from the
acquired images by finding the best possible approximation of the unknown true
image from a noisy image. One commonly employed strategy is to smooth out noise
from the image while preserving essential attributes such as edges and textures.

In this study, we focus on the removal of speckle noise. This kind of noise
has a granular appearance and emerges through the interference of wavefronts in
coherent imaging systems such as active radar, synthetic aperture radar, medical
ultrasounds, laser, and optical coherence tomography images. Mathematically, a
signal-dependent image degradation model can be described as

I0 = Iη
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where I0, I, and η indicate the speckled image, clean image, and the speckle-noise,
respectively. It is commonly assumed that the speckle noise η is Gamma(L,L)
distributed, where L ∈ IN is the number of “looks” concerned to the number of spa-
tial observations [6]. Numerous studies report the fundamentals and the statistical
characteristics of the speckle noise [1, 28, 39, 40]. Well-known despeckling ap-
proaches possess Bayesian approaches in the spatial domain [28, 39, 40], Bayesian
approaches in the transformed domain [4, 47], order-statistics and morphological
filters [5, 18], simulated annealing despeckling [60], nonlocal filtering [50, 67], prob-
abilistic patch-based algorithm [19], homomorphic approach [7, 34], wavelet-based
approaches [2, 12, 29, 31, 56], nonlinear diffusion in the Laplacian pyramid domain
[63], nonlinear diffusion-based methods [35, 36, 45, 54, 59, 61, 68], variational meth-
ods [8, 21, 27, 37, 44, 53, 55], telegraph equation [44, 45, 46] and, very recently,
deep learning based approaches [17, 48, 49, 58, 66]. A thorough study of these
despeckling techniques is beyond the scope of this work. For a detailed explanation
of these methods, we refer the readers to [6, 20] and the references therein. In
order to address the image despeckling problem, we introduce a variable-exponent
telegraph diffusion model and establish rigorous existence and uniqueness results
for its solution.

From the beginning of the Perona-Malik (PM) [51] model, nonlinear partial dif-
ferential equations (PDE) have been extensively used to develop noise reduction
models. Due to the availability of well-established numerical schemes and theoreti-
cal properties, PDE-based image processing is an exciting research area for real-life
applications. The PDE-based approach is well-known in the image processing com-
munity and aims to remove image noise without destroying meaningful details of
the image content, typically edges, lines, or other information that is crucial for un-
derstanding an image [9, 59]. The total variational (TV) based algorithms achieved
remarkable results among various PDE-based models. The first variational-based
approach to deal with the multiplicative noise removal problem was proposed in
[53], which is known as the RLO model. For an image variable I, their model takes
the form

I∗ := arg min
I∈BV (Ω)

{∫
Ω

|DI|+ λ1

∫
Ω

I0
I
dx+ λ2

∫
Ω

(
I0
I

− 1

)2

dx

}
, (1.1)

where λ1 and λ2 are two Lagrange multipliers, dynamically updated as explained
in [53] and I0 > 0 is the initial data. Here BV (Ω) denotes the space of functions
with bounded variation [26] defined as a space of L1 valued functions on an open,
bounded Lipschitz domain Ω ⊂ Rn such that the following quantity∫

Ω

|DI| := sup
φ

{∫
Ω

Idiv(φ) dx
∣∣φ ∈ C1

0 (Ω;Rn), |φ| ≤ 1

}
,

is finite. The problem associated with the evolution equation of (1.1), along with
the initial and boundary conditions, can be written as

It = div

(
∇I

|∇I|

)
+ λ1

I0
I2

+ λ2
I20
I3

in ΩT := Ω× (0, T ) ,

I(x, 0) = I0(x) in Ω ,

∂nI = 0 in ∂ΩT := ∂Ω× (0, T ) .

Here and in the following, Ω is the domain of the image variable I, T > 0 is a
specified time, and It denotes the first-time derivative of I. div and ∇ represent
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the divergence and gradient operator, respectively, and ∂n denotes the derivative at
the boundary surface ∂Ω in the outward normal direction n. In 2008, the concept
of speckle noise in the total variation framework was employed in [8]. By using
the maximum a-posteriori (MAP) estimator, they developed a TV model (the AA
model) for image despeckling. Their model takes the form

I∗ := arg min
I∈S(Ω)

{∫
Ω

|DI|+ λ

∫
Ω

(
log I +

I0
I

)
dx

}
, (1.2)

where S(Ω) = {I ∈ BV (Ω), I > 0} and λ is a regularization parameter. Later, a
modified version of the AA model for image despeckling was proposed in [43], which
uses the p-Laplace operator with a lower order term and a maximum a posteriori
estimator. The model can be expressed as

I∗ := arg min
I∈S(Ω)

{∫
Ω

|DI|p + λ

∫
Ω

(
log I +

I0
I

)
dx

}
, (1.3)

where 1 < p < 2. In 2013, a convex total variation model for multiplicative speckle-
noise reduction with the following form was suggested in [24],

I∗ := arg min
I∈BV (Ω)

{∫
Ω

α(x)|DI|+ λ

∫
Ω

(
I + I0 log

1

I

)
dx

}
. (1.4)

They choose the gray level indicator function α, as(
1− 1

1 + k|Gξ ∗ I0|2

)
1 + kM2

kM2
, or

Gξ ∗ I0
M

,

with M = supx∈Ω(Gξ ∗ I0)(x), where ξ > 0, k > 0, “∗” is the convolution operator,
Gξ is the two dimensional Gaussian kernel and λ is a given parameter. In addi-
tion to TV approaches, diffusion-based filters can also remove multiplicative noise
from degraded images. One of the earliest diffusion-based models for multiplicative
speckle noise removal was proposed in [61], integrating a spatially adaptive filter
with the PM model [51]. The model takes the form

It = div(g(q0, q)∇I) in ΩT ,

I(x, 0) = I0(x) in Ω ,

∂nI = 0 in ∂ΩT .

Here g(·) is the diffusion coefficient, which can be defined as

g(q, q0) =

(
1 +

q2 − q0
2

q02(1 + q02)

)−1

,

where q is the instantaneous coefficient of variation (ICOV), serves as the edge
detector function, and is determined by the formula

q(I,∇I,∇2I) =

√
(1/2)(∇I/I)2 − (1/16)(∇2I/I)2

[1 + (1/4)(∇2I/I)]2
,

and q0 is the speckle scale function, which serves as the diffusion threshold value
determined by the ratio of the local standard deviation to the mean

q0(I) =
std(I)

mean(I)
.

This filter provides significant enhancement in edge preservation and speckle sup-
pression when compared with conventional filters. Later, based on a gray-level
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indicator function, a diffusion model called doubly degenerate diffusion (DDD) [68]
was proposed to address the multiplicative noise removal problem. Their model
takes the form

It = div(g(I, |∇I|)∇I), in ΩT ,

I(x, 0) = I0(x), in Ω ,

∂nI = 0, in ∂ΩT .

They chose the diffusion coefficient as

g (I, |∇I|) = 2|I|ν

Mν + |I|ν
· 1

(1 + |∇I|2)(1−β)/2
,

where ν > 0, 0 < β < 1, and M = supx∈Ω I. In this case, the gray level indicator

and edge detector functions are a(I) :=
2|I|ν

Mν + |I|ν
and b(I) :=

1

(1 + |∇I|2)(1−β)/2

respectively. In 2017, a variable exponent diffusion model for image despeckling
was proposed in [69]. The model takes the form

It = div

(
∇I

1 + (|∇Iρ|/K)
β(I)

)
, in ΩT ,

I(x, 0) = I0(x), in Ω ,

∂nI = 0, in ∂ΩT .

Here β(I) is a region indicator, and the authors chose it as follows

β (I) = 2− 2|I|α

Mα + |I|α
,

where K,α > 0, Iρ = Gρ ∗ I, and M = supx∈Ω I. Also, the authors in [69] establish
the existence and uniqueness results of their model. The present paper aims to
propose a variable exponent telegraph diffusion model for image despeckling, and
we establish the existence and uniqueness of our model.

Over the last few years, many researchers investigated the variable exponent-
based diffusion models [10, 13, 16, 32, 41, 57, 69] for image denoising. Since the
variable exponent models utilize the benefits of isotropic diffusion, TV diffusion,
and anisotropic diffusion depending on the values of the exponent, they have some
advantages over fixed exponent-based models for image restoration processes. Fur-
thermore, telegraph diffusion-based methods [14, 11, 44, 45, 46, 52, 64, 65] have
been widely explored for removing both additive and multiplicative noise.

Despite the promising applications of variable-exponent diffusion models in noise
reduction and theoretical studies, the use of variable-exponent telegraph diffusion
models remains unexplored. To the best of our knowledge, no previous research has
proposed variable exponents in a telegraph equation framework for speckle noise
elimination. Furthermore, the theoretical results are unexplored in this setting.
Based on existing results in the literature, it seems that the variable exponent tele-
graph equation could be a potentially effective technique for speckle noise removal.
In this study, we first analyze existing variable-exponent diffusion models for im-
age despeckling and then extend these models to a telegraph diffusion framework.
Additionally, we establish the existence and uniqueness of weak solutions for both
diffusion and telegraph diffusion models with variable exponents by considering a
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general form for the diffusion coefficient. These results can be directly applied to
similar PDE models to check their wellposedness.

The remainder of the paper is organized as follows. In Section 2, we review
existing diffusion-based models with variable exponents and introduce some modi-
fications to the exponents. We then discuss existing telegraph diffusion models and
propose new hybrid telegraph diffusion models for image despeckling. Section 3
presents the existence and uniqueness results for both the diffusion and telegraph
diffusion models. In Section 4, we describe the numerical implementation of our
model, and Section 5 evaluates the despeckling performance of the proposed ap-
proach. Finally, Section 6 provides the conclusion.

2. Models with different variable exponents.

2.1. Diffusion models. In this section, we discuss the image despeckling results
using the diffusion model with varying exponents. First, we discuss the image
despeckling results using the following diffusion model (2.1)–(2.3) with the diffusion
coefficient described in (2.4). We calculate the results for ν ≥ 0 with different
values of p. For ν = 0 and p = 2, (2.1)–(2.3) reduces to the Catté model [15],
which was developed for the additive Gaussian noise removal process. For a non
zero ν, (2.1)–(2.3) behaves like the DDD model [68], which was developed for the
speckle noise removal process, introduced in Section 1. Speckle noise degrades
high gray-level regions more than low gray-level regions [68]. So for speckle noise
elimination, it is reasonable to smooth the high gray level regions more than the
low gray level regions, which can be controlled by the gray level function a(Iξ) =

2|Iξ|ν/
{(

M I
ξ

)ν
+ |Iξ|ν

}
. It is easy to see that a(Iξ) becomes very small at low

gray levels, which leads the diffusion coefficient close to zero and preserves low gray
level image features. In high gray level regions, a(Iξ) approaches one and leads to

the fact that 1/
{
1 +

(
|∇Iξ|
K

)p}
mainly controls the diffusion process.

It = div (g (Iξ, |∇Iξ|)∇I) in ΩT , (2.1)

I(x, 0) = I0(x) in Ω , (2.2)

∂nI = 0 in ∂ΩT . (2.3)

The diffusion coefficient g is given by

g (Iξ, |∇Iξ|) =
2|Iξ|ν(

M I
ξ

)ν
+ |Iξ|ν

· 1

1 +
(

|∇Iξ|
K

)p . (2.4)

Here, ν ≥ 0, K > 0, p > 0 are constants, Iξ = Gξ ∗ I, M I
ξ = maxx∈Ω |Iξ(x, t)|.

Figures 1–3 show the restored results of three different images using (2.1)–(2.3).
In Figure 1, we observe that for both cases (ν = 0 and ν > 0), the model (2.1)–
(2.3) restores the image similarly as the gray level information is piecewise uniform.
However, the quantitative results indicate that (2.1)–(2.3) performs better when ν >
0. Figure 2 presents the results for a lake image, where the gray level information is
nonuniform (with color variations across regions). Here, the performance of the two
cases is more distinguishable, and the quantitative results align with the qualitative
observations. Furthermore, for both images, we conclude that (2.1)–(2.3) yields the
best results near p = 1.5. Similar observations can be made for the results in Figure
3, as the results in Figure 1.
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Next, due to the interest in variable exponents, we discuss the image despeckling
results using diffusion model (2.1)–(2.3) with the diffusion coefficient as follows

g (Iξ, |∇Iξ|) = ϵ+
2|Iξ|ν(

M I
ξ

)ν
+ |Iξ|ν

· 1

1 +
(

|∇Iξ|
K

)p(Iξ,|∇Iξ|)
, (2.5)

where ϵ > 0 is very small parameter. We add ϵ to make the problem well posed, and
it will not destroy the effect of edge detecting nor grey level indication whenever ϵ
is very small. In (2.5), p = p (Iξ, |∇Iξ|) is not a constant but a variable that may
depend on both the gray level of the image and the image gradient. In order to
prove well-posedness, we make the following assumption:

Assumption 2.1. Let p : R× [0,∞) → [1, p+) be once differentiable in both of its
arguments, with |∇p| ≤ L.

We will use three explicit choices of exponents p in our simulations as follows

p (Iξ, |∇Iξ|) = p0 − p1 where p1 = mean
x∈Ω

2|Iξ|α(
M I

ξ

)α
+ |Iξ|α

, (2.6)

p (Iξ, |∇Iξ|) = p0 − p2 where p2 =
2|I|α

Mα + |I|α
, (2.7)

p (Iξ, |∇Iξ|) = p0 − p3 where p3 =
2

1 + k|∇Gσ ∗ I|2
, (2.8)

in which p0 is a parameter. We discuss the image despeckling results using the
model (2.1)–(2.3) with the diffusion coefficient (2.5) and analyze all the distinct
exponents p as mentioned in (2.6), (2.7), and (2.8). Moreover, for each exponent p,
we make three different cases depending on the choices of p0 and ν in (2.5):

Case 1: p0 = 2 and ν = 0,
Case 2: p0 = 2± δ (δ > 0) and ν = 0,
Case 3: p0 = 2± δ (δ > 0) and ν > 0.

Figures 4–6 represent the results using different exponents with the above three
cases. We calculate the restored results for the noise images in Figure 1f, Figure
2f, and Figure 3f and describe the results in Figure 4, Figure 5, and 6, respectively.
In each figure, different rows represent the results for different cases. The first row
shows the results for three different exponents p (p0 − p1, p0 − p2, and p0 − p3)
under Case 1 (p0 = 2 and ν = 0). In this case, the first term a(Iξ) in the diffusion
coefficient g simplifies to one. Consequently, for the second exponent (p0 − p2), the
system reduces to the model proposed in [69]; for the third exponent (p0 − p3), the
model behaves similarly to the approach discussed in [32]. The second row presents
results for each of the three different exponents p under Case 2 (p0 = 2 ± δ and
ν = 0). In this case, we apply a small adjustment to p0 (by adding or subtracting
a positive value δ from p0 = 2 in Case 1) to explore whether this yields improved
results compared to those in Case 1. Finally, the images in the third row are
computed for each of the three different exponents p under Case 3 (p0 = 2± δ and
ν > 0). This results in a total of nine cases, with observations as follows.

Figure 4 shows the results for a circle image. In Case 1, the first exponent
produces better results than the other two exponents. For Case 2, all exponents
yield more satisfactory results than their corresponding exponents in Case 1, likely
due to the adjustment in p0. Notably, the second exponent outperforms the others
in this case. In Case 3, we set ν = 1 (which produces the best results for this image)
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(a) Clean (b) p = 1.0 (c) p = 1.5 (d) p = 2.0 (e) p = 2.5

(f) Noisy (g) p = 1.0 (h) p = 1.5 (i) p = 2.0 (j) p = 2.5

Figure 1. (a) Clean Image (f) Noisy Image (L = 10). First row:
(b)-(e) Restored Images using (2.1)–(2.3) with ν = 0 and different
values of p. (b) PSNR=40.53, (c) PSNR=42.98, (d) PSNR=42.72,
(e) PSNR=42.08. Second row: (g)-(j) Restored Images using
(2.1)–(2.3) with ν = 1 and different values of p. (g) PSNR=40.76,
(h) PSNR=43.47, (i) PSNR=43.22, (j) PSNR=42.58.

and evaluate each of the three exponents. Here, the first and third exponents give
better results compared to their counterparts in Cases 1 and 2. Interestingly, the
quality of the restored image decreases for the second exponent in Case 3 compared
to Case 2, possibly due to the influence of a(Iξ) in the diffusion process. Overall,
for this image, the first exponent with Case 3 produces the best results among the
nine cases. From the other images in Figures 5 and 6, we observe similar patterns
as in the circle image. Additionally, Figures 1–3 show that edge information is best
preserved near p = 1.5. For regions with high gray levels, the diffusion function in
(2.5) (for p = p0 − p2) simplifies to:

ϵ+ g (Iξ, |∇Iξ|) =
1

1 +
(

|∇Iξ|
K

) . (2.9)

Consequently, the variable exponent p = p0− p2 is less effective at preserving edges
in high-gray-level regions. This limitation of p = p0 − p2 can be easily concluded
by observing the results illustrated in Figure 6. We summarize the key findings for
the diffusion model as follows:

• If ν = 0, the variable exponent with gray level dependence performs best in
most cases.

• Exponents that depend on gray levels are generally more effective than those
based on edge detectors.

• For ν > 0, it is preferable to fix the exponent.

2.2. Telegraph diffusion models. In 2020, a telegraph-diffusion model for image
despeckling was introduced in [45]. The model takes the following form:

Itt + γIt − div (g (Iξ, |∇Iξ|)∇I) = 0 in ΩT , (2.10)
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(a) Clean (b) p = 1.0 (c) p = 1.5 (d) p = 2.0 (e) p = 2.5

(f) Noisy (g) p = 1.0 (h) p = 1.5 (i) p = 2.0 (j) p = 2.5

Figure 2. (a) Clean Image. (f) Noisy Image (L = 10). First row:
(b)-(e) Restored Images using (2.1)–(2.3) with ν = 0 and different
values of p. (b) PSNR=24.51, (c) PSNR=24.52, (d) PSNR=24.43,
(e) PSNR=24.30. Second row: (g)-(j) Restored Images using
(2.1)–(2.3) with ν = 2 and different values of p. (g) PSNR=25.20,
(h) PSNR=25.26, (i) PSNR=24.90, (j) PSNR=24.35.

(a) Clean (b) p = 1.0 (c) p = 1.5 (d) p = 2.0 (e) p = 2.5

(f) Noisy (g) p = 1.0 (h) p = 1.5 (i) p = 2.0 (j) p = 2.5

Figure 3. (a) Clean Image. (f) Noisy Image (L = 10). First row:
(b)-(e) Restored Images using (2.1)–(2.3) with ν = 0 and different
values of p. (b) PSNR=25.17 (c) PSNR=25.59, (d) PSNR=25.58
(e) PSNR=25.40. Second row: (g)-(j) Restored Images using
(2.1)–(2.3) with ν = 2 and different values of p. (g) PSNR=25.23,
(h) PSNR=25.61, (i) PSNR=25.56, (j) PSNR=25.42.

I(x, 0) = I0(x), It(x, 0) = 0 in Ω, (2.11)

∂nI = 0 on ∂ΩT , (2.12)
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(a) PSNR=42.83 (b) PSNR=41.79 (c) PSNR=42.71

(d) PSNR=43.03 (e) PSNR=43.10 (f) PSNR=42.79

(g) PSNR=43.53 (h) PSNR=42.74 (i) PSNR=43.27

Figure 4. Restored images using (2.1)–(2.3) with variable expo-
nents (Clean Image as in Figure 1a, Noisy Image as in Figure
1f). First row (p0 = 2, ν = 0): (a) p0 − p1 (K = 0.1) (b)
p0 − p2 (K = 0.1, α = 2) (c) p0 − p3 (K = 0.1, k = 2). Sec-
ond row (ν = 0): (d) p0 − p1 (p0 = 2.2,K = 0.1) (e) p0 − p2
(p0 = 2.6,K = 0.2, α = 2) (f) p0 − p3 (p0 = 1.9,K = 0.1, k = 2).
Third row (ν = 1): (g) p0 − p1 (p0 = 2.2,K = 0.1) (h) p0 − p2
(p0 = 2.6,K = 0.2, α = 2) (i) p0 − p3 (p0 = 1.9,K = 0.1, k = 2).

where the diffusion function g is defined by

g (Iξ, |∇Iξ|) =
2|Iξ|ν

(M I
ξ )

ν + |Iξ|ν
· 1

1 +
(

|∇Iξ|
K

)2 ,
with ν ≥ 1, and constants γ,K > 0. Here, Iξ = Gξ ∗ I, and M I

ξ = maxx∈Ω |Iξ(x, t)|.
The authors used a constant exponent in the model. Inspired by the effectiveness of
variable exponents discussed in Section 2 and building on ideas from [45], we propose
a variable exponent-based telegraph diffusion model for this study. Specifically, we
extend the system (2.10)–(2.12) using the diffusion coefficient defined in (2.5). It
is important to note that for theoretical study, we consider the diffusion coefficient
in a more general form and deal with more difficulties than the model discussed in
[45].

In Section 5, we examine the despeckling performance of the model (2.10)–(2.12)
with the diffusion function (2.5). We explore each of the three exponents p(Iξ, |∇Iξ|)
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(a) PSNR=24.46 (b) PSNR=25.12 (c) PSNR=24.46

(d) PSNR=24.46 (e) PSNR=25.19 (f) PSNR=24.46

(g) PSNR=25.29 (h) PSNR=25.01 (i) PSNR=25.18

Figure 5. Restored images using (2.1)–(2.3) with variable expo-
nents (Clean Image as in Figure 2a, Noisy Image as in Figure 2f).
First row (p0 = 2, ν = 0): (a) p0 − p1 (K = 1) (b) p0 − p2
(K = 0.2, α = 2) (c) p0− p3 (K = 4, k = 2). Second row (ν = 0):
(d) p0 − p1 (p0 = 2.0,K = 1) (e) p0 − p2 (p0 = 1.8,K = 0.2, α = 2)
(f) p0 − p3 (p0 = 2,K = 4, k = 2). Third row (ν = 2): (g) p0 − p1
(p0 = 1.85,K = 0.40) (h) p0 − p2 (p0 = 2.0,K = 1, α = 2) (i)
p0 − p3 (p0 = 2.0,K = 4, k = 2).

as presented in equations (2.6), (2.7), and (2.8). For the first and third exponents,
we use a non-zero ν value, while for the second exponent, we set ν = 0. Results for
these cases are then discussed.

3. Existence and uniqueness of weak solutions. In this section, we establish
the existence and uniqueness of weak solutions of a class of parabolic and hyperbolic
PDEs, including the models suggested in Section 2. Let Ω denote a bounded domain
in Rn, n ≥ 1 and let T > 0. For 1 ≤ p ≤ ∞ we denote by (Lp, ∥ · ∥Lp) the standard
spaces of p-th order integrable functions on Ω. For r ∈ N, we write (Hr, ∥ · ∥Hr ) for
usual Hilbert spaces on Ω, and (H1)′ for the dual space of H1. We will sometimes
write Lp, H1, (H1)′ instead of Lp(Ω), H1(Ω), (H1(Ω))′, respectively. When A is a
matrix, we adopt the matrix norm ∥A∥ = sup|v|=1 |Av|.

3.1. Diffusion model. In this subsection, we discuss a class of nonlinear diffusion
models, including the model (2.1)–(2.3) with the diffusion coefficients (2.4) and
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(a) PSNR=25.57 (b) PSNR=25.47 (c) PSNR=25.54

(d) PSNR=25.61 (e) PSNR=25.57 (f) PSNR=25.54

(g) PSNR=25.63 (h) PSNR=25.48 (i) PSNR=25.59

Figure 6. Restored images using (2.1)–(2.3) with variable expo-
nents (Clean Image as in Figure 3a, Noisy Image as in Figure 3f).
First row (p0 = 2, ν = 0): (d) p0 − p1 (K = 0.2) (e) p0 − p2
(K = 0.5, α = 2) (f) p0 − p3 (K = 1, k = 2). Second row (ν = 0):
(g) p0−p1 (p0 = 2.2,K = 0.2) (h) p0−p2 (p0 = 2.3,K = 0.5, α = 2)
(i) p0−p3 (p0 = 2.0,K = 1, k = 2). Third row (ν = 1): (j) p0−p1
(p0 = 2.2,K = 0.2) (k) p0−p2 (p0 = 2.3,K = 0.5, α = 2) (l) p0−p3
(p0 = 2.0,K = 1.0, k = 2).

(2.5). In particular, we consider parabolic PDEs of the form

It −∇ · (A∇I) = 0 (x, t) ∈ Ω× (0, T ), (D.1)

I(x, 0) = I0(x) x ∈ Ω, (D.2)

⟨A∇I,n⟩ = 0 on ∂Ω× (0, T ), (D.3)

where A = A(x, t, I,∇I, I(·),∇I(·)) : Rn × R × R × Rn × R × Rn → Rn×n is a
symmetric matrix satisfying some assumptions given below. Here, I(·) and ∇I(·)
indicate dependence of I(x, t) and ∇I(x, t) in a non-local manner. We introduce
the solution space W (0, T ) for the problem (D.1)–(D.3) as

W (0, T ) =
{
w ∈ L2(0, T ;H1) , wt ∈ L2(0, T ; (H1)′)

}
,

which is a Hilbert space for the graph norm; see [42].

Definition 3.1 (Weak solution). A function I = I(x, t) is called a weak solution
of (D.1)–(D.3) if
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a) I ∈ W (0, T ) and (D.2) and (D.3) hold a.e. with derivatives in the sense of
distributions.

b) For all ϕ ∈ H1 and a.e. t ∈ (0, T ) it holds that

⟨It, ϕ⟩+
∫
Ω

⟨A∇I,∇ϕ⟩ dx = 0.

To state our assumptions on A in problem (D.1)–(D.3) we define the function
space

W1 =
{
v ∈ W (0, T ) : ∥v∥L∞(0,T ;L2) ≤ ∥I0∥L2(Ω)

}
. (3.1)

We also define, for any element w ∈ W1, the function Aw : Rn × R → Rn×n by

Aw(x, t) = A (x, t, w,∇w,w(·),∇w(·)) . (3.2)

To prove the existence uniqueness of weak solution, we assume that there exists
θ, C > 0 so that

θ|η|2 ≤ ⟨Aw(x, t)η, η⟩, ∥Aw(x, t)∥L∞(Ω) ≤ C whenever (x, t) ∈ Ω× (0, T ),

η ∈ Rn, w ∈ W1. (A)

We also assume that there exists a constant C such that whenever I1, I2 ∈ W it
holds that

∥A(x, t, I1,∇I1, I1(·),∇I1(·))−A(x, t, I2,∇I2, I2(·),∇I2(·))∥L∞(Ω)

≤ C∥I1(x, t)− I2(x, t)∥L2(Ω) a.e. t ∈ (0, T ). (B)

Our main results for parabolic diffusion models are summarized in the following
theorem.

Theorem 3.1. Suppose that assumptions (A) and (B) hold and that I0 ∈ H1(Ω).
Then there exists a unique weak solution of problem (D.1)–(D.3) in W (0, T ).

Proof. We begin with the existence part. Let w ∈ W1 and Aw be as in (3.2). Define
P as the problem

⟨It, φ⟩H1(Ω)′×H1(Ω) +

∫
Ω

⟨Aw (x, t)∇I,∇φ⟩ dx = 0, (3.3)

whenever φ ∈ H1(Ω) and a.e. t ∈ (0, T ), together with I(x, 0) = I0 and the
boundary conditions (D.3) in the sense of distribution.

Since w ∈ W1, it follows by the assumption (A) that P is uniformly parabolic
and thus has a unique weak solution Iw ∈ W , denoted I = Iw for simplicity, which
we will prove satisfies the following estimates:

∥I∥L∞(0,T ;L2) ≤ ∥I0∥L2 , (3.4)

∥I∥L2(0,T ;H1) ≤ C1, (3.5)

∥It∥L2(0,T ;(H1)′)) ≤ C2, (3.6)

where C1 and C2 are constants independent of w. To prove the estimates (3.4)–(3.6),
first we choose φ = I in equation (3.3). Then we obtain

1

2

d

dt
∥I∥2L2 +

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx = 0, t ∈ (0, T ). (3.7)

Thanks to assumption (A) we have

1

2

d

dt
∥I∥2L2 + θ∥∇I∥2L2 ≤ 0, t ∈ (0, T ).
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Integrating the above relation w.r.t. time from 0 to t, we have

∥I(t)∥2L2 + 2θ

∫ t

0

∥∇I(τ)∥2L2 dτ ≤ ∥I0∥2L2 , t ∈ (0, T ). (3.8)

By excluding the second term on the left-hand side and taking the supremum over
(0, T ), we complete the proof of (3.4).

From relation (3.8) we also have∫ t

0

∥∇I(τ)∥2L2 dτ ≤ 1

2
θ−1∥I0∥2L2 , t ∈ (0, T ),

giving

∥∇I∥2L2(0,T ;L2) ≤
1

2
θ−1∥I0∥2L2 . (3.9)

Now, (3.4) implies

∥I∥2L2(0,T,L2) ≤
∫ T

0

∥I0∥2L2 dt = T∥I0∥2L2

which, together with (3.9), give

∥I∥2L2(0,T,H1) = ∥I∥2L2(0,T,L2) + ∥∇I∥2L2(0,T,L2) ≤ T∥I0∥2L2 +
1

2
θ−1∥I0∥2L2 ,

which completes the estimate (3.5).
Next we choose ϕ ∈ H1 in (3.3) such that ∥ϕ∥H1 ≤ 1 and use boundedness of

Aw together with Cauchy-Schwarz inequality to obtain∣∣〈It, φ〉∣∣ ≤ C∥∇I∥L2∥ϕ∥H1 .

Hence, by the definition of norm in (H1)′, we get

∥It∥(H1)′ ≤ C . (3.10)

Moreover, squaring both sides and integrating over (0, T ), we have

∥It∥L2(0,T ;(H1)′) ≤ C2 . (3.11)

This completes the proof of (3.6).
Now we introduce the non-empty, convex and weakly compact subspace W0 of

W (0, T ) by

W0 =
{
w ∈ W (0, T ) : ∥w∥L2(0,T ;H1) ≤ C1 ,∥w∥L∞(0,T ;L2) ≤ ∥I0∥L2 ,

∥wt∥L2(0,T ;(H1)′) ≤ C2 , w(0) = I0

}
,

and consider the mapping

P : W0 → W0

w 7→ Iw .

We intend to show that the mapping P : w → Iw is weakly continuous from W0

into W0: Let wk be a sequence that converges weakly to some w in W0 and let
Ik = Iwk

. We have to show that P(wk) := Ik converges weakly to P(w) := Iw.
From the classical results of compact inclusion in Sobolev spaces [3], we can extract
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subsequences of {wk} and {Ik}, still denoted by {wk} and {Ik} respectively, such
that for some I ∈ W0 we have, as k → ∞,

wk −→ w in L2(0, T ;L2) and a.e. on ΩT ,

Ik −→ I weakly in L2(0, T ;H1) ,

Ik −→ I in L2(0, T ;L2) ,

∂xi
Ik −→ ∂xi

I (i = 1, 2) weakly in L2(0, T ;L2) ,

∂tIk −→ ∂tI weakly in L2(0, T ; (H1)′) .

(3.12)

Integrating (3.3) from 0 to T yields∫ T

0

∫
Ω

∂tIkφdxdt+

∫ T

0

∫
Ω

⟨Awk
(x, t)∇Ik,∇φ⟩ dxdt = 0, (3.13)

and by using assumptions (B), (A), as well as (3.12), we observe that∣∣∣∣ ∫ T

0

∫
Ω

⟨Awk
(x, t)∇Ik,∇φ⟩ dxdt−

∫ T

0

∫
Ω

⟨Aw (x, t)∇I,∇φ⟩ dxdt
∣∣∣∣ (3.14)

≤
∫ T

0

∫
Ω

∥Awk
(x, t)−Aw (x, t) ∥⟨∇Ik,∇φ⟩ dxdt

+

∫ T

0

∫
Ω

∥Aw (x, t) ∥|∇(Ik − I)||∇φ| dxdt −→ 0 as k → ∞.

Using (3.12) and (3.14) it follows that∫ T

0

∫
Ω

∂tIφ dxdt+

∫ T

0

∫
Ω

⟨Aw (x, t)∇I,∇φ⟩ dxdt = 0, (3.15)

and hence, we can conclude that I = Iw = P(w). Since the solution of P is
unique, the whole sequence Ik = P(wk) converges weakly in W0 to I = P(w), and
thus we have showed that the mapping P is weakly continuous from W0 to W0.
Consequently, thanks to Schauder’s fixed point theorem, there exists w ∈ W0 such
that w = P (w) = Iw, which solves the problem (D.1)–(D.3). This proof of existence
is complete.

Proof of uniqueness. Let Ī and Î be two solutions of (D.1)–(D.3). We have, for
almost every t ∈ (0, T ),

Īt −∇ ·
(
ᾱ(x, t)∇Ī

)
= 0, Ī(x, 0) = I0(x) in Ω, and ∂nĪ = 0 on ∂Ω× (0, T ),

Ît −∇ ·
(
α̂(x, t)∇Î

)
= 0, Î(x, 0) = I0(x) in Ω, and ∂nÎ = 0 on ∂Ω× (0, T ),

where ᾱ(x, t) = A(x, t, Ī,∇Ī , Ī(·),∇Ī(·)) and α̂(x, t) = A(x, t, Î,∇Î , Î(·),∇Î(·)) are
n× n matrices. Using the above equations, we obtain

It −∇ · (ᾱ(x, t)∇I) = ∇ ·
(
(ᾱ(x, t)− α̂(x, t))∇Î

)
, (3.16)

where I = Ī(x, t) − Î(x, t). Now, multiplying this by I, integrating over Ω, using
integration by parts and the boundary condition, we get

1

2

d

dt

∫
Ω

I2 dx+

∫
Ω

⟨ᾱ(x, t)∇I,∇I⟩ dx = −
∫
Ω

⟨(ᾱ(x, t)− α̂(x, t))∇Î ,∇I⟩ dx
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Using the Cauchy Schwarz inequality and (A), we have

1

2

d

dt

(
∥I∥2L2

)
+ θ∥∇I∥2L2 ≤ (∥ᾱ(x, t)− α̂(x, t)∥)L∞ ∥∇Î∥L2∥∇I∥L2 .

Now, using assumption (B), the definition of ᾱ and α̂ and Young’s inequality, we
can obtain

1

2

d

dt

(
∥I∥2L2

)
+ θ∥∇I∥2L2 ≤ 2

θ
C∥∇Î∥2L2∥I∥2L2 +

θ

2
∥∇I∥2L2 , or

d

dt

(
∥I∥2L2

)
≤ 4

θ
C∥∇Î∥2L2∥I∥2L2 .

Since I(x, 0) = Ī(x, 0) − Î(x, 0) = I0(x) − I0(x) = 0, by using the above relation
and Gronwall’s lemma, we can complete the proof of uniqueness. □

Corollary 3.2. Problem (2.1)–(2.3) with diffusion function (2.5) satisfying As-
sumption 2.1 admits a weak solution in W (0, T ), unique in the same space, if
J ∈ H1(Ω) and 0 < α1 ≤ I0 ≤ β1.

Proof. It suffices to show that Theorem 3.1 applies to our suggested model (2.1)–
(2.3), i.e. to show that the corresponding function in Aw defined in (3.2) satisfies
assumption (A). We have, for any w ∈ W1,

Aw (x, t) = ϵ+
2|wξ|ν(

Mw
ξ

)ν
+ |wξ|ν

· 1

1 +
(

|∇wξ|
K

)p(wξ,|∇wξ|)
. (3.17)

We first observe that

ϵ ≤ Aw (x, t) ≤ 1, (3.18)

and hence Aw satisfies (A) with θ = ϵ and C = 1.
We now prove that for the suggested model (2.1)–(2.3), with the diffusion coef-

ficients (2.4) and (2.5) satisfies the assumption (B). To do so, we first rewrite the
left-hand side of (B) as

|A(x, t, I1,∇I1, I1(·),∇I1(·))−A(x, t, I2,∇I2, I2(·),∇I2(·))| ≤

2|(I1)ξ|ν(
M

(I1)
ξ

)ν
+ |(I1)ξ|ν

∣∣∣∣∣∣∣
1

1 +
(

|∇(I1)ξ|
K

)p((I1)ξ,|∇(I1)ξ|)
− 1

1 +
(

|∇(I2)ξ|
K

)p((I2)ξ,|∇(I2)ξ|)

∣∣∣∣∣∣∣
+

1

1 +
(

|∇(I2)ξ|
K

)p((I2)ξ,|∇(I2)ξ|)

∣∣∣∣∣∣ 2|(I1)ξ|ν(
M

(I1)
ξ

)ν
+ |(I1)ξ|ν

− 2|(I2)ξ|ν(
M

(I2)
ξ

)ν
+ |(I2)ξ|ν

∣∣∣∣∣∣ ,
(3.19)

where I1 and I2 are two weak solutions of (2.4). Put Xi =
|∇(Ii)ξ|

K and pi =
p ((Ii)ξ, |∇(Ii)ξ|) for i = 1, 2 and observe that

1

1 +Xp1

1

− 1

1 +Xp2

2

=
Xp1

1 −Xp2

2

(1 +Xp1

1 ) (1 +Xp2

2 )

≤ 1

(1 +Xp1

1 ) (1 +Xp2

2 )
(|Xp1

1 −Xp1

2 |+ |Xp1

2 −Xp2

2 |) . (3.20)

We have

|Xp1

1 −Xp1

2 | ≤ |X1 −X2| (1 +Xp1

1 +Xp1

2 ) , (3.21)
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in which

|X1 −X2| ≤ C∥∇(I1)ξ| − |∇(I2)ξ∥ ≤ C|∇(I1)ξ −∇(I2)ξ| ≤ C|∇Gξ||I1 − I2| .

Next,

|Xp1

2 −Xp2

2 | ≤ log (X2) (X
p1

2 +Xp2

2 ) |p2 − p1| ≤
(
1 +Xp1+1

2 +Xp2+1
2

)
|p2 − p1| ,

(3.22)

where we used p(·, ·) ≥ 1 in the last inequality, as stated in Assumption 2.1. We now
use the differentiability of p(·, ·) as stated in Assumption 2.1 to conclude (Lipschitz
continuity suffices)

|p2 − p1| = |p ((I2)ξ, |∇(I2)ξ|)− p ((I1)ξ, |∇(I1)ξ|) |
≤ C (|(I1)ξ − (I2)ξ|+ ∥∇(I1)ξ| − |∇(I2)ξ∥)
≤ C (|(I1)ξ − (I2)ξ|+ |∇(I1)ξ −∇(I2)ξ|)
≤ C (|Gξ ∗ (I1 − I2)|+ |∇Gξ ∗ (I1 − I2)|)
≤ C (|Gξ|+ |∇Gξ|) |I1 − I2|. (3.23)

Using (3.20)–(3.23) we conclude∣∣∣∣ 1

1 +Xp1

1

− 1

1 +Xp2

2

∣∣∣∣ ≤ C∥I1 − I2∥L2 , (3.24)

where C may depend on ξ, Ω, K, I0. We can estimate the second term in (3.19) as
follows∣∣∣∣∣∣ |(I1)ξ|ν(

M
(I1)
ξ

)ν
+ |(I1)ξ|ν

− |(I2)ξ|ν(
M

(I2)
ξ

)ν
+ |(I2)ξ|ν

∣∣∣∣∣∣
≤
∥∥∥|(I1)ξ|ν {(M (I2)

ξ

)ν
−
(
M

(I1)
ξ

)ν}∥∥∥
L∞

+
∥∥∥(M (I1)

ξ

)ν
{|(I1)ξ|ν − |(I2)ξ|ν}

∥∥∥
L∞

≤ C
{∥∥∥M (I2)

ξ −M
(I1)
ξ

∥∥∥
L∞

+ ∥(I1)ξ − (I2)ξ∥L∞

}
(where we have used that 0 < α1 ≤ I1, I2 ≤ β1 by Lemma 3.2)

≤ C
{
∥Gξ ∗ I2(x, t)−Gξ ∗ I1(x, t)∥L∞ + ∥I1 − I2∥L2

}
≤ C ∥I1 − I2∥L2 , (3.25)

where C may depend on ξ, the diffusion coefficient g, α1 and β1. Using the estimates
(3.24) and (3.25) in (3.19) shows that we can satisfy assumption (B). Hence, the
proof of Corollary 3.2 is completed. □

3.2. Telegraph diffusion model. In this section, we will establish the existence
and uniqueness of weak solutions of a class of PDEs, including the proposed model
(2.10)–(2.12) with the diffusion coefficient (2.5). Let Ω denote a bounded domain
in Rn and let T > 0. We consider hyperbolic PDEs in the form

Itt + λIt −∇ · (A∇I) = 0 (x, t) ∈ Ω× (0, T ), (E.1)

I(x, 0) = I0(x), It(x, 0) = 0 x ∈ Ω, (E.2)

⟨A∇I,n⟩ = 0 on ∂Ω× (0, T ), (E.3)

where A = A(x, t, I,∇I, I(·),∇I(·)) : Rn × R × R × Rn × R × Rn → Rn×n is a
once differentiable symmetric matrix satisfying some additional assumptions given



WELL-POSEDNESS OF A IMAGE DESPECKLING TDE 17

below. Here, I(·) and ∇I(·) indicate dependence of I(x, t) and ∇I(x, t) in a non-
local manner. We will make use of the solution space

W(0, T ) =
{
w ∈ L∞(0, T ;H1) , wt ∈ L∞(0, T ;L2); wtt ∈ L2(0, T ; (H1)′)

}
,

which is a Hilbert space for the graph norm [42], and we adopt the following version
of weak solutions:

Definition 3.2 (Weak solution). A function I = I(x, t) is called a weak solution
of (E.1)–(E.3) if

a) I ∈ W(0, T ) and (E.2) and (E.3) hold a.e. with derivatives in the sense of
distributions.

b) For all ϕ ∈ H1 and a.e. t ∈ (0, T ) it holds that

⟨Itt, ϕ⟩+
∫
Ω

(
Itϕ+ ⟨A (x, t, I,∇I, I(·),∇I(·))∇I,∇ϕ⟩

)
dx = 0.

Next we define, for a constant M1 > 0, the function space

WM1
=
{
v ∈ W(0, T ) : ∥v∥L∞(0,T ;H1) + ∥vt∥L∞(0,T ;L2) ≤ M1∥I0∥H1(Ω)

}
, (3.26)

and for any element w ∈ WM1 we consider the function Aw : Rn × R → Rn×n

defined as

Aw(x, t) = A (x, t, w,∇w,w(·),∇w(·)) . (3.27)

To prove existence and uniqueness, we assume that there exist continuous functions
ϕA,ΦA,ΨA : R+ → R+, ϕ

−1
A ,ΦA,ΨA nondecreasing, such that the following hold,

where z = M1∥I0∥H1(Ω):

ϕA(z)|η|2 ≤ ⟨Aw(x, t)η, η⟩, ∥Aw∥L∞(Ω) ≤ ΦA(z), whenever (x, t) ∈ Ω× (0, T ),

η ∈ Rn, w ∈ W. (A.1)

∥∂tAw(x, t)∥L∞(Ω) ≤ ΨA(z), whenever (x, t) ∈ Ω× (0, T ), w ∈ W. (A.2)

We also assume that there exists a constant C such that, whenever I1, I2 ∈ W, the
following holds:

∥A(x, t, I1,∇I1, I1(·),∇I1(·))−A(x, t, I2,∇I2, I2(·),∇I2(·))∥L∞(Ω)

≤ C∥I1(x, t)− I2(x, t)∥L2(Ω) a.e. t ∈ (0, T ). (A.3)

Our main result of well-posedness is summarized in the following theorem.

Theorem 3.3. Suppose that assumptions (A.1)–(A.3) hold, that Ω ∈ Rn is bounded
and that I0 ∈ H2(Ω). Then there exists a weak solution of problem (E.1)–(E.3) if
at least one of the following statements (i)− (iii) hold true:

(i) ∥I0∥H1(Ω) is small enough.
(ii) (A.4) holds and T is small enough.
(iii) (A.5) holds.

Moreover, if (A.1)–(A.3) hold then any weak solution in W of problem (E.1)–(E.3)
is unique.

To prove Theorem 3.3, we will use the Schauder fixed-point theorem together
with properties of solutions of linear PDEs on the form

Itt + λIt −∇ · (a(x, t)∇I) = 0 (x, t) ∈ Ω× (0, T ), (3.28)

I(x, 0) = I0(x), It(x, 0) = 0 x ∈ Ω, (3.29)
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⟨a(x, t)∇I,n⟩ = 0 on ∂Ω, (3.30)

where a(x, t) : Rn × R → Rn×n is an a.e. once differentiable symmetric matrix
satisfying (A.1)–(A.2) so that the equations are uniformly hyperbolic. In particular,
we will use the following classical result, which can be proved by the Galerkin
method, see, e.g., [25].

Lemma 3.1. If I0 ∈ H1(Ω), then the linear problem (3.28)–(3.30) has a unique
weak solution I ∈ W. In addition, if I0 ∈ H2(Ω) then ∂I

∂t ∈ L∞(0, T ;H1(Ω)).

Proof of Theorem 3.3. We begin with the existence part. Let w ∈ WM1
for some

constant M1 > 0 that will be determined later and let Aw be as in (3.27). Define
(Qw) as the problem

⟨Itt, φ⟩H1(Ω)′×H1(Ω) +

∫
Ω

(λItφ+ ⟨Aw (x, t)∇I,∇φ⟩) dx = 0 , (3.31)

whenever φ ∈ H1(Ω) and a.e. t ∈ (0, T ), together with I(x, 0) = I0,
∂I
∂t (x, 0) = 0

and the boundary conditions in (3.28)–(3.30) in the sense of distribution. For each
w ∈ WM1

, the problem (Qw) defines weak solutions of the linear PDE (3.28)–(3.30).
Since w ∈ WM1 it follows by assumption that (A.1) and (A.2) hold and we may
therefore use Lemma 3.1 to conclude that (Qw) has a unique weak solution Iw ∈ W
with ∂Iw

∂t ∈ L∞(0, T ;H1(Ω)).
We will now show that the solution of the linear problem, denoted I = Iw for

simplicity, belongs to the space WM1 defined in (3.26). Since It ∈ L∞(0, T ;H1) we
can take ϕ = It in equation (3.31) to obtain

1

2

d

dt
∥It∥2L2 + λ∥It∥2L2 +

∫
Ω

⟨Aw(x, t)∇I,∇
(
It
)
⟩ dx = 0 . (3.32)

Using integration by parts and (A.2) we conclude that∫
Ω

⟨Aw(x, t)∇I,∇
(
It
)
⟩ dx ≥ 1

2

d

dt

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx− 1

2
ΨA(z)∥∇I∥2L2 ,

(3.33)

and thanks to the lower bound in (A.1) we also have

∥∇I∥2L2 ≤ ϕA(z)
−1

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx . (3.34)

Inserting (3.33) in (3.32) gives

1

2

d

dt
∥It∥2L2 + λ∥It∥2L2 ≤ −1

2

d

dt

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx+
1

2
ΨA(z)∥∇I∥2L2 ,

and with (3.34) this becomes

1

2

d

dt
∥It∥2L2 + λ∥It∥2L2

≤ −1

2

d

dt

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx+
1

2

ΨA(z)

ϕA(z)

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx .

Thus

d

dt

[
∥It∥2L2 +

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx
]

≤ −2λ∥It∥2L2 +
ΨA(z)

ϕA(z)

∫
Ω

⟨Aw(x, t)∇I,∇I⟩ dx .
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In order to use Gronwall’s lemma, we observe that the above inequality implies

d

dt
Θ(t) ≤ ΨA(z)

ϕA(z)
Θ(t)

in which Θ(t) = ∥It∥2L2 +
∫
Ω
⟨Aw(x, t)∇I,∇I⟩ dx. Hence

Θ(t) ≤ Θ(0)e
ΨA(z)

ϕA(z)
t

for a.e. t ∈ [0, T ].

The initial conditions imply that Θ(0) ≤ ∥Aw(x, 0)∥L∞∥∇I∥2L2 ≤ ΦA(z)∥I0∥2H1 .
Thus

∥It∥2L2 ≤ ΦA(z)∥I0∥2H1e
ΨA(z)

ϕA(z)
t

for a.e. t ∈ [0, T ] . (3.35)

Using also the lower bound in (A.1) we conclude

∥It∥2L2 + ∥∇I∥2L2 ≤ ΦA(z)

ϕA(z)
∥I0∥2H1e

ΨA(z)

ϕA(z)
t

for a.e. t ∈ [0, T ] . (3.36)

Since I(x, t) = I0(x)+

∫ t

0

It(x, s) ds we have, thanks to Young’s inequality, Hölder’s

inequality and (3.35),

∥I∥2L2 =

∫
Ω

I(x, t)2 dx =

∫
Ω

(
I0(x) +

∫ t

0

It(x, s) ds

)2

dx

≤ 2

∫
Ω

I0(x)
2 dx+ 2

∫
Ω

(∫ t

0

It(x, s) ds

)2

dx

≤ 2 ∥I0∥2H1 + 2T 2∥It∥2L2

≤ 2 ∥I0∥2H1 + 2T 2ΦA(z)∥I0∥2H1e
ΨA(z)

ϕA(z)
T
. (3.37)

Combining (3.36) and (3.37) we see that

∥I(t)∥2H1 = ∥I(t)∥2L2 + ∥∇I(t)∥2L2 ≤ ∥I0∥2H1

((
ϕA(z)

−1 + 2T 2
)
ΦA(z)e

ΨA(z)

ϕA(z)
T
+ 2

)
for a.e. t ∈ [0, T ]. Therefore

∥I∥L∞(0,T ;H1) ≤ ∥I0∥H1

√
(ϕA(z)−1 + 2T 2) ΦA(z)e

ΨA(z)

ϕA(z)
T
+ 2

and so, using (3.36) once again, we have

∥I∥L∞(0,T ;H1) + ∥It∥L∞(0,T ;L2) ≤ 2∥I0∥H1

√
(ϕA(z)−1 + 2T 2) ΦA(z)e

ΨA(z)

ϕA(z)
T
+ 2 .

If we obtain

2

√
(ϕA(z)−1 + 2T 2) ΦA(z)e

ΨA(z)

ϕA(z)
T
+ 2 ≤ M1, (3.38)

in which z = M1∥I0∥H1 , then

∥I∥L∞(0,T ;H1) + ∥It∥L∞(0,T ;L2) ≤ M1∥I0∥H1 (3.39)

and hence the solution I of the linear problem belongs to the space WM1
defined in

(3.26). To get (3.38) satisfied we can assume, for example, that ∥I0∥H1 is small. In
particular, if z is held constant when M1 increases, then there exists M1 such that
(3.38) holds. Alternatively, we may assume, for example, that

1

z2
ΦA(z)

ϕA(z)
→ 0 as z → ∞. (A.4)
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In such case, we can satisfy (3.38) by taking a large enough M1 and then a small
enough T . If we assume that there exists a constant C, independent of z, such that

ΦA(z)

ϕA(z)
≤ C and

ΨA(z)

ϕA(z)
≤ C, (A.5)

then we obtain (3.38) by increasing M1.
We will now show that there exists a constant C, which may depend on A, Ω,

I0 and T , such that the solution of the linear problem (3.31), I = Iw, satisfies

∥Itt∥L∞(0,T ;(H1)′) ≤ C. (3.40)

Taking ϕ ∈ H1 with ∥ϕ∥H1 ≤ 1 in (3.31) we have

⟨Itt, ϕ⟩+
∫
Ω

(Itϕ+ ⟨Aw(x, t)∇I,∇ϕ⟩) dx = 0 .

We use Cauchy-Schwarz inequality along with (3.39) and boundedness of Aw to
obtain ∣∣ ⟨Itt, ϕ⟩ ∣∣ ≤ (∥It∥L2 + (∥Aw(x, t)∥)L∞ ∥∇I∥L2) ∥ϕ∥H1

≤ (2M1 + 2M1ΦA(z)) ∥I0∥H1 ∥ϕ∥H1 ≤ C .

for a constant C which may depending on A, Ω, I0 and T . Hence, by the def-
inition of norm in (H1)′, we get ∥Itt∥(H1)′ ≤ C for all t ∈ (0, T ). This implies

∥Itt∥L∞(0,T ;(H1)′) ≤ C∥I0∥H1 which is the desired result.
With (3.39) and (3.40) in mind, we introduce the non-empty, convex, and weakly

compact subspace W0 of W(0, T ) by

W0 =
{
w ∈ W(0, T ) : ∥w∥L∞(0,T ;H1) + ∥∂tw∥L∞(0,T ;L2) ≤ C∥I0∥H1 ;

∥∂ttw∥L2(0,T ;(H1)′) ≤ C
}

and consider the mapping

P : W0 → W0

w 7→ Iw .

To use Schauder’s fixed-point theorem on P, we have to prove that the mapping
P : w → Iw is weakly continuous from W0 into W0. Let wk be a sequence that
converges weakly to some w in W0 and let Ik = Iwk

. We have to show that
P(wk) := Ik converges weakly to P(w) := Iw. From the classical results of compact
inclusion in Sobolev spaces [3], we can extract subsequences of {wk} and {Ik} still
denoted by {wk} and {Ik} respectively such that for some I ∈ W0, we have, as
k → ∞, 

wk −→ w in L2(0, T ;L2) and a.e. on ΩT ,

Ik −→ I weakly-∗ in L∞(0, T ;H1) ,

Ik −→ I in L2(0, T ;L2) ,

∂tIk −→ ∂tI weakly-∗ in L∞(0, T ;L2) ,

∂ttIk −→ ∂ttI weakly-∗ in L2(0, T ; (H1)′) ,
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The above convergence, together with an analogue of (3.13)–(3.15), allows us to
pass to the limit in the problem (Qw) and obtain I = P(w). Moreover, since the
solution of (Qw) is unique, the whole sequence Ik = P(wk) converges weakly in W0

to I = P(w). Hence, P is weakly continuous. Consequently, thanks to the Schauder
fixed point theorem, there exists w ∈ W0 such that w = P(w) = Iw. Thus, the
function Iw solves the problem (E.1)–(E.3). This completes the proof of existence.

Proof of uniqueness. Following the method in [25, 45] we prove the uniqueness of
weak solutions of problem (E.1)–(E.3). Let I1 and I2 be two weak solutions of
(E.1)–(E.3). As in (3.16) we then obtain

Itt + It − div
(
A1∇I

)
= div

((
A1 −A2

)
∇I2

)
in ΩT , (3.41)

I(x, 0) = 0 , It(x, 0) = 0 in Ω , (3.42)

⟨Ai∇Ii,n⟩ = 0 on ∂ΩT , (3.43)

where Ai = Ai(x, t) = A (x, t, Ii,∇Ii, Ii(·),∇Ii(·)) for i = 1, 2, and I = I1 − I2. It
suffices to show that I ≡ 0. To verify this, fix 0 < s < T and set, for i = 1, 2,

vi(·, t) =


∫ s

t

Ii(·, τ) dτ, 0 < t ≤ s ,

0, s ≤ t < T .
(3.44)

Note that, for t ∈ (0, s),{
∂tvi(x, t) = −Ii(x, t) i = 1, 2 ,

vi(·, t) ∈ H1 , (Ai∇vi,n) = 0 on ∂Ω in the sense of distribution.
(3.45)

Set v = v1−v2. Then v(·, s) = 0. Multiplying (3.41) by v, integrating over Ω×(0, s)
and using (3.42) and (3.43), we obtain∫ s

0

∫
Ω

(
− ∂tI∂tv − I∂tv + ⟨A1∇I,∇v⟩

)
dxdt = −

∫ s

0

∫
Ω

⟨(A1 −A2)∇I2,∇v⟩ dxdt.

Now using (3.45) and Cauchy-Schwarz inequality in the above equality, we have

1

2

∫ s

0

∫
Ω

∂t(I
2) dxdt+

∫ s

0

∫
Ω

I2 dxdt−
∫ s

0

∫
Ω

⟨A1∂t∇v,∇v⟩ dxdt

≤
∫ s

0

(∥(A1 −A2)(t)∥)L∞ ∥∇I2(t)∥L2∥∇v(t)∥L2 dt.

Using the fact that

⟨A1∂t∇v,∇v⟩ = 1

2
∂t⟨A1∇v,∇v⟩ − 1

2
⟨∂tA1∇v,∇v⟩, ∇v(x, s) = 0 ,

and (3.42), we obtain

1

2
∥I(s)∥2L2 +

∫ s

0

∥I(t)∥2L2 dt+
1

2

∫
Ω

⟨A1(x, 0)∇v(x, 0),∇v(x, 0)⟩ dx

≤ 1

2

∣∣∣ ∫ s

0

∫
Ω

|∇v|2 (∥∂tA1∥)L∞ dxdt
∣∣∣

+

∫ s

0

(∥(A1 −A2)(t)∥)L∞ ∥∇I2(t)∥L2∥∇v(t)∥L2 dt . (3.46)
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Now, assumptions (A.1), (A.2) and (A.3) imply the existence of a constant C such
that

1

2
∥I(s)∥2L2 +

∫ s

0

∥I(t)∥2L2 dt+ C−1∥∇v(0)∥2L2 ≤ C

∫ s

0

(
∥∇v(t)∥2L2 + ∥I(t)∥2L2

)
dt ,

and since ∥v(0)∥2L2 ≤ T
∫ s

0
∥I(t)∥2L2 dt, we also have

1

2
∥I(s)∥2L2 +

∫ s

0

∥I(t)∥2L2 dt+ C−1∥v(0)∥2H1 ≤ C

∫ s

0

(
∥v(t)∥2H1 + ∥I(t)∥2L2

)
dt .

(3.47)

Set

wi(·, t) =
∫ t

0

Ii(·, τ) dτ ; w(·, t) = (w1 − w2)(·, t) , 0 < t ≤ T,

and observe that then

v(x, 0) = w(x, s) and v(x, t) = w(x, s)− w(x, t) for 0 < t ≤ s .

Hence, (3.47) reduces to

1

2
∥I(s)∥2L2 +

∫ s

0

∥I(t)∥2L2 dt+ C∥w(s)∥2H1

≤ C̃s ∥w(s)∥2H1 + C

∫ s

0

(
∥w(t)∥2H1 + ∥I(t)∥2L2

)
dt . (3.48)

Choose T1 sufficiently small such that C−1 − C̃T1 > 0. Then, for 0 < s ≤ T1, we
have, from (3.48),

∥I(s)∥2L2 + ∥w(s)∥2H1 ≤ C

∫ s

0

(
∥w(t)∥2H1 + ∥I(t)∥2L2

)
dt . (3.49)

Consequently, an application of Gronwall’s lemma implies I ≡ 0 on [0, T1]. Finally,
we utilize a similar logic on the intervals (T1, 2T1], (2T1, 3T1], . . . step by step, and
eventually deduce that I1 = I2 on (0, T ). This finishes the proof of the uniqueness
part, and hence also the proof of Theorem 3.3. □

Corollary 3.4. Problem (2.10)–(2.12) with diffusion function (2.5) satisfying As-
sumption 2.1 and with 0 < α1 ≤ I0 ≤ β1 admits a weak solution in W if ∥J∥H1(Ω)

is small enough, or if T is small enough. The solution is unique among functions
in W.

To prove Corollary 3.4, we need the following simple Lemma:

Lemma 3.2. Let I be a weak solution of the telegraph diffusion model (2.10)–
(2.12), or the diffusion model (2.1)–(2.3), with diffusion function given by (2.5).
Then α1 ≤ I(x, t) ≤ β1 for a.e. (x, t) ∈ Ω × [0, T ], where α1 = infx∈Ω I0(x) and
β1 = supx∈Ω I0(x).

Proof. We proceed as in [45, Lemma 3.3]. Integrating the equation (2.10) w.r.t.
time variable and using (2.11), we get that

It + γ(I − I0)−
∫ t

0

div (g(Iξ, |∇Iξ|)∇I) ds = 0 for all (x, t) ∈ ΩT . (3.50)
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Note that (I − β1)+ ∈ H1, in which (θ)+ = max{0, θ}. Multiplying (3.50) with
(I − β1)+ and integrating over Ω we obtain

1

2

d

dt

∫
Ω

((I − β1)+)
2
dx+ γ

∫
Ω

(I − β1)+(I − I0) dx

+

∫ t

0

∫
I≥β1

g(Iξ, |∇Iξ|)|∇I|2 dxds = 0. (3.51)

Since g ≥ 0 and (I −J)(I −β1)+ ≥ 0 it must hold that 1
2

d
dt

∫
Ω
((I − β1)+)

2
dx ≤ 0.

Therefore, since J ≤ β1 we obtain
∫
Ω
|(I − β1)+|2 dx ≤ 0, for a.e. t ∈ [0, T ], so that

I(x, t) ≤ β1 for a.e. (x, t) ∈ ΩT .
Similarly, multiplying (3.50) with (I − α1)− ∈ H1, where (θ)− = min{0, θ}, and

integrating over Ω we have

1

2

d

dt

∫
Ω

((I − α1)−)
2
dx+ γ

∫
Ω

(I − α1)−(I − I0) dx

+

∫ t

0

∫
I≤α1

g(Iξ, |∇Iξ|)|∇I|2 dxds = 0. (3.52)

Since g ≥ 0 and (I−J)(I−α1)− ≥ 0 it must hold that 1
2

d
dt

∫
Ω
((I − α1)−)

2
dx ≤ 0,

and since α1 ≤ I0, we also conclude that 0 < α1 ≤ I(x, t) for a.e.(x, t) ∈ ΩT . This
completes the proof of Lemma 3.2 in the case of the telegraph diffusion model.

In the case of the diffusion model (2.1)–(2.3) we also obtain the result from (3.51)
and (3.52) but now without the first term and with γ = 1. In particular, it follows
that ∫

Ω

(I − β1)+(I − I0) dx = 0 =

∫
Ω

(I − α1)−(I − I0) dx

from which we conclude the desired result. The proof of Lemma 3.2 is complete. □

Proof of Corollary 3.4. It suffices to show that Theorem 3.3 applies to our suggested
model (2.10)–(2.12), i.e. to show that the function in Aw defined in (3.27) satisfies
assumptions (A.1)–(A.3). We have, for any w ∈ WM1

,

Aw (x, t) = ϵ+
2|wξ|ν(

Mw
ξ

)ν
+ |wξ|ν

· 1

1 +
(

|∇wξ|
K

)p(wξ,|∇wξ|)
. (3.53)

We first observe that

ϵ ≤ Aw (x, t) ≤ 1 (3.54)

and hence Aw satisfies (A.1) with ϕA = ϵ and ΦA = 1.
To show that Aw satisfies (A.2) we first note that

∣∣∣∣ ddtAw(x, t)

∣∣∣∣ ≤
∣∣∣∣∣∣ ddt

 2|wξ|ν(
Mw

ξ

)ν
+ |wξ|ν

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
d

dt

 1

1 +
(

|∇wξ|
K

)p(wξ,|∇wξ|)


∣∣∣∣∣∣∣

= A+B.

Next, observe that by properties of convolution, we have

|wξ|+ |Gξ ∗ wt|+ |∇wξ|+ |∇Gξ ∗ wt| ≤ CξM1||I0||H1 in Ω× (0, T ]
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where we denote wξ,t = Gξ ∗wt and ∇wξ,t = ∇Gξ ∗wt. Since wξ,M
w
ξ > α1 we have

A = 2
νwν−1

ξ (Mw
ξ )ν−1(Mw

ξ w′
ξ − wξ(M

w
ξ )′

(wν
ξ + (Mw

ξ )ν)2

and thus

A ≤ 2
νwν−1

ξ (Mw
ξ )ν−12 (M1Cξ∥I0∥H1)

2

(αν
1 + αν

1)
2

≤ 4ν
(
αν−1
1 + (M1Cξ∥I0∥H1)

ν−1
)2 (M1Cξ∥I0∥H1)

2

4α2ν
1

≤ ν
(
2α

2(ν−1)
1 + 2 (M1Cξ∥I0∥H1)

2(ν−1)
) (M1Cξ∥I0∥H1)

2

α2ν
1

≤ 2ν

(
(M1Cξ∥I0∥H1)

2

α1
+

(M1Cξ∥I0∥H1)
2ν

α2ν
1

)
≤ C (M1∥I0∥H1)

2(ν+1)

where C depends only on ν, ξ and α1. To bound the second term, first note that

B =

∣∣∣∣∣∣∣
d

dt

 1

1 +
(

|∇wξ|
K

)p(wξ,|∇wξ|)


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣ ddt
(
|∇wξ|
K

)p(wξ,|∇wξ|)
∣∣∣∣∣

=

(
|∇wξ|
K

)p(wξ,|∇wξ|)

∣∣∣∣ ddtp(wξ, |∇wξ|) log
(
|∇wξ|
K

)
+ p(wξ, |∇wξ|)

d

dt
log

(
|∇wξ|
K

)∣∣∣∣ .
Using that x log x → 0 as x → 0 with p ≥ 1 gives

B ≤
(
CξM1K

−1∥I0∥H1

)p+

L (|Gξ ∗ wt|+ |∇Gξ ∗ wt|)CξM1K
−1∥I0∥H1

+

(
|∇wξ|
K

)p(wξ,|∇wξ|)

p+
K|∇Gξ ∗ wt|

|∇wξ|

≤ 2L
(
CξM1K

−1∥I0∥H1

)p++2
+

(
|∇wξ|
K

)p(wξ,|∇wξ|)−1

p+CξM1K
−1∥I0∥H1

≤ 2L
(
CξM1K

−1∥I0∥H1

)p++2
+ p+

(
CξM1K

−1∥I0∥H1

)p+

≤ C (M1∥I0∥H1)
p++2

where C is independent of M1 and I0. Thus, by summing A+B we realize, by the
above displays, that ∣∣∣∣ ddtAw(x, t)

∣∣∣∣ ≤ C (M1∥I0∥H1)
C

(3.55)

where C depends only on α1, ξ, ν and K. This proves that Aw satisfies (A.2) with
Ψ(z) = CzC .

To show that A satisfies (A.3), we may proceed as in the proof of Corollary 3.2.
Thus, to complete the proof of Corollary 3.4, it only remains to verify that at least
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one of the three statements (i), (ii) or (iii) in Theorem 3.3 holds. We have

ΦA

ϕA
≤ 1

ϵ
and so

1

z2
ΦA

ϕA
→ 0 as z → ∞,

and hence (A.4) holds. On the other hand,

ΨA

ϕA
≤ CzC

ϵ
→ ∞ as z → ∞,

and so (A.5) does not hold. In conclusion, existence follows if ∥I0∥H1 is small
enough, or if T is small enough, depending only on A and ∥I0∥H1 . The proof is
complete. □

4. Numerical method. To solve the system (2.10)–(2.11) with (2.5) numerically,
we construct a weighted-θ finite difference scheme [38]. We replace the derivative
terms in (2.10)–(2.11) using the following finite difference approximations:

∂Ini,j
∂t

≈
In+1
i,j − In−1

i,j

2τ
,

∂2Ini,j
∂t2

≈
In+1
i,j − 2Ini,j + In−1

i,j

τ2
,

∇xI
n
i,j ≈

Ini+1,j − Ini−1,j

2h
, ∇yI

n
i,j ≈

Ini,j+1 − Ini,j−1

2h
,

∆xI
n
i,j ≈

Ini+1,j − 2Ini,j + Ini−1,j

h2
, ∆yI

n
i,j ≈

Ini,j+1 − 2Ini,j + Ini,j−1

h2
,

|∇Ini,j | ≈
√
(∇xIni,j)

2 + (∇yIni,j)
2 .

In the above, τ and h denote the time step size and the spatial step size, respectively.
Ini,j = I(tn, xi, yj), where xi = ih (i = 0, 1, 2, ...,M − 1), yj = jh (j = 0, 1, 2, ..., N −
1), tn = nτ (n = 0, 1, 2, . . .), where n is the number of iterations and M ×N is the
image dimension. Then using the weighted scheme [38], the discrete form of the
equation (2.10) could be written as

(1 + 0.5γτ)In+1
i,j − τ2θ1 [∇(g∇I)]

n+1
i,j = 2Ini,j + τ2(1− θ1 − θ2) [∇(g∇I)]

n
i,j

+ τ2θ2 [∇(g∇I)]
n−1
i,j + (0.5γτ − 1)In−1

i,j , (4.1)

where θ1 and θ2 are non negative ‘weights’. The superscript ‘n’ denotes the value
at the nth time level tn, and the term [∇(g∇I)]i,j can be described as

0.5

h̃2

[
(gi,j + gi+1,j)Ii+1,j + (gi,j + gi−1,j)Ii−1,j − (gi+1,j + 2gi,j + gi−1,j) Ii,j

]
+

0.5

h̃2

[
(gi,j + gi,j+1)Ii,j+1 + (gi,j + gi,j−1)Ii,j−1 − (gi,j+1 + 2gi,j + gi,j−1) Ii,j

]
,

where

gni,j = ϵ+ b(si,j) ·
1

1 +
(

|∇Gξ∗Ii,j |
K

)p(Gξ∗Ii,j ,|∇Gξ∗Ii,j |)
.

The initial and boundary conditions are given as follows:

I0i,j = I0(xi, yj) , I
1
i,j = I0i,j , 0 ≤ i ≤ M − 1 , 0 ≤ j ≤ N − 1 ,

In0,j = In1,j , InM−1,j = InM−2,j , Ini,0 = Ini,1 , Ini,N−1 = Ini,N−2 .

We solve the system (4.1) using the Gauss-Seidel iterative method [33]. The numer-

ical stability condition for the model (2.10)–(2.11) is τ ≤ h/
√

max g(x, t) according
to the Courant–Friedrichs–Lewy stability criterion [62], where h denotes the length
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of the spatial intervals. We choose a uniform time step size τ = 0.25, spatial step
size h = 1, and ξ = 1 for all our computations. Moreover, we require a stopping
criterion to stop the numerical simulation process. We use two distinct stopping
rules: when the clean image is available and another for the real-life images. When
the clean data is available (i.e., in the case of artificially noised images), we stop
the simulation after getting the best possible peak signal-to-noise ratio (PSNR) [30]
value between the clean image (I) and the restored image (Ik) calculated by the
formula

PSNR = 10 log10

 max(I)2

1
MN

M∑
i=1

N∑
j=1

(I(i, j)− Ik(i, j))2

 , (4.2)

where I denotes the ground truth image of size M×N and max(I) is the maximum
possible pixel value of I, and Ik denotes the restored image at the kth iteration.
For the case of real images, when the clean image is not available, we stop the
simulation process after satisfying the following relation

∥Ik+1 − Ik∥22
∥Ik∥22

≤ ε, (4.3)

where ε > 0 is a fixed threshold. In (4.3), Ik and Ik+1 denote the restored images

at the kth and (k + 1)
th

iteration, respectively. For our simulations, we have used
ε = 10−4.

5. Computational results. This section discussed the image despeckling ability
of the presented model in terms of visual quality and quantitative measures. We
discuss the results in three different subsections; 5.1, 5.2, and 5.3. The first subsec-
tion 5.1 describes the despeckling results using three standard test images degraded
by the multiplicative speckle noise with different noise levels. We artificially gen-
erate speckle noise with “looks” L = {1, 3, 5, 10} using MATLAB built-in gamma
random noise generator function “gamrnd” as η = gamrnd(L, 1/L,M,N) and then
multiply with the clean images, where M ×N is the image dimensions. In subsec-
tion 5.2, we describe the results for two real SAR images. Finally, in subsection
5.3, we discuss the despeckling results for standard benchmark images introduced
in [23]. We compute the results using the proposed model and compare the results
with the results of a nonlocal speckle removal approach. All the numerical tests are
performed under Windows 10 and MATLAB version R2021b running on a desktop
computer with an Intel Core i5 dual-core CPU at 2.11 GHz with 16 GB of RAM.

5.1. Results for the artificially noised images. To check the image despeckling
ability of the present model, we compute three performance measures, i.e., the
PSNR, Mean Structural Similarity Index (MSSIM), and despeckling gain measure
(DG) [6, 23]. Higher PSNR, MSSIM, and DG values suggest that the despeckled
result is closer to the corresponding clean image. Also, we report two bias indicators;
mean of the ratio image (MoR) and variance of the ratio image (VoR) (ratio image
is defined as the point-by-point ratio between the degraded and the despeckled
image) [6, 23]. Since the ratio image contains only speckles, it has a unit mean
and variance equal to 1/L. Considering MoR ∼= 1, VoR indicates insight about
under/over smoothing phenomena. A VoR < 1 shows under smoothing; that is,



WELL-POSEDNESS OF A IMAGE DESPECKLING TDE 27

part of the speckle remains in the filtered image, whereas VoR > 1 means over
smoothing; that is, the filter also eliminates some details of the underlying image.

Figure 7 represents the despeckled results of a circle image initially degraded
by speckle noise with L = {1, 10}. The first row describes the image degraded by
speckle noise with L = 1 and the restored images by (2.10)–(2.12) using the three
exponents, p = p0 − p1, p = p0 − p2, and p = p0 − p3, recall (2.6)–(2.8). From
the results, one can conclude that the first exponent outperforms the other two
exponents. The third exponent destroys the edges when removing the image noise.
The second row shows the speckled image degraded by L = 10 and the restored
images. Despeckled images indicate that all the exponents can restore the image
quite accurately. However, from the 2D contour plots for the corresponding images,
we can conclude that the first exponent can remove image noise better than the
second and third exponents. In Figure 8, we show the despeckling results for a
lake image. From the results in the second row, it can be clearly shown that the
first and third exponents can enhance the edges better than the second exponent.
Figure 9 represents the despeckling results for a mosaic image initially degraded by
speckle noise with L = {1, 10}. Restored results indicate that all the exponents can
adequately remove the speckle noise; however, the first exponent preserves the edges
better than the other two. The last exponent introduced some undesired effects into
the restored image for the high noise level. The computed values of corresponding
quantitative measures are presented in Table 1, and the best results are highlighted
in bold shapes.

In Figure 10, we compare the despeckling results computed by the approaches:
diffusion model with the constant exponent (DCE), diffusion model with the variable
exponent (DVE), telegraph model with constant exponent (TCE), and the telegraph
model with the variable exponent (TVE). We show the results for the Mosaic image
with two different noise levels, L = {3, 5}. Also, in the caption of the figure, we
mention the quantitative measures for the restored images. From the results, one
can easily conclude the performances of the diffusion and telegraph models with
constant and variable exponents. Also, in Figure 11, we compare the PSNR and
despeckling gain values for the restored images computed by the approaches: DCE,
DVE, TCE, and TVE. From the results, one can conclude that TVE consistently
outperforms the other techniques.

5.2. Results for the real images. This section illustrates the image filtering abil-
ity of the proposed model in real SAR images. We have no prior information about
the original noise-free image for the real-life images. Therefore, to compare the
quantitative results, we calculate the value of the Speckle Index (SI) [22]. A smaller
value of SI indicates efficient speckle elimination. Figure 12 shows the despeckling
results of the SAR image computed through (2.10)–(2.11) and SAR-BM3D [50].
From the restored images 12b–12e, one can conclude that all the methods can re-
move noise adequately though the first exponent preserves the texture and edges
better than the others. The following despeckling result is computed for a SAR
image of the Himalayan Arc, as displayed in Figure 13. In contrast to the previous
SAR image, the presence of fine textures is much higher in this image. The quality
of the recovered images using all filters is promising in terms of speckle reduction,
the preservation of edges, and structured regions. The first exponent outperforms
the other in terms of the speckle index.
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(a) Noisy L = 1 (b) p = p0 − p1 (c) p = p0 − p2 (d) p = p0 − p3

(e) Noisy L = 10 (f) p = p0 − p1 (g) p = p0 − p2 (h) p = p0 − p3

(i) Noisy L = 10
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(l) p = p0 − p3

Figure 7. Restored Images using (2.10)–(2.11).

(a) Noisy L = 1 (b) p = p0 − p1 (c) p = p0 − p2 (d) p = p0 − p3

(e) Noisy L = 10 (f) p = p0 − p1 (g) p = p0 − p2 (h) p = p0 − p3

Figure 8. Restored Images using (2.10)–(2.11).
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(a) Noisy L = 1 (b) p = p0 − p1 (c) p = p0 − p2 (d) p = p0 − p3

(e) Noisy L = 10 (f) p = p0 − p1 (g) p = p0 − p2 (h) p = p0 − p3

Figure 9. Restored Images using (2.10)–(2.11).

(a) Noisy (b) DCE (c) DVE (d) TCE (e) TVE

(f) Noisy (g) DCE (h) DVE (i) TCE (j) TVE

Figure 10. First Row: (a) L = 3, (b) PSNR=19.90, DG=7.70,
(c) PSNR=19.92, DG=7.73, (d) PSNR=20.36, DG=8.17, (e)
PSNR=20.61, DG=8.42. Second Row: (f) L = 5,
(g) PSNR=22.35, DG=8.49, (h) PSNR=22.39, DG=8.51, (i)
PSNR=22.87, DG=9.00, (j) PSNR=23.14, DG=9.26.

5.3. Benchmarking framework for SAR despeckling. This section discusses
the results of a benchmark framework to show the despeckling ability of the present
technique. Also, we compare the results of the present model with the results of
SAR-BM3D [50]. We compute the despeckled results for the five standard images
(Homogeneous: Figure 14b, DEM: Figure 15b, Squares: Figure 16b, Corner: Figure
17b, Building: Figure 19b) using the suggested model and compare the outcomes
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Figure 11. Comparison of PSNR and DG values for different im-
ages in different noise levels L = {1, 3, 5, 10}. Color legend shown
for the mosaic image also works for the other images.

Table 1. Comparison of quantitative results.

Image L

p = p0 − p1 p = p0 − p2 p = p0 − p3 Clean

PSNR/MSSIM/MoR/VoR/DG PSNR/MSSIM/MoR/VoR/DG PSNR/MSSIM/MoR/VoR/DG MoR/VoR

Circle 1 35.86/0.9722/0.998/0.870/22.87 35.93/0.9667/1.008/0.890/22.94 35.44/0.9691/0.996/0.865/22.44 0.977/0.839
3 40.99/0.9826/1.001/0.330/24.25 40.39/0.9800/1.002/0.330/23.65 40.23/0.9810/0.997/0.327/23.49 0.999/0.328
5 42.11/0.9842/1.000/0.200/23.25 41.56/0.9830/1.001/0.201/22.70 41.50/0.9830/0.998/0.199/22.64 1.000/0.200
10 44.13/0.9879/1.000/0.100/22.31 43.46/0.9870/1.000/0.100/21.64 43.62/0.9872/0.999/0.100/21.80 1.001/0.100

Lake 1 16.96/0.5674/0.934/0.542/7.26 16.41/0.5816/0.973/0.582/6.71 16.71/0.5678/0.947/0.549/7.01 0.861/0.555
3 21.39/0.6945/0.965/0.220/8.60 21.08/0.7085/0.982/0.228/8.30 21.26/0.6984/0.970/0.222/8.48 0.946/0.240
5 23.14/0.7510/0.977/0.140/8.76 23.01/0.7523/0.984/0.145/8.64 23.13/0.7468/0.976/0.143/8.76 0.966/0.158
10 25.53/0.8067/0.982/0.071/8.86 25.40/0.8026/0.988/0.077/8.74 25.41/0.8010/0.983/0.0767/8.74 0.984/0.085

Mosaic 1 15.25/0.8822/0.989/0.609/6.23 15.29/0.8797/1.004/0.637/6.27 15.20/0.8718/0.992/0.612/6.18 0.839/0.510
3 20.61/0.9478/0.992/0.241/8.42 20.44/0.9426/0.999/0.244/8.25 20.50/0.9440/0.993/0.241/8.32 0.931/0.231
5 23.14/0.9615/0.993/0.154/9.26 22.87/0.9573/0.999/0.155/8.98 23.03/0.9598/0.994/0.154/9.15 0.954/0.151
10 26.33/0.9782/0.997/0.082/10.00 26.13/0.9741/0.999/0.083/9.80 26.26/0.9746/0.997/0.082/9.94 0.973/0.082

Texture 1 28.07/0.8404/0.967/0.827/14.89 27.89/0.8409/1.003/0.889/14.71 27.84/0.8348/0.980/0.840/14.67 0.981/0.861
3 31.50/0.9009/0.985/0.3201/14.60 31.32/0.8977/0.996/0.328/14.42 31.34/0.8990/0.988/0.322/14.44 0.998/0.392
5 32.68/0.9211/0.989/0.197/13.72 32.45/0.9178/0.996/0.200/13.49 32.58/0.9205/0.990/0.197/13.62 0.999/0.200
10 34.39/0.9393/0.992/0.100/12.49 34.20/0.9374/0.996/0.102/12.31 34.28/0.9391/0.993/0.102/12.38 1.001/0.100

with the results of SAR-BM3D. We evaluate different quality measurement param-
eters [23] for the restored images. Each parameter is computed with respect to a
512-look reference image of the same scene. To gain a concrete idea of these images
and quantitative measures, we refer the reader to [23]. Figure 14 illustrates the
restored results for the Homogeneous image. It is the simplest and most important,
as it provides knowledge on the speckle removal efficiency of an approach. Table 2
reports bias indicators, mean value of the image (MoI), MoR, VoR, and performance
measures ENL, ENL∗, and DG for the despeckled images. From the quantitative
measures, one can observe that none of the methods introduces significant bias on
MoI and MoR. Comparatively, a smaller value for VoR indicates imperfect speckle
filtering for the case of SAR-BM3D. Also, in terms of ENL, ENL∗, and DG, the
first two exponents work better than the third exponent and SAR-BM3D. Also,
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(a) Radar Image (b) SAR-BM3D

(c) p = p0 − p1 (d) p = p0 − p2 (e) p = p0 − p3

Figure 12. (a) 240 × 240 Radar Image. (b) SI=0.2811. (c)
SI=0.2788. (d) SI=0.2782. (e) SI=0.2982.

(a) Radar Image (b) SAR-BM3D

(c) p = p0 − p1 (d) p = p0 − p2 (e) p = p0 − p3

Figure 13. (a) 740 × 747 Radar Image. (b) SI=0.6150. (c)
SI=0.5219. (d) SI=0.5648. (e) SI=0.5621.
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Table 2. Measures for Homogeneous

MoI MoR VoR ENL ENL∗ DG

Clean 1.000 0.998 0.987 436.97 510.36 −
Noisy 0.998 − − 1.00 1.02 0

SAR-BM3D 0.978 0.979 0.814 102.44 111.91 19.40
p0 − p1 1.000 0.989 0.960 365.85 507.20 23.65
p0 − p2 0.989 0.999 0.979 369.08 508.20 23.60
p0 − p3 0.990 0.999 0.977 348.94 475.61 23.46

Table 3. Measures for DEM

MoI MoR VoR Cx DG

Clean 1.000 1.001 0.999 2.40 −
Noisy 1.003 − − 3.54 0

SAR-BM3D 0.968 0.833 0.415 2.43 5.32
p0 − p1 0.988 0.849 0.433 2.20 4.02
p0 − p2 0.988 0.820 0.557 2.24 3.72
p0 − p3 0.988 0.850 0.429 2.26 4.00

from the qualitative results, one can notice that (2.10)–(2.11) can remove speckle
noise better than the SAR-BM3D. Figure 15 shows the despeckling results for the
DEF image; it is a highly textured image. Observing the filtered images, one can
conclude that despeckling results are not significantly biased. Also, the quantita-
tive results MoI, MoR, VoR, coefficient of variation (Cx), and DG are presented in
Table 3. In terms of MoI and MoR, all the approaches can produce satisfactory de-
speckling results. A higher VoR value indicates the second exponent can remove the
speckle better than the others. In terms of Cx and DG, the results for the proposed
method are comparable to SAR-BM3D. In Figure 16, we present the filtered images
for the Squares image. We calculated the edge-preserving parameter, the figure of
merit (FOM), for each image and mentioned the values in the captions of images.
From the despeckled images, one can conclude that the first exponent can remove
the speckle efficiently and improve the edges better than the other exponents and
SAR-BM3D. Also, the values of quantitative measure FOM support the qualitative
results. Figure 17 shows the restored results for the Corner image. Also, the called
contrast measures CNN (for the eight nearest pixels) and CBG (for the background)
are computed and mentioned in the captions of the images. For the case of the pro-
posed model, the Contrast values are closer to the contrast values of the reference
image. Figure 18 describes a range profile of the corner response, and one can notice
that the restored profile using the first exponent is more intimate to the profile for
the clean image as compared to the other results. Figure 19 illustrates the filtering
outcomes for the Building image. We computed two parameters: contrast measure
CDR and building smearing (BS) figure and mentioned them in the caption of the
images. All the strategies can preserve the double reflection line quite accurately.
Also, Figure 20 describes average range profiles (calculated averaging over the range
lines interested by the presence of the building) on a logarithmic scale. The first
exponent correctly specifies the whole building region and preserves it integrally,
with BS close to zero.
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(a) (b) (c)

(d) (e) (f)

Figure 14. 256 × 256 Homogeneous image. (a) 512-look. (b)
One-look. (c) SAR-BM3D. (d) p = p0 − p1. (e) p = p0 − p2. (f)
p = p0 − p3.

6. Conclusion. This work discussed a class of diffusion and telegraph diffusion-
based approaches for image despeckling. Instead of using a constant exponent, we
employed three distinct variable exponents for the edge indicator function, which
depended on either the image’s gray level or its gradient. Although the diffusion
model presented behaves similarly to existing PDE approaches under certain spe-
cific conditions, our primary focus was the telegraph diffusion equation based on
variable exponents. To the best of our knowledge, this study represented the first
application of a variable exponent-based telegraph diffusion model for speckle noise
elimination. Additionally, we rigorously analyzed the existence and uniqueness of
a weak solution to the proposed model by employing the Schauder fixed point the-
orem. Numerical experiments were conducted on images with artificial noise as
well as real SAR images. To evaluate the effectiveness of our model for SAR de-
speckling, we used a standard benchmarking framework and compared our results
with those obtained using a nonlocal technique. The findings confirmed that our
proposed hybrid model effectively performed image despeckling. Consequently, the
proposed method constitutes a significant alternative approach in the domain of
image despeckling.
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(a) (b) (c)

(d) (e) (f)

Figure 15. 512 × 512 DEM image. (a) 512-look. (b) One-look.
(c) SAR-BM3D. (d) p = p0 − p1. (e) p = p0 − p2. (f) p = p0 − p3.

(a) FOM=0.993 (b) FOM=0.792 (c) FOM=0.847

(d) FOM=0.864 (e) FOM=0.811 (f) FOM=0.836

Figure 16. 512 × 512 Square image. (a) 512-look. (b) One-look.
(c) SAR-BM3D. (d) p = p0 − p1. (e) p = p0 − p2. (f) p = p0 − p3.
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(a) CNN = 7.75, CBG =
36.56

(b) CNN = 7.77, CBG =
36.50

(c) CNN = 7.39, CBG =
35.45

(d) CNN = 7.42, CBG =
36.59

(e) CNN = 7.40, CBG =
36.54

(f) CNN = 7.42, CBG =
36.58

Figure 17. 256 × 256 Corner image. (a) 512-look. (b) One-look.
(c) SAR-BM3D. (d) p = p0 − p1. (e) p = p0 − p2. (f) p = p0 − p3.
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Figure 18. Corner reflector: restored range profiles (red) com-
pared with the clean one (black). (a) SAR-BM3D. (b) p = p0− p1.
(c) p = p0 − p2. (d) p = p0 − p3.
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(a) CDR = 65.90 (b) CDR = 65.90, BS=0.09 (c) CDR = 65.91, BS=1.46

(d) CDR = 65.89,
BS=0.1091

(e) CDR = 66.92,
BS=0.2218

(f) CDR = 66.81,
BS=0.2267

Figure 19. 256 × 256 Building image. (a) 512-look. (b) One-
look. (c) SAR-BM3D. (d) p = p0 − p1. (e) p = p0 − p2. (f)
p = p0 − p3.
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Figure 20. Restored building profiles (red dashed) compared with
the clean one (green). (a) SAR-BM3D. (b) p = p0 − p1. (c) p =
p0 − p2. (d) p = p0 − p3.



WELL-POSEDNESS OF A IMAGE DESPECKLING TDE 37

REFERENCES

[1] A. Achim, A. Bezerianos and P. Tsakalides, Novel Bayesian multiscale method for speckle
removal in medical ultrasound images, IEEE Trans. Med. Imag., 20 (2001), 772-783.

[2] A. Achim, P. Tsakalides and A. Bezerianos, SAR image denoising via Bayesian wavelet shrink-
age based on heavy-tailed modeling, IEEE Trans. Geosci. Remote Sens., 41 (2003), 1773-

1784.

[3] R. A. Adams, Sobolev Spaces, vol. 65, Academic Press, New York, 1975.
[4] B. Aiazzi, L. Alparone and S. Baronti, Multiresolution local-statistics speckle filtering based

on a ratio Laplacian pyramid, IEEE Trans. Geosci. Remote Sens., 36 (1998), 1466-1476.

[5] L. Alparone, S. Baronti and R. Carla, Two-dimensional rank-conditioned median filter, IEEE
Trans. Circuits Syst. II , 42 (1995), 130-132.

[6] F. Argenti, A. Lapini, T. Bianchi and L. Alparone, A tutorial on speckle reduction in synthetic

aperture radar images, IEEE Geosc. Rem. Sen. M., 1 (2013), 6-35.
[7] H. H. Arsenault and M. Levesque, Combined homomorphic and local-statistics processing for

restoration of images degraded by signal-dependent noise, Appl. Opt., 23 (1984), 845-850.

[8] G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM
J. Appl. Math., 68 (2008), 925-946.

[9] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differ-
ential Equations and The Calculus of Variations, vol. 147, Springer, 2006.
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