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Abstract 

This paper discusses a new modelling approach enabling the linkage of distributed 
individual food, energy, water optimization models under joint (e.g., water, land) 
resource constraints, uncertainty, and asymmetric information. The approach is based 
on an iterative stochastic quasigradeint (SQG) solution procedure of, in general, 
nonsmooth nondifferentiable optimization. The SQG procedure organizes an iterative 
computerized negotiation between individual FEW systems (models) representing 
Intelligent Agents. The convergence of the procedure to the socially optimal solution 
is based on the results of nondifferentiable optimization providing a new type of 
machine learning algorithms. The linkage problem can be viewed as a general 
endogenous reinforced learning problem. The models act as “agents” that 
communicate with a “central hub” (a regulator) and take decisions in order to 
maximize the “cumulative reward". In this way, they continue to be the same 
individual models and different modeling teams do not need to exchange information 
about their models – instead, they only need to harmonize the inputs and outputs that 
are part of the joint resource constraints. In this way, the agents link their models into 
an integrated model under asymmetric information. The convergence of the solution 
of the linked models to the solution of the hard-integrated model is discussed. 
Application of the approach is illustrated with a case study linking distributed 
agricultural, water and energy sector models. The approach can be effectively used 
for decentralized deregulated planning of interdependent agricultural, energy, water 
systems.  

Key words: Food-energy-water nexus, distributed models, uncertainty and 
asymmetric information, integrated modeling, models’ linkage, SQG solution 
procedure, non-smooth optimization, subgradient, integrated modeling, food-energy-
water-environmental nexus. 

1.1. Introduction 

The increasing interdependencies among food-energy-water-environmental 
(FEWE) sectors require integrated coherent planning and coordinated policies for 
sustainable development and nexus security. The sectors become more interconnected 
because they utilize common, often rather limited, resources, both natural (e.g., land, 
water, air quality) and socio-economic (e.g., investments, labor force). For example, 
land and water are needed not only for agricultural production, but also for 
hydropower generation, coal mining and processing, power plants cooling, renewable 
energy, and hydrogen production.  



Ermolieva, Ermoliev, Zagorodny, Bogdanov et al.     3 

Detailed sectoral and regional models have traditionally been used to anticipate 
and plan desirable developments of respective sectors and regions. These models 
operate with a set of feasible decisions and aim to select a solution optimizing a sector- 
or region-specific objective function. When interdependencies between sectors and 
regions are increasing, such an independent analysis without accounting for 
interconnections can become misleading and even dangerous. Hence, it is necessary 
to link together the sectoral (regional) models to derive truly integrated solutions. 
Interdependent Food-Energy-Water-Environmental (FEWE) security goals contribute 
immensely to signifying the nexus security between sectors and regions (Zagorodny, 
Ermoliev, Bogdanov et al. 2020; Ermolieva et al. 2021; Zagorodny, Bogdanov et al. 
2024; Zagorodny, Bogdanov, Zaporozhets 2024). 

In this paper we consider the problem of linking individual sectoral and/or regional 
linear programming (LP) models into a cross-sectoral integrated model (IM) in the 
presence of joint constraints when “private” information about the models is not 
available or it cannot be shared by modeling teams (sectoral agencies), i.e., under 
asymmetric information (ASI). The approach provides a means of decentralized cross-
sectoral coordination and enables to investigate policies in interdependent systems in 
a “decentralized” fashion. This enables more stable and resilient systems’ 
performance and resource allocation as compared to the independent policies 
designed by separate models without accounting for interdependencies.  

Limited resources can be allocated between systems (sectors/regions) in many 
ways. For example, Böhringer and Rutherford (2009) consider integrating 
mathematical programming models of the energy system into a general equilibrium 
(GE) model of the overall economy. Unfortunately, the convergence of the iterative 
procedure integrating the models could not be proven. For resource and production 
allocation with the generalized Nash equilibrium (GNE) approach, the existence, 
uniqueness, and stability of the GNE, and a realistic large-scale implementation of 
this concept, cannot be guaranteed. Ermoliev and von Winterfeldt (2012) demonstrate 
the complexity of the game-theoretic approaches, e.g., the Stackelberg leadership 
model, emerging due to quite unrealistic assumptions that each player (sector/region) 
possesses the knowledge about other players.  

Traditional integrated deterministic optimization modeling incorporates goals, 
constraints, and data of all models into a single code (hard integration), which can be 
considered as a multi-criteria optimization problem (Ogryczak 2000). In the case of 
separate distributed models’ and ASI, the linkage requires (see section 1.2.2-1.2.4) 
specific nonsmooth optimization methods. Problems under ASI are addressed with 
the agency theory (Gaivoronski and Werner 2012), in particular, on how to motivate 
information exchange. In this paper we consider, in a sense, the opposite, we minimize 
the necessity to exchange information.  

http://www.sciencedirect.com/science/article/pii/S014098830700059X
http://www.sciencedirect.com/science/article/pii/S014098830700059X
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Our approach for linking separate optimization models under ASI is based on the 
parallel solving of equivalent nonsmooth optimization models by an iterative 
stochastic quasigradient (SQG) procedure (Ermoliev 1976; Ermoliev 2009) based on 
subgradients or generalised gradients (Ermoliev 1976; Rockafeller 1981; Ermoliev 
and Norkin 1997) converging to an optimal welfare maximizing linkage solution, i.e., 
to the solution of a “hard-integrated” model (Ermoliev et al. 2022). The approach does 
not require to share details about models’ specification. We can assume, there is a 
network of distributed computers connecting individual computer models with the 
computer of a “social planner” (decision-makers or regulatory agencies), who 
attempts to achieve the best result for all sectors/regions (parties) involved. The 
linkage procedure can be interpreted as a kind of a "decentralized market system” 
(Ermoliev and Ermolieva et al. 2015 and references therein). According to this 
procedure, the optimization of sectoral/regional goals under individual constraints is 
performed independently and in parallel, without considering joint constraints. Joint 
constraints can be imposed on total production, natural and financial resource use, 
emissions, pollution, joint food-energy-water-environmental (FEWE) security 
targets. The constraints can establish supply-demand relationships between the 
systems enabling to estimate optimal production, resource use, and emission quotas 
for each system. The balance between the total energy (including biofuels) production 
and demand defines energy security; agricultural production and consumption reflect 
food security; total emissions and pollution constraints correspond to environmental 
security. The joint FEWE constraints satisfaction establishes the FEWE security 
nexus (Zagorodny and Ermoliev 2013; Ermolieva and Havlik et al. 2016, 2021; 
Zagorodny et al. 2020, 2024). After the independent optimization using initial 
approximations of various (e.g., production, resource use, emission) quotas, the 
sectors/regions provide social planner with the information on their actual production, 
resource use, and respective shadow prices. The planner checks if the joint constraints 
are fulfilled. If not, i.e., there is “excess demand” or “excess supply” (i.e., total 
resource use, production, emissions by all systems are higher/lower than required), 
the planner revises the individual systems’ quotas via shifting their current 
approximation in the direction defined by the corresponding dual variables. Thus, 
shadow prices signal systems to adjust their activities accordingly. Formally, the 
procedure is described in sections 1.2.3 - 1.2.5.  

In this way, the linkage allows to avoid “hard linking” of the models in a single 
code, which is not possible because the systems (agencies) may not want to share the 
information or because the individual models are too detailed and complex to be 
“hard-linked”. The approach saves reprogramming efforts and enables parallel 
distributed (decentralized) computations of sectoral models instead of a large-scale 
integrated (centralized) model. This also preserves the original models in their initial 
state for other linkages. The use of detailed sectoral and regional models instead of 
their aggregated simplified versions enables also to account for critically important 

http://www.iiasa.ac.at/search/publication.php?authors=Ermoliev,Y.
http://pure.iiasa.ac.at/view/iiasa/83.html
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local details. Similar computerized decentralized “negotiation” processes between 
distributed models (agents) have been developed for the design of robust carbon 
trading markets (e.g. (Ermoliev and Ermolieva et al. 2015 and references therein). 
The linkage procedure can be considered as a new machine learning algorithm, 
namely, as a general endogenous reinforced learning problem of how software agents 
(models) take decisions in order to maximize the cumulative reward (total welfare) 
(Ermolieva and Ermoliev et al. 2021) 

The paper is organized as follows. Section 1.2 discusses the problem of models’ 
linkage under joint constraints. Section 1.2.1 presents a short overview and main 
shortfalls of several existing approaches, section 1.2.2 formulates the problem of 
distributed LP models’ linkage in the presence of joint resource constraints and ASI, 
sections 1.2.3-1.2.5 outline the details and the main properties of the linkage solution 
procedure based on the parallel solving of equivalent nonsmooth optimization model 
following a simple iterative subgradient algorithm. Section 1.3 illustrates the 
application of the methodology to link detailed energy and agricultural production 
planning models under joint constraints on water and land use. In addition, the joint 
constraints can impose restrictions on total energy production by energy sector 
(electricity, gas, diesel, etc.) and land use sector (biodiesel, methanol); total energy 
use by energy and agricultural sectors; total agricultural production by distributed 
farmers/regions. Section 1.4 concludes and outlines potential further extensions of the 
approach, for example, to include more details of energy and natural resources 
dynamics in general. 

1.2. Linking distributed optimization models under joint resource 
constraints 

1.2.1. Social equilibrium game 

In the absence of coordination between systems (sectors, regions), they can act 
selfishly and aim at maximizing their own objective function. They attempt to secure 
as high resource quotas as possible. Such situation can be modeled using the non-
cooperative game-theoretic framework. For example, social equilibrium games 
(Harker 1991) have been formulated to include joint constraints. The generalized 
Nash equilibrium (GNE) solution, if it exists, allocates production and resources 
among systems (sectors/regions) fulfilling the joint constraint. However, the decisions 
are made independently and collective efforts for managing common resources are 
ignored. Important, that the existence, uniqueness, and stability of the GNE, as well 
as a realistic large-scale implementation of this concept, cannot be guaranteed as 
emphasized by Harker (1991). Moreover, in Harker (1991) it is highlighted that the 
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GNE solutions set is rarely connected. Hence, a complete analysis of equilibriums in 
this case is a complex task, requiring additional assumptions.  

The analysis can become even more complex if the joint constraints are based on 
the equilibrium (optimality) conditions arising from the problem formulated in the 
form of a principal-agent game or a leader-follower Stackelberg game (Ermoliev and 
von Winterfeldt 2012). For example, in the case of nonsmooth goal functions required 
for linking systems under ASI (distributed models’ optimization), the use of 
optimality conditions would require implicit sets of generalized gradients. Due to the 
computational complexity, heuristic methods are often used, however, they are 
lacking a rigorous convergence proof.  

Linking bottom-up mathematical programming models of the energy system into 
a top-down general equilibrium model of the overall economy is discussed by 
Böhringer and Rutherford (2009). The paper shows, that the formulation of market 
equilibrium conditions by using complementarity equations permit integration of 
models, but the convergence of the iterative procedure integrating the models cannot 
be guaranteed. In specific cases, models of general equilibrium are reduced to 
optimization problems (Norkin 1999).  

Ermoliev and von Winterfeldt (2012) demonstrate that the complexity of the 
game-theoretic approaches is due to quite unrealistic assumptions that each player 
(sector/region) is in the possession of the knowledge on exact and unique responses 
of other players. Therefore, even in the simplest linear cases, this assumption leads to 
extremely complex discontinuous problems. More realistic assumptions of uncertain 
response functions in combination with a concept of robust decisions results in stable 
large-scale solutions.  

There exists a vast literature on important problems and methods for distributed 
systems’ optimization (Yang et al. 2019) under joint constraints, e.g., optimal control 
and economic dispatch in smart grids (Prakash and Nygard 2017), agricultural 
production planning for the multi-farmer systems (Alemany et al. 2021), network 
optimization (Liang et al. 2019), optimal transportation problems (Dean and Cortés 
2015; Galichon 2016). Yet, these approaches consider optimization of a total objective 
function representing a sum of individual objective functions of the involved systems. 
Thus, the problems assume full information is available to a social planner about the 
systems. They are formulated similarly to the traditional integrated “centralized” 
optimization modeling combining goals, constraints, and data of all models into a 
single code.  

Our problem is more complex as it deals with the coordination of decentralized 
systems’ models in the presence of joint constraints and ASI. In this case, the approach 
is based on a specific iterative nonsmooth optimization procedure (see section 1.2.3-
1.2.5). As we noted, integrated solution of separate LP models under ASI cannot be 

http://www.sciencedirect.com/science/article/pii/S014098830700059X
http://www.sciencedirect.com/science/article/pii/S014098830700059X
https://www.semanticscholar.org/author/M.-Alemany/145871191
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accomplished by LP methods. In section 1.2.2 we formulate the problem of distributed 
systems optimization in the presence of joint resource constraint under ASI and in 
sections 1.2.3-1.2.5 we discuss the models’ linkage algorithm and its convergence 
characteristics.   

1.2.2. LP models under joint constraints 

The basic problem of distributed individual sectoral (or regional) LP models 
optimization under joint resource constraint can be formulated as follows. Assume 
that there are 𝐾𝐾 systems’ models formulated in the following LP form: 

�𝑐𝑐(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� → 𝑚𝑚𝑚𝑚𝑚𝑚,      [1.1]  

𝑥𝑥(𝑘𝑘) ≥ 0,        [1.2] 

𝐴𝐴(𝑘𝑘)𝑥𝑥(𝑘𝑘) ≤ 𝑏𝑏(𝑘𝑘)      [1.3] 

where components of vector 𝑥𝑥(𝑘𝑘) are unknown variables, vector 𝑏𝑏(𝑘𝑘) defines system-
specific demand or resource constraints, and vector 𝑐𝑐(𝑘𝑘) corresponds to net unit 
profits, 𝑘𝑘 = 1,2, … ,𝐾𝐾. The common resource constraint [1.4]  connects the systems 
through a common unknown (linkage) variable 𝑦𝑦(𝑘𝑘) 

𝐵𝐵(𝑘𝑘)𝑥𝑥(𝑘𝑘) ≤ 𝑦𝑦(𝑘𝑘),      [1.4] 

where 𝑦𝑦(𝑘𝑘) defines resource quota allocated to system 𝑘𝑘. In this formulation, 
equation [1.3] defines individual systems’ constraints and formula [1.4] establishes 
systemic supply-demand relationships among systems by distributing resources 𝑦𝑦(𝑘𝑘). 
If matrix 𝐷𝐷(𝑘𝑘) defines the marginal resource use by system 𝑘𝑘 and 𝑑𝑑 is the total 
available resource, 𝑑𝑑 ≥ 0, then the quotas 𝑦𝑦(𝑘𝑘) fulfil the joint resource constraint on 
the common resources use  

∑ 𝐷𝐷(𝑘𝑘)𝑦𝑦(𝑘𝑘) ≤ 𝑑𝑑.𝐾𝐾
𝑘𝑘=1       [1.5] 

Thus, the overall problem is to maximize the individual objective function (1) for 
each system 𝑘𝑘 by choosing 𝑥𝑥(𝑘𝑘) and 𝑦𝑦(𝑘𝑘) from the feasible set defined by (2), (3), so 
that (4) and (5) are also fulfilled.  

In the presence of full information about systems, the problem of models’ linkage 
can be formulated and solved by a central planner (regulator) as a total net profit 
maximization  

∑ �𝑐𝑐(𝑘𝑘), 𝑥𝑥(𝑘𝑘)�𝐾𝐾
𝑘𝑘=1 → max     [1.6] 

s.t. to constraints [1.2-1.5], 𝑘𝑘 = 1,2, . . . ,𝐾𝐾. The net profits can be defined as total 
profit net of production costs, possible taxes and other expenses. 
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If the information about parameters 𝑏𝑏(𝑘𝑘), 𝑐𝑐(𝑘𝑘), 𝐴𝐴(𝑘𝑘), 𝐵𝐵(𝑘𝑘), 𝑥𝑥(𝑘𝑘) of systems 𝑘𝑘 is not 
available to the planner, the integrated LP model [1.2-1.6] under ASI cannot be solved 
by LP method due to the lack of common information about submodels.  

In this situation, the consistent approach for linking distributed optimization 
models is based on the parallel solving of equivalent nonsmooth optimization model 
following a simple iterative subgradient algorithm. The convergence and other 
properties of the algorithm are presented in section 1.2.4. The proposed linkage 
approach does not require to know full information about models’ specification, and 
it can be seen as an endogenous reinforced learning algorithm describing how 
distributed agents (models) can take decisions to maximize the “cumulative reward”. 
Sections 1.2.3-1.2.5 outline various aspects of the algorithm. 

1.2.3. Nonsmooth model and linking algorithm 

A core part of the algorithm is a central hub computer that recalculates the resource 
quotas 𝑦𝑦 by shifting their current approximation in the direction defined by the 
corresponding vectors of dual variables (shadow prices of resources) from the primal 
optimization problems. These quotas are received by sectorial/regional computers 
enabling parallel computations of solutions and fast adjustments of vector 𝑦𝑦. Ermoliev 
(1980) initially introduced the idea of this algorithm and current computer capacities 
enable its implementation to large-scale models used to support decisions.  

Consider the main implicit maximization problem. For a given vector 𝑦𝑦 =
(𝑦𝑦(1), . . . ,𝑦𝑦(𝐾𝐾)) let us denote the optimal value of function [1.6] under constraints [1.2-
1.4] by 𝐹𝐹(𝑦𝑦), in other words, in this function 𝑥𝑥(𝑘𝑘)(𝑦𝑦) are optimal solutions to [1.1] 
under [1.2-1.4] ignoring joint constraints [1.5]. Therefore, 

𝐹𝐹(𝑦𝑦) = ∑ 𝑓𝑓(𝑘𝑘)(𝑦𝑦)𝐾𝐾
𝑘𝑘=1 , 

where 𝑓𝑓(𝑘𝑘)(𝑦𝑦) = 𝑐𝑐(𝑘𝑘), 𝑥𝑥(𝑘𝑘)(𝑦𝑦)) are concave non-differentiable (continuously) or non-
smooth functions.  

The following algorithm defines a rule for adjusting 𝑦𝑦 towards an optimal 𝑦𝑦∗ that 
maximizes function 𝐹𝐹(𝑦𝑦) under the joint constraints [1.5] defining the feasible set 𝑌𝑌. 

Consider an arbitrary feasible solution 𝑦𝑦𝑠𝑠 = (𝑦𝑦𝑠𝑠(1), . . . , 𝑦𝑦𝑠𝑠(𝐾𝐾)) for iteration 𝑠𝑠 =
1,2, … of the algorithm. For given quotas 𝑦𝑦𝑠𝑠 = �𝑦𝑦𝑠𝑠(1), … ,𝑦𝑦𝑠𝑠(𝐾𝐾)�, independently and 
in parallel, computers of sectors/regions solve primal models [1.1-1.4] and obtain 
primal solutions 𝑥𝑥𝑠𝑠(𝑘𝑘) = 𝑥𝑥𝑠𝑠(𝑘𝑘)(𝑦𝑦𝑠𝑠) together with the corresponding shadow prices of 
resources, that is, solutions (𝑢𝑢𝑠𝑠(𝑘𝑘), 𝑣𝑣𝑠𝑠(𝑘𝑘)) of the dual problems  

�𝑏𝑏(𝑘𝑘),𝑢𝑢(𝑘𝑘)� + �𝑦𝑦(𝑘𝑘), 𝑣𝑣(𝑘𝑘)� → 𝑚𝑚𝑚𝑚𝑚𝑚,    [1.7] 
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𝐴𝐴(𝑘𝑘)𝑢𝑢(𝑘𝑘) + 𝐵𝐵(𝑘𝑘)𝑣𝑣(𝑘𝑘) ≥ 𝑤𝑤𝑘𝑘𝑐𝑐(𝑘𝑘),     [1.8] 

𝑢𝑢(𝑘𝑘) ≥ 0, 𝑣𝑣(𝑘𝑘) ≥ 0,      [1.9] 

𝑘𝑘 = 1,2, . . ., where vectors 𝑣𝑣𝑠𝑠(𝑘𝑘) are the driving force of algorithm [1.10]. 

The next approximation of quotas 𝑦𝑦𝑠𝑠+1 = �𝑦𝑦𝑠𝑠+1(1), … ,𝑦𝑦𝑠𝑠+1(𝐾𝐾)� is derived by the 
computer of the central hub by shifting 𝑦𝑦𝑠𝑠 in the direction of vector 𝑣𝑣𝑠𝑠 =
(𝑣𝑣𝑠𝑠(1), . . . , 𝑣𝑣𝑠𝑠(𝐾𝐾)), that is, optimal dual variables (shadow prices) corresponding to 
constraints [1.4]. Hence, we have iterative procedure defining in a sence the artificial 
“intellect” of the designed solution system: 

𝑦𝑦𝑠𝑠+1 = 𝜋𝜋𝑌𝑌(𝑦𝑦𝑠𝑠 + 𝜌𝜌𝑠𝑠𝑣𝑣𝑠𝑠), = 1,2, . . .,    [1.10] 

where 𝜌𝜌𝑠𝑠 is an iteration-dependent multiplier, which is a method’s parameter, and 
𝜋𝜋𝑌𝑌(⋅) is the orthogonal projection operator onto set 𝑌𝑌  (see, e.g., Ermoliev 1976; 
Ermoliev 1980; Ermoliev 2009). The orthogonal projection 𝑦𝑦𝑠𝑠+1 of vector 𝑦̄𝑦𝑠𝑠 = 𝑦𝑦𝑠𝑠 +
𝜌𝜌𝑠𝑠𝑣𝑣𝑠𝑠 onto 𝑌𝑌 is calculated by minimizing the quadratic function  ‖𝑦𝑦𝑠𝑠 + 𝜌𝜌𝑠𝑠𝑣𝑣𝑠𝑠 − 𝑦𝑦‖2  
subject to joint constraints [1.5]. This minimization is very fast due to 𝜌𝜌𝑠𝑠𝜈𝜈𝑠𝑠 → 0, as 
vectors 𝑣𝑣𝑠𝑠 are bounded optimal dual solutions and if 𝑦𝑦𝑠𝑠 is used as an initial 
approximation for 𝑦𝑦𝑠𝑠+1. 

Vector 𝑣𝑣𝑠𝑠 defines sub-gradient of the continuously non-differentiable 
function 𝐹𝐹(𝑥𝑥). This and the convergence of solutions 𝑦𝑦𝑠𝑠 to an optimal solution of the 
linkage problem [1.2-1.6] as 𝑠𝑠 → ∞ is analyzed in 1.2.4. The step-size 𝜌𝜌𝑠𝑠 is chosen 
from rather general and natural requirements: 𝜌𝜌𝑠𝑠 ≥ 0, ∑ 𝜌𝜌𝑠𝑠∞

𝑠𝑠=1 = ∞, because 
generalized gradients are not the increasing directions of functions.  

Although the standard sub-gradient projection method converges without 
condition ∑ 𝜌𝜌𝑠𝑠2∞

𝑠𝑠=1 < ∞, the proposed linkage algorithm for problems under 
asymmetric information (10) requires this additional condition to enable the 
convergence of not only function 𝐹𝐹(𝑦𝑦𝑠𝑠), but also solutions 𝑦𝑦𝑠𝑠. This allows us to 
propose a simple stopping criterion enabling the independent optimization of 
interdependent sectors by [1.10]. 

1.2.4. Convergence of the linking algorithm (stopping criterion) 

Assume there exist solutions 𝑥𝑥(𝑘𝑘)(𝑦𝑦) of all 𝐾𝐾 sectoral/regional models for feasible 
𝑦𝑦 satisfying constraints [1.5]. Then:  

a). Functions 𝑓𝑓(𝑘𝑘)(𝑦𝑦) = (𝑐𝑐(𝑘𝑘), 𝑥𝑥(𝑘𝑘)(𝑦𝑦)), 𝐹𝐹(𝑦𝑦) = ∑ 𝑓𝑓(𝑘𝑘)(𝑥𝑥(𝑘𝑘))𝐾𝐾
𝑘𝑘=1  are concave 

continuously non-differentiable functions for all 𝑘𝑘;  
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b). The dual problem (7)-(9) has a solution (𝑢𝑢(𝑘𝑘)(𝑦𝑦), 𝑣𝑣(𝑘𝑘)(𝑦𝑦)) for all 𝑘𝑘, and these 
solutions satisfy the stopping criterion of the linkage algorithm: 

𝑓𝑓(𝑘𝑘)(𝑦𝑦) = (𝑐𝑐(𝑘𝑘), 𝑥𝑥 (𝑦𝑦)) = (𝑏𝑏(𝑘𝑘),𝑢𝑢 (𝑦𝑦)) + (𝑦𝑦,𝑣𝑣 (𝑦𝑦)). 

This proposition leads to the following important fact (Ermoliev 1976; Ermoliev 
1980; Ermoliev 2009), which is fundamental for solving the linkage problem through 
maximizing non-differentiable function 𝐹𝐹(𝑦𝑦) by algorithm [1.10]:  

c). For any feasible solution 𝑧𝑧 and 𝑦𝑦, 𝑓𝑓(𝑘𝑘)(𝑦𝑦) − 𝑓𝑓(𝑘𝑘)(𝑧𝑧) ≥ (𝑣𝑣(𝑘𝑘)(𝑦𝑦),𝑦𝑦 − 𝑧𝑧), that 
is, 𝑣𝑣(𝑘𝑘)(𝑦𝑦) is a subgradient of the concave non-differentiable function 𝑓𝑓(𝑘𝑘)(𝑦𝑦). Vector 
𝑣𝑣(𝑦𝑦) = (𝑣𝑣(1)(𝑦𝑦), . . . , 𝑣𝑣(𝐾𝐾)(𝑦𝑦)) is a subgradient of function 𝐹𝐹(𝑦𝑦) = ∑ 𝑓𝑓(𝑘𝑘)(𝑦𝑦)𝐾𝐾

𝑘𝑘=1 , 
𝐹𝐹𝑦𝑦(𝑦𝑦) = 𝑣𝑣(𝑦𝑦), that is, 𝐹𝐹(𝑦𝑦) − 𝐹𝐹(𝑧𝑧) ≥ (𝑣𝑣(𝑦𝑦),𝑦𝑦 − 𝑧𝑧). 

Therefore, the procedure [1.10] is a specific subgradient algorithm for maximizing 
the (continuously) non-differentiable concave function 𝐹𝐹(𝑦𝑦).  

The following proposition shows that 𝑦𝑦𝑠𝑠 converges (non-monotonic convergence) 
to an optimal linking vector 𝑦𝑦∗, maximizing 𝐹𝐹(𝑦𝑦) subject to joint constraints [1.5]. 
Let us denote this feasible set by 𝑌𝑌: Assume that  

(1). The feasible set 𝑌𝑌 is bounded; 

(2). Step size 𝜌𝜌𝑠𝑠 satisfies the conditions: 𝜌𝜌𝑠𝑠 ≥ 0, ∑ 𝜌𝜌𝑠𝑠∞
𝑠𝑠=1 = ∞, ∑ 𝜌𝜌𝑠𝑠2∞

𝑠𝑠=1 < ∞, say 
𝑝𝑝𝑠𝑠 = 1/𝑠𝑠.  

Then 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑠𝑠 ∈ 𝑌𝑌∗ for 𝑠𝑠 → ∞.  

The following sequence of 𝜌𝜌𝑠𝑠 satisfies the conditions of the theorem:𝜌𝜌𝑠𝑠 = 𝛾𝛾𝑠𝑠/𝑠𝑠, 
0 ≤ 𝛾𝛾 ≤ 𝛾𝛾𝑠𝑠 ≤ 𝛾𝛾 < ∞ for some positive constants 𝛾𝛾 and 𝛾𝛾. 

Joint constraints (5) may have the following form: 

∑ 𝑀𝑀(𝑘𝑘)𝑥𝑥(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 + ∑ 𝐷𝐷(𝑘𝑘)𝑦𝑦(𝑘𝑘)𝐾𝐾

𝑘𝑘=1 ≤ 𝛿𝛿    [1.11]  

with some matrices  𝑀𝑀(𝑘𝑘). Yet, problem (1)-(4) s.t. (11) can be reformulated similar 
to problem [1.1-1.5]. Let us define vectors 𝑦𝑦(𝐾𝐾+𝑘𝑘) such that  𝑀𝑀(𝑘𝑘)𝑥𝑥(𝑘𝑘) = 𝑦𝑦(𝐾𝐾+𝑘𝑘), 𝑘𝑘 =
1, . . . ,𝐾𝐾. Now it is possible to rewrite (11) as ∑ 𝐷𝐷(𝑘𝑘)𝑦𝑦(𝑘𝑘)𝐾𝐾

𝑘𝑘=1 ≤ 𝛿𝛿 − ∑ 𝑦𝑦(𝑘𝑘)2𝐾𝐾
𝑘𝑘=𝑘𝑘+1  and 

after some renotation derive the problem in the form [1.1-1.5]. 

1.2.5. Distributed computation 

The linkage algorithm can be summarized as follows. Imagine, there is a network 
of distributed computers connecting submodels, say sectors, with a computer of a 
social planner. At the initial step, sectors 𝑘𝑘, 𝑘𝑘 = 1, . . . ,𝐾𝐾, use arbitrary chosen vectors 
𝑦𝑦0(𝑘𝑘) of resource quotas. They submit the information on 𝑦𝑦0(𝑘𝑘) to the central 
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computer. The computer updates quotas 𝑦𝑦0 = (𝑦𝑦0(1), . . . ,𝑦𝑦0(𝐾𝐾)) by projecting them 
onto the set 𝑌𝑌 defining a first feasible approximation  𝑦𝑦1 = �𝑦𝑦1(1), . . . ,𝑦𝑦1(𝐾𝐾)�. All 
sectors independently solve models [1.1-1.4] with resource quotas 𝑦𝑦1, calculate 
shadow prices 𝑣𝑣1(𝑘𝑘) of common resources (constraint (4)) and submit to the central 
computer. The central computer calculates 𝑦𝑦1 + 𝜌𝜌1𝑣𝑣1 with a step-size 𝜌𝜌1 such that the 
product 𝜌𝜌1𝑣𝑣1 corresponds to the scale of 𝑦𝑦1. Vector 𝑦𝑦1 + 𝜌𝜌1𝑣𝑣1 is projected onto 𝑌𝑌 to 
derive quotas 𝑦𝑦2. At the iteration 𝑠𝑠 + 1, the algorithm derives the next approximation 
of quotas 𝑦𝑦𝑠𝑠+1 = �𝑦𝑦𝑠𝑠+1(1), … ,𝑦𝑦𝑠𝑠+1(𝐾𝐾)� by shifting 𝑦𝑦𝑠𝑠 in the direction of vector 𝑣𝑣𝑠𝑠 =
(𝑣𝑣𝑠𝑠(1), . . . , 𝑣𝑣𝑠𝑠(𝐾𝐾)), according to procedure [1.10].  

At each iteration, all sectors independently calculate stopping criteria 𝜀𝜀𝑘𝑘(𝑠𝑠) =
(𝑏𝑏(𝑘𝑘),𝑢𝑢𝑠𝑠(𝑘𝑘)(𝑦𝑦𝑠𝑠)) + (𝑦𝑦𝑠𝑠(𝑘𝑘), 𝑣𝑣𝑠𝑠(𝑘𝑘)(𝑦𝑦𝑠𝑠)) − 𝑤𝑤𝑘𝑘(𝑐𝑐(𝑘𝑘), 𝑥𝑥𝑠𝑠(𝑘𝑘)(𝑦𝑦𝑠𝑠)) and submit values 𝜀𝜀𝑘𝑘(𝑠𝑠) 
to the central computer. If ∑ 𝜀𝜀𝑘𝑘𝑘𝑘 (𝑠𝑠) ≤ 𝜀𝜀 ≥ 0, where 𝜀𝜀 is an admissible accuracy, then 
the algorithm stops. Otherwise, it continues further. The convergence of the parallel 
independent optimization (linkage) of sectoral/regional models according to this 
algorithm without revealing sectoral/reginal information is possible due to the 
additional requirement ∑ 𝜌𝜌𝑠𝑠2𝑠𝑠 < ∞. This allows to prove the convergence of solutions 
(linkages) 𝑦𝑦𝑠𝑠 rather than the convergence of objective function 𝐹𝐹(𝑦𝑦𝑠𝑠). The 
convergence of the proposed linkage algorithm under ASI is based on the theory of 
(continuously) non-differentiable optimization (more details see in Ermoliev 1980).  

1.3. Linking energy and agricultural models for food-energy-water nexus 

The proposed iterative algorithm has been applied for linking energy and 
agricultural sectoral models under joint constraints on water and land use. Both 
models can be used for optimal energy and agricultural production and allocation 
planning. In the following, we only briefly outline the models. Further details can be 
found for example in (Havlik et al. 2011; Ermolieva and Havlik et al. 2016; Gao et 
al. 2018; Ermolieva and Havlik et al. 2021; Ermoliev et al. 2022; Golodnikov et al. 
2024; Pepelyaev et al. 2023, 2024; Zagorodny et al. 2024). The models are spatially 
explicit, which allows to link the models across locations and thus control local drivers 
having significant implications on the overall results of models’ integration.  

The energy model (Ermoliev et al. 2023) incorporates main stages of energy flows 
from resources to demands: energy extraction from energy resources, primary energy 
conversion into secondary energy forms, transport and distribution of energy to the 
point of end, conversion into products for end users to fulfill specific demands. The 
structure of the model is such that it can incorporate various energy resources as, e.g., 
coal, gas, crude oil, renewables. Primary energy sources include coal, crude oil, gas, 
solar, wind, etc.; secondary energy sources are fuel oil, methanol, hydrogen, 



12 Integrated solutions and distributed models’ linkage procedures for FEWE nexus security 

electricity, ammonia, etc.; final energy products are coal, fuel oil, gas, hydrogen, 
ammonia, methanol, electricity, etc. Demands for useful energy products come from 
main sectors of the economy: industrial, residential, transport, agricultural, water, 
energy. Each technology is characterized by unite costs, efficiency, lifetime, 
emissions, etc. Additional sectoral (and cross-sectoral joint) constraints are imposed 
to capture the requirements and the limitations on the natural resource use and 
availability, and investments. The model can include the existing technologies, as well 
as the new zero-carbon green technologies, at the beginning of implementation or 
even in the research stage, e.g., various renewable and carbon capturing technologies.  

The agricultural model (Havlik et al. 2011; Ermolieva and Havlik et al. 2016, 
2021) can include main crops and livestock production and management systems, 
characterized by systems-specific production costs, water and fertilizers requirements, 
emission factors, and other parameters. The supply of crops and livestock products 
need to cover food, feed, and biofuel demands and fulfill security constraints. The 
food security constraint requires that the energy and nutrients consumption from grain 
and livestock products is not less than the required kilocalories and nutrients needed 
to satisfy dietary requirements in cereals, vegetable and animal products (meat and 
dairy products). Livestock feeds fulfill the livestock dietary requirements in energy 
intake measured in megacalories. Biofuels production from crops (and agricultural 
residues) have to fulfill biofuel mandates. In the model, land uses comprise 
agricultural (crop and pasture) land, grass land, and natural land. Land use changes 
can be regulated by setting regulatory constraints on land expansion and conversion. 
Security constraints introduce competition for limited natural resources (land and 
water) among different land uses. 

Energy and agricultural sectors compete for common land and water resources. 
Assume, that regional planners, decision makers, sectoral authorities pursue a goal to 
minimize costs and maximize profits from energy and agricultural production under 
various joint balance (supply-demand) and resource constraints to fulfill the energy 
and agricultural demands. Namely, the goal is to choose a portfolio of energy 
technologies to be installed and operated to produce, convert, and transfer energy 
products among locations; and a portfolio of agricultural technologies and 
management systems to produce and transfer among locations agricultural 
commodities fulfilling constraints on natural resources, environmental pollution, end-
products demands. The models include relevant risk-related systems performance 
criteria. These performance measures enable better understanding of how systems 
(individually and jointly) can perform in the uncertain environment, in the presence 
of climate change, weather variability, market uncertainties, etc. Better understanding 
of how interdependent energy-water-agricultural systems can operate and how 
dangerous impacts of inappropriate decisions can be motivates regional and sectoral 
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planners, experts, involved stakeholders to make cross-sectoral coherent and risk-
adjusted robust decisions. 

1.3.1. Energy, water, and agricultural security nexus, case study in China 

In the case study in Shanxi province, China (Gao et al. 2018), the energy model 
was customized to include only coal-based industries and processes, i.e., mining, 
washing, chemical production, and power generation. The coal-based technologies 
consume vast amount of water, for example, for coal mining and washing, coal power 
plants cooling and steam production.  

In the context of coal-based energy production, the integrated energy-agricultural-
water model is formulated as follows. The problem is to decide how much coal 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
of type 𝑖𝑖, 𝑖𝑖 = 1, … , 𝐼𝐼, to extracted in location 𝑗𝑗, 𝑗𝑗 = 1, … , 𝐽𝐽, transport to location 𝑚𝑚, 
𝑚𝑚 = 1, … ,𝑀𝑀, and converted by technology 𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇, to cover coal-based 
products (electricity, heating, cooling, pharmaceutical industry, etc.) demands.  

Agricultural model decisions 𝑧𝑧𝑘𝑘𝑘𝑘𝑘𝑘 concern agricultural commodities production, 
𝑘𝑘 = 1, … ,𝐾𝐾, in location j and transported to location 𝑚𝑚. The overall goal is to 
minimize the total costs of energy and agricultural production, transportation, and 
conversion.  

Individual sectoral goal functions are formulated as follows  
 

∑ �𝑐𝑐𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 → 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑡𝑡     [1.12] 
 

and 
 

∑ �𝑐𝑐𝑘𝑘𝑘𝑘𝐴𝐴𝐴𝐴 + 𝑐𝑐𝑘𝑘𝑘𝑘𝐴𝐴𝐴𝐴�𝑧𝑧𝑘𝑘𝑘𝑘𝑘𝑘 → 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑡𝑡      [1.13] 
 

for energy [1.12] and agricultural [1.13] sectors. Production costs 𝑐𝑐𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 define all 
components of coal production costs, including extraction and washing, of a unit 
(tonne) coal of type 𝑖𝑖 in location 𝑗𝑗, transportation costs 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶  represent all costs 
associated with transporting a unit coal 𝑖𝑖 from location 𝑗𝑗 to location 𝑚𝑚, 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶   define 
conversion costs of a unit coal 𝑖𝑖 by technology 𝑡𝑡 in location 𝑗𝑗, 𝑐𝑐𝑘𝑘𝑘𝑘𝐴𝐴𝐴𝐴  denote agricultural 
production cost per unit (ton) agricultural commodity 𝑘𝑘 in location 𝑗𝑗, and 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝐴𝐴𝐴𝐴  stand 
for transportation costs of a unit agricultural commodity 𝑘𝑘 from 𝑗𝑗 to 𝑚𝑚,  𝑖𝑖 = 1, … , 𝐼𝐼, 
𝑗𝑗 = 1, … , 𝐽𝐽,𝑚𝑚 = 1, … ,𝑀𝑀, 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑘𝑘 = 1, … ,𝐾𝐾.  

The energy security constraints ensure that the demands for coal-based end 
products (electricity, heat, coke, gas, and oil) are fulfilled:  
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∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝐷𝐷𝑚𝑚𝑑𝑑 ,      [1.14] 

 

where 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑  denotes the conversion coefficient of coal  𝑖𝑖 in location 𝑗𝑗 by technology 𝑡𝑡, 
𝐷𝐷𝑗𝑗𝑑𝑑  stands for the end product 𝑑𝑑 demand.  

Agricultural production fulfils food security constraints, which can be calculated 
according to nutrients and kilocalories norms for population by age groups:  

 
∑ 𝑧𝑧𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 ≥ 𝐷𝐷𝑘𝑘𝑘𝑘𝐴𝐴 ,       [1.15] 

 

where 𝐷𝐷𝑘𝑘𝑘𝑘𝐴𝐴  is the demand for agricultural commodity 𝑘𝑘 in location m to meet food 
security requirements.  

Sectoral land use constraints 
 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 (1 − 𝑟𝑟𝑖𝑖𝑖𝑖）𝛥𝛥𝑙𝑙𝑗𝑗𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑔𝑔∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 ≤ 𝐿𝐿𝑗𝑗𝐶𝐶    [1.16] 
 

and 
 

∑ 𝑙𝑙𝑘𝑘𝑘𝑘𝑧𝑧𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑚𝑚 ≤ 𝐿𝐿𝑗𝑗𝐴𝐴      [1.17] 
 

incorporate land demand by coal [1.16] and crop [1.17] production activities, where 
𝐿𝐿𝑗𝑗𝐶𝐶   and 𝐿𝐿𝑗𝑗𝐴𝐴 are land use constraints for coal and agricultural sectors in location 𝑗𝑗, 
respectively. Parameter 𝑆𝑆𝑖𝑖𝑖𝑖  in [1.16] defines the area that may become unusable as a 
result of coal mining, 𝛥𝛥𝑙𝑙𝑗𝑗 is a portion of agricultural land overlapping with a coal field 
in location 𝑗𝑗, parameter 𝑟𝑟𝑖𝑖𝑖𝑖  for coal 𝑖𝑖 in location 𝑗𝑗 defines plausible land reclamation 
rate, and 𝑔𝑔𝑖𝑖𝑖𝑖 is a parameter allowing to calculate the land under coal reject material. 
In equation [1.17], parameter 𝑙𝑙𝑘𝑘𝑘𝑘 defines the area required for a unit crop 𝑘𝑘 production 
in location 𝑗𝑗. Equation [1.18] introduces the restriction on the total land use in location 
𝑗𝑗 by energy and agricultural sectors 
 
∑ 𝑙𝑙𝑘𝑘𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑚𝑚 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 (1 − 𝑟𝑟𝑖𝑖𝑖𝑖）𝛥𝛥𝑙𝑙𝑗𝑗𝑙𝑙𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 ≤ 𝐿𝐿𝑗𝑗. [1.18] 

 
Total available water 𝑊𝑊𝑗𝑗 for both sectors and sectoral water quotas (𝑊𝑊𝑗𝑗

𝐸𝐸 and  𝑊𝑊𝑗𝑗
𝐴𝐴) 

significantly affect the choice of coal and crop (energy) production technologies 
through water utilization constraints: 

 
∑ [𝑤𝑤𝑖𝑖𝑖𝑖𝑃𝑃+𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑 ]𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 ≤ 𝑊𝑊𝑗𝑗

𝐸𝐸      [1.19] 
 

and 
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∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑐𝑐 𝑧𝑧𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑚𝑚 ≤ 𝑊𝑊𝑗𝑗

𝐴𝐴      [1.20] 
 

where 𝑊𝑊𝑗𝑗
𝐸𝐸 and 𝑊𝑊𝑗𝑗

𝐴𝐴 are quotas on water use by coal and agricultural activities in 
location  𝑗𝑗, 𝑤𝑤𝑖𝑖𝑖𝑖𝑃𝑃  defines water requirement for a unit coal 𝑖𝑖 production in location 𝑗𝑗, 
𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  is water required for a unit coal 𝑖𝑖 conversion in location 𝑗𝑗, 𝑤𝑤𝑘𝑘𝑘𝑘𝑐𝑐  is water required 

for a unit crop k production in location j. Water use 𝑊𝑊𝑗𝑗
𝐸𝐸 for coal and 𝑊𝑊𝑗𝑗

𝐴𝐴 for 
agricultural production are constrained by total water 𝑊𝑊𝑗𝑗 available in  𝑗𝑗:  

 
𝑊𝑊𝑗𝑗

𝐸𝐸 + 𝑊𝑊𝑗𝑗
𝐴𝐴  ≤ 𝑊𝑊𝑗𝑗.      [1.21]   

 

In the condition of ASI, the planner does not have full information about separate 
LP energy ([1.12], [1.14], [1.16], [1.19]) and agricultural ([1.13], [1.15], [1.17], 
[1.20]) submodels. To link the models under joint constraints [1.18] and [1.21] we 
implement procedure [1.10]. At the initial step of the procedure s=0, individual 
sectoral models are solved using initial sectoral land and water quotas 𝐿𝐿𝑗𝑗𝐶𝐶(0), 𝐿𝐿𝑗𝑗𝐴𝐴(0) 
and 𝑊𝑊𝑗𝑗

𝐶𝐶(0), 𝑊𝑊𝑗𝑗
𝐴𝐴(0). Resource quotas 𝑦𝑦𝑠𝑠 = (𝐿𝐿𝑗𝑗𝐶𝐶(s), 𝐿𝐿𝑗𝑗𝐴𝐴(s), 𝑊𝑊𝑗𝑗

𝐶𝐶(s), 𝑊𝑊𝑗𝑗
𝐴𝐴(s)) at step 𝑠𝑠 

are adjusted according to [1.10] using shadow prices (dual variables) of energy and 
agricultural sectors land and water resource constraints  

 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 (1 − 𝑟𝑟𝑖𝑖𝑖𝑖)𝛥𝛥𝑙𝑙𝑗𝑗𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑔𝑔∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 ≤ 𝐿𝐿𝑗𝑗𝐶𝐶(𝑠𝑠 − 1)  [1.22] 

 
∑ 𝑙𝑙𝑘𝑘𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑚𝑚 ≤ 𝐿𝐿𝑗𝑗𝐴𝐴(𝑠𝑠 − 1)     [1.23] 

 
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑃𝑃𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 + ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚,𝑡𝑡 ≤ 𝑊𝑊𝑗𝑗

𝐶𝐶(𝑠𝑠 − 1)   [1.24] 
 
∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑐𝑐 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑚𝑚 ≤ 𝑊𝑊𝑗𝑗

𝐴𝐴(𝑠𝑠 − 1)     [1.25] 
 
and constraints [1.18], [1.21] 

1.3.2. Selected results 

Results were calculated and compared for 3 scenarios: 1. separately optimized 
energy and agricultural models; 2. hard-linked integrated model (one-code model); 3. 
separate models integrated via the linkage procedure [1.10]. In the first scenarios, the 
net profits can be higher than in other two scenarios because the sectors are not 
restricted by joint constraints. This result is misleading the resource allocation 
analysis. In scenario 3, the solution of the iterative linkage process converges rather 
quickly (only in 10 iteration steps) to the solutions of the hard-integrated model, 
scenario 2.  
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Figure illustrates the nonmonotonic convergence of the linkage algorithm for three 
different scenarios of initial 𝑦𝑦0 quotas allocated to energy and agricultural sectors. 
The choice of the step-size 𝜌𝜌𝑠𝑠 in [1.10] affects the convergence rate, the value of the 
product 𝜌𝜌𝑠𝑠𝜈𝜈𝑠𝑠 must correspond to the value of solutions 𝑦𝑦𝑠𝑠.  

 

 

Figure 1.1. Convergence of the iterative linking procedure in terms of the goal 
function values 𝐹𝐹(𝑦𝑦𝑠𝑠). Vertical axis displays net profits, the iteration step is marked 
on the horizontal axis. The three curves (Scen1, Scen2, Scen3) correspond to three 

different initial land and water quota scenarios at s = 0 

1.4. Conclusions 

In the paper, we discuss the problem of linking distributed individual sectoral 
and/or regional optimization models into an inter-sectoral integrated model. The 
approach for linking models is based on an iterative stochastic quasigradient (SQG) 
procedure of, in general, nonsmooth nondifferentiable optimization converging to a 
socially optimal solution maximizing an implicit nested nondifferentiable social 
welfare function. The convergence of the algorithm relies on the duality theory and 
the nondifferentiable optimization. The iterative solution procedure can be used for 
robust estimation and machine learning problems, in particular, it can be viewed as an 
endogenous reinforced learning problem.    

The iterative SQG-based methods and their stochastic versions are intended for 
robust optimization of deterministic and stochastic systems with large number of 
decision variables and scenarios of uncertainties due to the ability of these methods to 
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link scenario-simulation and optimization procedures. The proposed linkage method 
will be further developed for linking stochastic models enabling integrated 
management of global systemic risks.  

The linkage of models is, in a sense, opposite to decomposition methods. While 
in the decomposition (e.g., Dantzig and Wolfe 1960; Kim and Nazareth 1991) we split 
an existing integrated optimization model into a number of smaller sub-models, in the 
linkage we obtain an integrated model of the system by linking existing explicitly 
unknown sub-models. The proposed linkage procedure provides a flexibility enabling 
the simultaneous use of linkage and decomposition procedures, in other words, 
endogenously disaggregating models to make their further integration (linkage) more 
efficient.  
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