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Abstract 

Catastrophic dependent systemic losses have analytically intractable 
multidimensional probability distributions dependent on exogenous shocks, 
interactions among goals and constraints of the involved actors and systems, activities 
of economic sectors, structural and environmental standards, critical infrastructure in 
place, feasible mitigation and adaptation structural and financial measures, investment 
potentials, etc. For the analysis of the systemic risks we argue for the design of proper 
Decision Support Systems (DSSs) and integrated catastrophe analysis and 
management modeling approaches similar to ISCRiMM model of IIASA. We discuss 
several important aspects and components of the ISCRiMM. This includes 
considerations of systemic risks, safety and security constraints, the necessity of 
robust mitigation and adaptation (structural and financial) measures, the need for 
stochastic catastrophe models (scenario generators), and proper stochastic 
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optimization solution procedures to enable the decision-support regarding coherent 
systemic ex-ante and ex-post preventing and coping actions for dealing with 
catastrophes. The diversion of capital from ex-post measures to ex-ante investments 
into structural loss reduction measures can essentially reduce the dependencies among 
losses and, hence, decrease overall vulnerability, stabilize insurance mechanisms, and 
reduce the demand for ex-post risk sharing and restoration efforts. One of the 
ISCRiMM submodels is Vulnerability assessment model. In the paper we discuss 
different methodologies and models for vulnerabilities analysis and how they can be 
effectively integrated within ISCRiMM. In particular, vulnerability models can be 
based on AI, statistical and machine learning principles, which provide an effective 
means of incorporating them into ISCRiMM and designing optimal robust 
interdependent ex-ate and ex-post mitigation and adaptation options decreasing 
overall vulnerabilities relying on risk-based scenario evaluations.  

 

Key words: Systemic risks, Integrated Catastrophe risk modeling and management 
model, ISCRiMM, two-stage STO, safety constraints, interdependent ex-ante 
precautionary and ex-post adaptive measures, vulnerability analysis, statistical and 
machine learning 

 

3.1. Introduction 

The increasing vulnerability of the modern society is an alarming tendency. Losses 
from natural and human-made catastrophes are rapidly increasing. Catastrophes 
destroy communication systems, electricity supply and irrigation, affect agricultural 
and energy production and provision systems.  

One of the main reasons for the increasing losses due to natural and man-made 
catastrophes is the ignorance of risks and the lack of risk-based planning leading to 
the concentration of industries, infrastructure, wealth, people in risk prone areas as 
well as the creation of new risk prone areas. The trend becomes alarming especially 
because of the growing interdependencies among economic sectors and regions, 
introduction of new policies and technologies, growing demands, increasing 
frequency and severity of floods, hurricanes, storms, droughts, landslides, prolonged 
heatwaves.  
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Continued urbanization and development in hazardous areas have been putting 
more people and wealth in harm’s way. Urbanization and population concentration 
magnify impacts of hurricanes, windstorms, floods, heatwaves, epidemics, and other 
natural catastrophes, exacerbated by the systemic risks within socio-economic and 
environmental systems.  

The alarming tendency of increasing losses due to the combination of natural and 
human-induced risks calls for risk-based approaches to economic developments and 
catastrophe management, for the design of robust interdependent ex-ante mitigation 
and ex-post adaptation options, to deal with the risks of all kinds.  

Robust measures aim to decrease societal vulnerabilities. For the analysis of the 
systemic risks, we argue for the design of Decision Support Systems (DSSs) and 
integrated catastrophe analysis and management modeling approaches similar to 
ISCRiMM model of IIASA (Amendola and Ermolieva et al. 2013; Ermoliev et al., 
1997; Ermolieva et al. 1997; Ermoliev et al. 2000; Ermoliev et al. 2008; Ermoliev et 
al. 2018; Ermoliev et al. 2003; Ermolieva et al. 2016; Ermolieva et al. 2023). In 
section 3.2.1 we discuss several important aspects and components of the ISCRiMM. 
This includes considerations of systemic risks, safety and security constraints, robust 
interdependent ex-ante and ex-post (strategic and operational) mitigation and 
adaptation, structural and financial measures, the need for stochastic catastrophe 
models (scenario generators), and proper stochastic optimization solution procedures 
to enable the decision-support for dealing with catastrophes. Section 3.2.2 summarizes 
main features of systemic risks as a new type of risks which depend on the whole 
structure of systemic interdependencies (see, e.g., Ermoliev and von Winterfeldt 
2012; Ermolieva et al. 2016a,b; Ermolieva et al. 2021; Ermolieva et al. 2023). These 
risks are analytically intractable. They can be triggered by a combination of 
exogenous and endogenous shocks, i.e., by natural hazards in combination with 
decisions of intelligent agents and, therefore, they cannot be described by a single 
probability distribution. In section 3.2.3 we outline Impact Chains (ICs) approach as 
one of the existing ways to describing systemic interdependencies. However, ICs can 
mislead systemic risks management as they may not include the critical elements 
because of uncertainties and ambiguities.  

Management of systemic risks requires approaches incorporating individual and 
joint systemic safety and security constraints as it is discussed in section 3.2.4. The 
model can be revised and tuned to address specifics of case studies under 
investigation. For example, catastrophe funds (risk reserves) can be used for sufficient 
capital accumulation and further investments into structural retrofitting ex-ante and 
reconstruction ex-post, as well as for loss compensation after disaster event.  



4   Integrated ISCRiMM model, vulnerability and systemic risks management 

Systemic risks depend on socio-economic and structural vulnerabilities, reliability 
and resilience of infrastructures. Section 3.3 makes an overview of different 
vulnerabilities, as well as the existing approaches to vulnerabilities modeling. As 
alternative or supplementing the traditional modeling methods, section 3.4 outlines 
statistical and machine learning approaches, the methodology and selected results. 
The section presents also Risk&Vulnerability Scenario generator software being 
developed at International Institute for Applied Systems Analysis Cooperation and 
Transformative Governance group (CAT at IIASA), in particular, for PARATUS 
project (Promoting disaster preparedness and resilience by co-developing stakeholder 
support tools for managing the systemic risk of compounding disasters, 
https://www.paratus-project.eu/). The software aims to visualizing socio-economic 
and structural vulnerability scenarios simulated under alternative assumptions 
(projections) of vulnerability drivers, e.g., population density, level of education, 
dependency ratios, population by age groups, buildings’ codes/taxonomy, structural 
safety requirements, etc. The software enables to test various mitigation preparedness 
and post-event reconstruction measures, which are briefly summarized in sections 3.5. 
Conclusions are presented in section 3.6. 

3.2. Management of endogenous systemic risks: safety indicators and 
robust measures 

3.2.1. Structure of Integrated Catastrophe risk management model 

In this section we briefly outline the structure of the Integrated Spatially-explicit 
Catastrophe Risk Management Model (ISCRiMM). More details can be found in 
(Amendola and Ermolieva et al. 2013; Ermoliev et al., 1997; Ermolieva et al. 1997; 
Ermoliev et al. 2000; Ermoliev et al. 2008; Ermoliev et al. 2018; Ermoliev et al. 2003; 
Ermolieva et al. 2016; Ermolieva et al. 2023). The model consists, in principle, of 
three major submodels or modules: a catastrophe module, an engineering vulnerability 
module, and an economic multi-agent module.  

A catastrophe module simulates (or takes into account the available) stochastic 
scenarios of natural hazards based on the knowledge of the event and scientific 
equations and variables describing it. The catastrophe models used in IIASA’s case 
studies are based on Monte Carlo dynamic simulations of geographically explicit 
catastrophe patterns in selected regions.  

The vulnerability module is used to estimate damages that may result from 
catastrophes. These can be direct and indirect damages depending on the goals of a 
case study. Shaking intensities, duration of standing water, water discharge speed or 
wind speeds, and other characteristics of the natural hazard are the variables, which 
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vulnerability modules can take from the catastrophe modules to calculate potential 
damages. The vulnerability module accounts for engineering principles. To calculate 
damages to buildings, e.g., it can use structural vulnerability (or fragility) curves based 
on the buildings taxonomy. It can also incorporate reduced forms of “damage” 
(“vulnerabilities”) scenario generators using statistical and machine learning 
principles as it is discussed in section 3.4. The vulnerabilities can be reduced through 
improvements of buildings codes and infrastructure safety requirements, construction 
of shelters, population relocation, loss compensation and reconstruction programs, 
etc. The level and location of implemented measures depend on the overall goals of 
the ISCRiMM model incorporating safety constraints for systemic risks management 
(see discussion in section 3.2.4). 

The economic multi-agent model is a stochastic dynamic welfare growth model. 
This model maps spatial economic losses/damages into gains and losses of the 
involved agents, i.e., those who are affected by the disaster and those who are 
responsible for the implementation of preparedness, emergency response, and 
recovery measures: central and local governments, infrastructure administration, 
water and energy systems authorities, private or/and public mandatory catastrophe 
insurance (catastrophe funds), investors, “individuals” (cells or regions), producers 
(farmers), etc., depending on implemented loss mitigating and sharing policy options. 

GIS-based modeling of catastrophes and vulnerability coupled with multi-agent 
models, though still limited in use, is becoming increasingly important: to 
governments and legislative authorities for better comprehension, negotiation and 
management of risks; to insurance companies for making decisions on the allocation 
and values of contracts, premiums, reinsurance arrangements, and the effects of 
mitigation measures; to households, industries, farmers for risk-based allocation of 
properties and values.  

However, a scenario-by-scenario approach leads to different scenario-dependent 
strategies. The number of alternative decisions can be very large. The exploding 
dimensionality of the “if-then” analysis can be bypassed. The search for “robust” 
optimal combination of interdependent ex-ante preparedness and ex-post adaptative 
decisions can be done by incorporating the two-stage stochastic optimization and the 
Spatial Adaptive Monte Carlo optimization procedure (based on stochastic Quasi-
gradient procedure, SQG (Ermoliev and Wets 1988; Ermoliev 2009a,b,c)) into 
catastrophe modeling. The adaptive Monte Carlo search procedure enables the design 
of desirable robust solutions without evaluating all possible alternatives. The capacity 
of a region to deal with disaster losses ex-post is built ex-post. 

Schematically, the model with an embedded optimization procedure is presented 
in Figure 1. Starting with some initial setting, policy variables are input into the 
“Catastrophe Model”. The “Catastrophe Model” generates (or picks up) stochastic 
catastrophe scenarios and induced direct and indirect damages. The efficiency of the 
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policies is evaluated with respect to safety and security performance indicators (block 
“Indicators”) of the agents, e.g., insurers, insured, governments, etc. If these do not 
fulfill the requirements, i.e., the goals and constraints (e.g., cause imbalances, or 
failures or business interruption), they are further adjusted in the block “Adaptive 
Feedbacks”. In this manner it is possible to take into account complex 
interdependencies between damages in different locations, available decisions, 
resulting damage reductions, reconstruction demand, compensations, etc. 

 

 
 

Figure 1. Schematic representation of the models: Adaptive Monte Carlo.  

A crucial aspect is the use of appropriate risk indicators and safety constraints, e.g., 
to avoid “bankruptcies” or “ruins” of agents.  

3.2.2. Systemic risks 

Systemic risks and security analysis include risks (threats), which are generated in 
interdependent food, energy, water, environmental, social (FEWES) and other 
systems due to failures in the systems, shortfalls of supply-demand relationships 
among the systems, exceedances of critical thresholds (e.g., lack of water for 
hydropower generation or electricity power station cooling), etc. Examples of 
systemic risks are floods which are often triggered by rains, hurricanes, and 
earthquakes in combination with inappropriate land use planning, maintenance of 
flood protection systems and behavior of various agents. The construction of levees, 
dikes, and dams may create an illusion of safety. However, in the absence of proper 
maintenance and further developments in the neighboring areas, these constructions 
can create potential catastrophic events of high consequences. Other examples include 
systemic risks in social, financial, economic, energy, food and water, and systems 
security management, e.g., due to inadequate infrastructures (buildings codes), not 
satisfying the safety requirements. 

Systemic risks in interdependent FEWES systems can be defined as the risks of a 
subsystem (a part of the system) threatening the sustainable performance of the whole 
system and the achievement of FEWES security goals. Thus, a shock in a peripheral 
subsystem induced (intentionally or unintentionally) by an endogenous or exogenous 
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event, can trigger systemic risks propagation with impacts, i.e. instability or even a 
collapse, at various levels. The risks may have quite different policy-driven dependent 
spatial and temporal patterns. While standard risks analysis and assessment can rely 
on historical data, systemic cascading risks in FEWE systems are implicitly defined 
by the whole structure and the interactions among the systems, in particular costs, 
production and processing technologies, prices, trade flows, supply-demand balances, 
risk exposure, FEWE security requirements, risk measures, decisions of agents 

The notion of systemic risks was introduced in relation to financial systems. The 
definition has been adopted for other natural and anthropogenic systems, e.g. power 
grids and critical infrastructures, biodiversity, financial and insurance systems [8-10], 
and other natural and anthropogenic systems.  

Prediction of systemic risks in integrated natural and anthropogenic policy-driven 
FEWE systems is a rather tedious task. The main issue in this case is robust 
management of the risks, which can be achieved by equipping the systems with 
precautionary (risk prevention and mitigation) and adaptive (emergency and post 
disaster recovery) strategies enabling the systems sufficient flexibility and robustness 
to maintain sustainable performance and fulfill joint FEWES security goals 
independently of what systemic shock occurs (Ermoliev and Winterfeldt, 2012; 
Ermolieva et al. 2016b, 2021).  

In front of uncertainties, the strategies (decisions) can be of the two main types: 
the ex-ante strategic precautionary anticipative actions (engineering design, building 
codes, shelters, resource allocation, technological investments, water and grain 
reserves) and the ex-post adaptive adjustments (inventory control, subsidies, prices, 
costs, reconstruction and BBB) that are made after the event occurance.  

A portfolio of robust interdependent ex-ante and ex-post strategies can be designed 
by using a two-stage stochastic optimization (STO) approach incorporating both types 
of decisions (see e.g., (Ermoliev 2009a,c; Ermoliev et al. 2000; Ermolieva et al. 2003, 
2016, 2023 and references therein). The two-stage STO has been also applied in 
studies for dealing with systemic interdependent risks, e.g., for agricultural risks 
management (Borodina et al. 2012, 2020), for energy security management (Cano et 
al. 2014; Ermoliev, Komendantova, Ermolieva 2023), for robust operation of 
multipurpose reservoirs (Ortiz-Partida et al. 2019), for climate change risk analysis 
(Ermolieva and Obersteiner 2005; O’’Neil, Ermoliev, Ermolieva 2006).  

The management of systemic risks and security strongly depends on the individual 
and systemic safety and reliability regulations (standards, requirements) imposed on 
the systems’ relationships and policies (measures) in place. Depending on the risks 
(earthquake, heavy precipitation, windstorm, heat wave), structural measures have to 
withstand the required earthquake shaking; shelters have to protect population; dams, 
dikes, levees have to confirm safety requirements; they have to be well operated, 
maintained, and regularly monitored; water retention areas and channels have to be 
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designed and maintained to protect against overtopping and/or flooding; policy of a 
better land-use planning to preserve forests protecting areas against hurricanes, strong 
winds and precipitation runoff; discourage building in areas prone to catastrophes, etc.  

Structural measures can considerably reshape the risks, which calls for their 
thorough evaluation. They can induce additional benefits. For example, construction 
of a dike motivates additional regional developments. On the other hand, without 
proper evaluation and safety requirements, the measures can transform the risks to 
more severe and compound.  
 

 
Figure 2: Loss distribution dependents on policies regarding dike or channel flood 
protection system: what risk is better? A dike can protect larger region and stimulate 
economic growth nearby, however if it breaks, the losses can be much heavier than 
from a natural disaster. Channel system can inspire less growth and would result in 
less average benefits, however it is safer in the sense that it cannot cause extreme 
losses as in case of dike break. Investments into new and reinforcement of old 
structural measures can be effectively supplemented by insurance, which would 
provide an ex-ante financial solution to cover or transfer the losses further to financial 
markets. 

3.2.3. Management of dependent systemic risks 

Natural disaster can cause direct and indirect structural damages. Houses can be 
knocked off their foundations, buildings can collapse, thereby causing roads blockage. 
Roads and bridges can be damaged or collapse either due to an earthquake or due to 
post-events like landslides or floods. Landslides can block roads and knock down 
energy utility poles or, more generally, energy infrastructure, taking out power in large 
areas. Power, gas, internet lines can rupture preventing sustainable businesses 
functioning. The interdependence, risks associated with each element and the 
systemic damage can be to a certain extent captured by ICs, for example, in Figure 2.  

ICs are being developed to explore cause and effect relationships to provide 
insights into the trigger events, systemic interdependencies and risks. They can show 
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how one event leads to another. This is essential for understanding how the events are 
linked together. However, uncertainties and ambiguity among the interdependent 
systems related, e.g., to the inclusion of the relevant systems and their dependencies, 
the spatio-temporal resolutions of the case study area, the directions of the causual 
relations (cause vs consequences), the imbalances and threshold risks, all these 
important features of systemic risks cannot be included in IC and, therefore, ICs can 
mislead the analysis and management of the risks. For example, a flood can be 
triggered by expansive deforestation in a region upstream beyond the IC diagram. 
Another example is a flooding upstream due to a bridge blockage preventing river 
flow downstream.   

 
Figure 3. Example of an IC for a region prone to earthquake risks 

Systemic risks can be addressed by safety regulations in combination with robust 
and interdependent precautionary and adaptive measures through building-up the 
resilience with ex-ante measures minimizing occurrences of systemic failures and by 
expanding adaptive capacities to cope with the consequences ex-post.  

3.2.4. Safety constraints for systemic risks management 

This section presents an example of how safety constraints for systemic risks 
management are integrated within the ISCRiMM model. To account for multiple risk 
exposed stakeholders and respective risk management options, the study region is 
subdivided into sub-regions or locations 𝑗𝑗 = 1:𝑚𝑚. Locations (or regions) can be 
characterized by a collection of households, a segment of a gas pipe-line, flood-
protection zone, municipality, etc. For example, in the flood-risk case study in the 
Netherlands (Ermolieva et al. 2016) the locations corresponded to dike-protected 
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areas. We assume that for each location 𝑗𝑗 an estimation 𝑊𝑊𝑗𝑗 of the property value 
(corresponding to elements-at-risk, EAR) or “wealth” of this location exists, which 
includes values of houses, lands, factories, etc.  

Assume that the risks are mitigated and covered by a joint loss sharing and 
(re)construction program, and there are 𝑛𝑛 agents, 𝑖𝑖 = 1:𝑛𝑛, (insurers, governments, re-
insurers, funds, individuals, energy and water authorities), contributing to this 
program. They may have obligations (contracts in the case of insurers) with locations 
to cover losses, or,  more generally, to finance retrofitting and post-event recovery 
projects. Each agent 𝑖𝑖 has an initial fund, stock of money, or a risk reserve 𝑅𝑅𝑖𝑖0 that in 
general depends on magnitudes of catastrophic events, loss-reduction measures in 
place, socio-economic and structural vulnerabilities.  

Assume that the planning horizon covers 𝑡𝑡 = 0,1. .. time intervals. The risk reserve 
(reconstruction fund) 𝑅𝑅𝑖𝑖𝑡𝑡 at each 𝑡𝑡 is calculated according to the following formula: 

𝑅𝑅𝑖𝑖𝑡𝑡+1 = 𝑅𝑅𝑖𝑖𝑡𝑡 + ∑ (𝜋𝜋𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 (𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡 ))𝑚𝑚
𝑗𝑗=1 − ∑ 𝐿𝐿𝑗𝑗𝑡𝑡(𝜔𝜔𝑡𝑡)𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚

𝑗𝑗=1 ,  (1) 

where 𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡  is the loss coverage or reconstruction financing of a company (insurer, fund) 
𝑖𝑖 in location 𝑗𝑗 at time 𝑡𝑡, ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡𝑛𝑛

𝑖𝑖=1 ≤ 1, 𝜋𝜋𝑖𝑖𝑖𝑖𝑡𝑡  is the premium (tax) paid into a company 𝑖𝑖 
in location 𝑗𝑗 at time 𝑡𝑡, 𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 (𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡 ) are transaction costs or administrative, running or other 
costs. 𝐿𝐿𝑗𝑗𝑡𝑡(𝜔𝜔𝑡𝑡) is the loss (damage) in location 𝑗𝑗 caused by a catastrophe 𝜔𝜔𝑡𝑡 at time 𝑡𝑡.  

Catastrophic events 𝜔𝜔 = (𝜔𝜔0,𝜔𝜔1, . . . ) may affect a random number of different 
locations. In general, a catastrophic event at time 𝑡𝑡 is modeled by a random subset of 
affected locations 𝑗𝑗 and its magnitude in each 𝑗𝑗. The losses 𝐿𝐿𝑗𝑗𝑡𝑡(𝜔𝜔𝑡𝑡) depend on the event 
𝜔𝜔𝑡𝑡, mitigation measures (e.g., dikes against flooding) and vulnerability of structural 
values in 𝑗𝑗 (e.g., building codes, structural reliability requirements). 

Decision variables 𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡  and 𝜋𝜋𝑖𝑖𝑖𝑖𝑡𝑡  allow to characterize the differences in risks at 
different locations. It is assumed that all agents can cover different fractions of 
catastrophic losses from the same location. In the case of a catastrophe, a location 𝑗𝑗 
faces losses (damages) 𝐿𝐿𝑗𝑗𝑡𝑡(𝜔𝜔𝑡𝑡). Individuals at this location receive compensation 
𝐿𝐿𝑗𝑗𝑡𝑡(𝜔𝜔𝑡𝑡)𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡  from a company 𝑖𝑖 when such a loss occurs, and pay insurance premiums 
(taxes) 𝜋𝜋𝑖𝑖𝑖𝑖𝑡𝑡 . 

If 𝑊𝑊𝑗𝑗
0 is the initial wealth (property value) in location 𝑗𝑗, then the location’s 𝑗𝑗 

wealth at time 𝑡𝑡 + 1 equals 

𝑊𝑊𝑗𝑗
𝑡𝑡+1 = 𝑊𝑊𝑗𝑗

𝑡𝑡 + ∑ (𝐿𝐿𝑗𝑗𝑡𝑡(𝜔𝜔𝑡𝑡)𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡 − 𝜋𝜋𝑖𝑖𝑖𝑖𝑡𝑡 ) − 𝐿𝐿𝑗𝑗𝑡𝑡(𝜔𝜔𝑡𝑡)𝑛𝑛
𝑖𝑖=1 𝑡𝑡 = 0,1, . .. (2) 

Let us note that random variables 𝑅𝑅𝑖𝑖𝑡𝑡 and 𝑊𝑊𝑗𝑗
𝑡𝑡 implicitly depend on decision 

variables 𝑥𝑥𝑘𝑘 = (𝑞𝑞𝑘𝑘,𝜋𝜋𝑘𝑘),  𝑞𝑞𝑘𝑘 = � 𝑞𝑞𝑖𝑖𝑖𝑖𝑘𝑘 ,  𝑖𝑖 = 1:𝑛𝑛, 𝑗𝑗 = 1:𝑚𝑚�, 𝜋𝜋𝑘𝑘 = � 𝜋𝜋𝑖𝑖𝑖𝑖𝑘𝑘 ,  𝑖𝑖 = 1:𝑛𝑛, 𝑗𝑗 =
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1:𝑚𝑚�, and random event 𝜔𝜔𝑘𝑘, where 𝑘𝑘 = 0,1, . . . , 𝑡𝑡 − 1. For the sake of simplicity we 
indicate in the following these path-dependencies of 𝑅𝑅𝑖𝑖𝑡𝑡 and 𝑊𝑊𝑗𝑗

𝑡𝑡 as 𝑅𝑅𝑖𝑖𝑡𝑡(𝑥𝑥,𝜔𝜔) and 
𝑊𝑊𝑗𝑗

𝑡𝑡(𝑥𝑥,𝜔𝜔). 

The robustness of the loss sharing and reconstruction program depends on whether 
the accumulated risk reserve 𝑅𝑅𝑖𝑖𝑡𝑡(𝑥𝑥,𝜔𝜔) at a random time 𝑡𝑡 = 𝜏𝜏(𝜔𝜔) of a first 
catastrophic event avoids, in a probabilistic sense, the individual insolvency defined 
by events 𝐸𝐸1𝑖𝑖 = �𝜔𝜔:𝑅𝑅𝑖𝑖

𝜏𝜏(𝜔𝜔)(𝑥𝑥,𝜔𝜔) < 0�,  𝑖𝑖 = 1:𝑛𝑛,  

and the joint insolvency defined by the combination of events 

𝐸𝐸1 = 𝐸𝐸11 ∪ 𝐸𝐸22 ∪. . .∪ 𝐸𝐸1𝑛𝑛 .  (3) 

Individuals (locations, firms) are concerned with their wealth, which depends on 
whether the amount of taxes or premiums that they pay into the insurers or cat risk 
funds do not exceed the compensation of losses at time 𝜏𝜏(𝜔𝜔), i.e., with the joint event 
E: 

𝐸𝐸2 = 𝐸𝐸21 ∪ 𝐸𝐸22 ∪. . .∪ 𝐸𝐸2𝑚𝑚  (4) 

where  

𝐸𝐸2𝑗𝑗 = �𝜔𝜔:𝑊𝑊𝑗𝑗
𝜏𝜏(𝜔𝜔)(𝑥𝑥,𝜔𝜔) < 0� for 𝑗𝑗 = 1:𝑚𝑚,  

are individual events. 

Stability of the interdependent insurers, governments, households, firms, 
businesses, etc., depend on the joint fulfillment of constraints (3-4), i.e., the events (3-
4) determine the stability (resilience) of the regional program for protection against 
systemic risks, which can occur if one of the safety requirements is not fulfilled.  

Therefore, a critical issue is to avoid these events with the highest possible 
probability. For example, by minimizing the expected uncovered losses 𝐸𝐸 ∑ (1 −𝑗𝑗

𝑞𝑞𝑗𝑗)𝐿𝐿𝑗𝑗
𝜏𝜏(𝜔𝜔) under a probabilistic safety constraint of the type 

𝑃𝑃𝑃𝑃 𝑜𝑜 𝑏𝑏[𝐸𝐸1,𝐸𝐸2] ≤ 𝑝𝑝,  (5) 

where 𝑝𝑝 is a critical probability threshold of the program’s systemic insolvency 
(failure, default) that may occur, say, only once in 100 years.  

The notation 𝑃𝑃𝑃𝑃 𝑜𝑜 𝑏𝑏[𝐸𝐸1,𝐸𝐸2] is used to denote a probability of insolvency as a 
general function of 𝐸𝐸1, 𝐸𝐸2. Another, more relaxing example of constraints (5), may be 
constraints 𝑃𝑃𝑃𝑃 𝑜𝑜 𝑏𝑏[𝐸𝐸1 𝑜𝑜𝑜𝑜 𝐸𝐸2] ≤ 𝑝𝑝 .  
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Probabilistic constraints (5) in the ISCRiMM can be reformulated to define a 
convex STO problem with specific non-smooth risk (penalty) functions enabling to 
derive optimal and robust interdependent ex-ante and ex-post solutions. This problem 
is effectively solved by the linear programming methods. The safety and reliability 
constraints are central for large-scale integrated interdependent risk management 
problems.  

3.3. Types of vulnerability and vulnerability analysis approaches 

Direct and indirect damages and losses due to catastrophes depend on 
vulnerabilities of agents and structures. In what follows we discuss different aspects 
of vulnerabilities and ways of their analysis and modeling as one of the components 
of the ISCRiMM model.  

The concept of vulnerability is addressed in many different disciplines. The 
definition depends on the area of research, such as disaster management, economics, 
finance, sociology, environmental sciences, and engineering (Cutter, 1996). Among 
the definitions is, for example, the following: “the quality or state of being exposed to 
the possibility of being attacked or harmed, either physically or emotionally. The 
understanding of social and environmental vulnerability, as a methodological 
approach, involves the analysis of the risks and assets of disadvantaged groups, such 
as the elderly.” 

In relation to hazards and disasters, "… the concept of vulnerability expresses the 
multi-dimensionality of disasters by focusing attention on the totality of relationships 
in a given social situation which constitute a condition that, in combination with 
environmental forces, produces a disaster" (Oliver-Smith, 2003). It is also the extent 
to which changes could harm a system, or to which the community can be affected by 
the impact of a hazard or exposed to the possibility of being attacked or harmed, either 
physically or emotionally. According to UNISDR's terminology, vulnerability is “the 
conditions determined by physical, social, economic, and environmental factors or 
processes which increase the susceptibility of an individual, a community, assets, or 
systems to the impacts of hazards” (UNISDR, 2009). 

Liverman (1990) distinguishes between vulnerability as a biophysical condition 
and vulnerability as defined by political, social and economic conditions of society. 
Kasperson et al. (1990) defines vulnerability as the differential capacity of groups and 
individuals to deal with hazards, based on their position within physical and social 
world. Cutter (1993) identifies vulnerability as the likelihood that an individual or 
group will be exposed to and adversely affected by a hazard. It is the interaction of 
the hazards of place (risk and mitigation) with social profile of communities. Blaikie 
et al. (Blaikie et al., 1994) formulates the definition of vulnerability as the 
characteristics of a person or group in terms of their capacity to anticipate, cope with, 
resist and recover from the impact of a natural hazard. It involves a combination of 
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factors that determine the degree to which someones life and livelihood are put at risk 
by a discrete and identifiebale event in nature or in society.  

The methodologies and models for analysing and assessing vulnerability 
indicators are among the major research areas. These include the analysis and 
assessment of external exogenous factors - sudden shocks and continued stresses, and 
internal endogenous factors such as dependencies, low incomes, unemployment, 
inability to cope with incapacities, inadequate infrustructures, etc. Vulnerability 
research covers a complex, multidisciplinary field including development and poverty 
studies, public health, climate studies, security studies, engineering, geography, 
political ecology, and disaster risk management (as well as risk management). 

Measurement of vulnerability follows the advancements of the vulnerability 
concept (Cutter et al., 2003). One of the approaches is the 'Vulnerability Hazards-of-
Place Model' by Cutter (Cutter, 1996; Cutter et al., 2000). This model focuses on 
describing the place-based interaction between biophysical vulnerability and social 
vulnerability. In this approach, it is explained how the vulnerability of a place is 
determined by factors such as socioeconomic status, urbanization status, and 
demography. Another model, the Earthquake Disaster Risk Index (EDRI), defines 
vulnerability and hazard as a component in the context of risk.  

Different disciplines develop different vulnerability frameworks. In relation to 
natural disasters and the systemic risks, researchers are currently working to refine the 
definitions of vulnerability, measurement and assessment methods accordingly. In the 
presence of possible systemic dependent chain risks, which are typical for densely 
populated areas with developed infrastructures (energy, water, transportation, etc.), 
the vulnerabilities account for multiple socio-economic, demographic, environmental 
vulnerability components along with the vulnerabilities of critical physical 
infrastructure.  

In urban areas “in addition to natural disasters, the entire possible loss and damage 
that may occur due to reasons such as general layout of a city, urban texture, usage 
areas, existing housing, transportation systems and infrastructure, planning and 
management weaknesses in a city” (Erdogan and Terzi, 2022 ; ISMEP, 2014b, p.12). 
Urban vulnerability indicators can be divided into social, economic, environmental, 
physical, and systemic vulnerability criteria. Cardona et al. (2012) grouped 
vulnerability under four different main criteria: environmental, social, economic, and 
other criteria that interact and intersect. The methods for the improvement of 
vulnerability assessment in the European Union (MOVE) framework are discussed 
under six main criteria, such as physical, economic, social, cultural, environmental, 
and institutional (European-Union, 2015). Some of the main vulnerability types can 
be defined as follows: 

For structural (physical) vulnerability analysis, safety of buildings, roads, and 
infrastructure systems are being evaluated to define weak infrustructure elements and 
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areas (ISMEP, 2014b), (Karimzadeh et al., 2014). The safety and reliability of 
infrastructure during a disaster directly determines the injury or loss of life. FEMA 
definition of the social vulnerability “… is the susceptibility of social groups to the 
adverse impacts of natural hazards, including disproportionate death, injury, loss, or 
disruption of livelihood.” As adopted by FEMA for US, the SVI (Social Vulnerability 
Index) is a location-specific assessment of social vulnerability that utilizes 16 
socioeconomic variables determining a community’s ability to prepare for, respond 
to, and recover from hazards: below 150% poverty, unemployed, housing costs, no 
high school diploma, no health insurance, aged 65 and older, aged 17 and younger, 
civilian with a disability, racial and ethnic minority status, multi-unit structures, 
mobile homes, crowding, no vehicle, group quarters, single-parent households, 
english language proficiency (FEMA).  

Systemic vulnerability (also referred to as critical vulnerability) is the damage of 
subsystems in the urban system, rendering other systems inoperable (ISMEP, 2014). 
The infrastructure elements that could be damaged and trigger further damages in the 
event of a disaster are the following: electric power supplies, gas and oil, 
telecommunications, banking and finance, transportation, water supply systems, 
emergency services.  

3.3.1. Social vulnerability in urban areas, Bucharest (Romania) and 
Istanbul (Turkey)  

A vulnerability analysis approach in urban areas of Bucharest, Romania, has been 
proposed in Armas et al., 2017. The socio-economic vulnerability included “four 
social vulnerability dimensions - social, education, housing, and social dependence 
...“. These indicators “explained over 88% of the variance among relevant variables 
as estimated from the Principle Component Analysis and deriving a middling value 
for Kaiser–Meyer–Olkin (KMO) Measure of Sampling Adequacy. The four 
dimensions were further integrated into a criteria tree using the SMCE (Spatial Multi-
Criteria Evaluation) module of the Ilwis software (ITC 2001) and weighted according 
to expert judgment and scenario testing”, which allowed to distinguish areas (tracts) 
in Bucharest, Romania, by the level of their socio-economic vulnerabilities. The four 
criteria were constructed based on the following subcriteria data: social – dwelling 
population density, widows female population in total population, elderly (e.g., over 
65 years), female population in total population, room occupancy per household; 
educational – minimum level of education, unemployed population (inactive 
population), women with more than 3 children (in total women who gave birth); 
housing – housing density, average room area per person on census tract, average 
household room area on census tract, average no. of private/owned houses, number of 
rooms, etc. 

In Istanbul urban area (Erdogan and Terzi, 2022), the vulnerability assessmeent 
by neighbouhoods of Istanbul, Turkey, four main criteria (critical urban services, 
infrastructure facilities, structural, socioeconomic) were identified and further 
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subdivided into subcriteria. For example, the “socioeconomic” criterion comprised 
population density, daytime density, average household size, education status, average 
household income, population over 65, child population ratio, women population 
ratio. The “critical urban services” consisted of road blockage, distance to fuel 
stations, accessibility to fire stations (in m), accessibility to police stations (in m), 
accessibility to open spaces (in m); criterion “infrastructure” included damaged 
electricity line length (in km), damage distribution of water pipelines (Rm (PGV): 
damage ration (points per km), damage distribution of natural gas pipelines (Rm 
(PGV):damage ration (points/km); and structural criteria included such subcriteria as 
building age, building construction type, building density (building/ha), Peak Ground 
Acceleration (PGA-gal). After the data on criteria-subcriteria were collected, the data 
was reclassified into 1-5 scale. After reclassification, each class was scored using 1-5 
rating scale, the highest score is assigned to the class that models affects the seismic 
vulnerability. After the classes are scored, the Analytical Hierarchy Process (AHP) 
method identified the weights of the criteria according to experts opinion. In this 
process, experts determined the order of the importance among criteria in the pairwise 
comparison matrices score scale from 1 to 9 and weights of the criteria and subcriteria 
are calculated for urban earthquake vulnerability analysis.  

In real studies, the data at required resolutions (e.g., tracts, neighborhoods, 
households) can be difficult and costly to obtain. Therefore, the dynamic revision of 
vulnerability indices in the context on newly introduced risk mitigation measures can 
become not possible. In some cases, missing historical data and indicator values can 
be substituted by expert estimates. For the development of future vulnerability 
scenarios when the necessary data can depend on multiple uncertain global and local 
drivers and trends, the analysis can rely on statistical and machine learning models 
(section 3.3.3). 

3.3.2. Structural (physical) vulnerability, building codes  

The overall vulnerability significantly depends on structural vulnerability, which 
is characterised by the compliance with infrustructure reliability norms, buildings 
codes, buildings density, magnitudes of the disasters, e.g., of  earthquakes. In the 
context of urban vulnerability assessment, the buildings vulnerability is especially 
important. In Armas et al. (Armas et al. 2017) as well as in other studies (Erdogan and 
Terzi, 2022) residential buildings vulnerability was introduced as a separate criterion 
in the vulnerability analysis.  

Building codes ensure buildings safety in cases of certain magnitudes disasters. 
They are introduced to limit the damages in exposed regions. The incompliance with 
building codes can trigger systemic losses in urban areas. There is an often-repeated 
saying, "earthquakes don't kill people, buildings do" (FEMA). For example, in 
Istanbul, geoscientist Okan Tüysüz from Istanbul Technical University reminded that 
“… approximately 1.2 million houses are located in the metropole. Some 70 percent 
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of them are not earthquake resistant … nearly 90,000 buildings in the city should be 
either demolished and rebuilt, or strengthened. The first rule in earthquake is to reduce 
the risk. If even only one person resides in each of these buildings, 90,000 lives can 
be saved with this step” (https://www1.wsrb.com/blog/turkey-building-codes-and-
the-importance-of-regulation). 

The analysis of the structural vulnerability can start with the analysis of individual 
buildings. Especially in urban regions, it is very important to determine which areas 
of the city have the greatest residential building vulnerability. For example, in “... 
Bucharest, only 855 buildings (located mostly in the city center) could be classified 
according to their vulnerability by the Bucharest General Municipality (2016), 
although the total number of residential buildings in Bucharest is 131,875. 
Approximately 40,000 of these structures are older than 1963; they date from a 
construction period when no seismic design regulations were available. In other 
words, reliable information about building vulnerability can only be found for 0.65% 
of the city’s buildings” (Armas et al. 2017; Toma-Danila et al. 2015, 2017).  

Because of data shortage, Toma-Danila (Toma-Danila et al. 2015, 2017) adopted 
a more generalized approach relying on analytical methods of Improved Displacement 
Coefficient Method (IDCM), as well as statistical data such as the number of buildings 
per construction period, building material, and structure height. The buildings were 
classified into building typologies accounting for construction materials (such as 
adobe, reinforced or unreinforced masonry, wood, and reinforced concrete), building 
height classes, and construction periods representative for Romania. The typologies 
were customised and reclassified to reflect the specific of buildings in Bucharest. 
Vulnerability (also called fragility) functions, were developed and adapted from the 
literature for each building typology, to associate with each identified building 
typology. To address the question on which urban areas are more endangered, three 
seismic scenarios were used to calculate the respective damages to different buildings 
typologies. Two of these scenarios are based on real recorded values (for the 1990 and 
1977 Vrancea earthquakes with moment-magnitudes of 6.9 and 7.4, respectively) and 
one (for the maximum possible Vrancea earthquake, with moment-magnitude of 7.8).  

3.4. Statistical and machine learning approaches to predict future 
vulnerabilities  

Vulnerability analysis and assessment through regular collecting, updating, and 
processing all the relevant data and indicators can be both time and cost consuming. 
The required data can be missing at the required resolutions, e.g., households level.  

The development of future socio-economic vulnerability scenarios can be 
restricted by data and projections availability, e.g., projections of population by age 
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and income groups or unemployment. For projecting structural (physical) damage and 
vulnerability, e.g., the seismic fragility functions require large amounts of data, which 
are also not always available. Large uncertainties in the application of fragility curves 
stem from earthquake characteristics as well as variability in building attributes. Data 
scenarios, i.e., number of buildings by typology, population, incomes, etc., can depend 
on multiple uncertain global and local drivers and trends.  

Alternatively or supplementing the traditional methods described in previous 
section, the vulnerability analysis and prediction can rely on AI, statistical and 
machine learning (ML) methods. Machine learning is an expansion of statistical 
learning theory (Vapnik, 1995), which is regarded as one of the most developed 
branches of artificial intelligence. It provides the theoretical basis for many of today's 
AI machine learning algorithms.  

Statistical and ML approaches are becoming popular for the vulnerability analysis. 
Mangalathu et al. (2019) uses machine learning to classify building damage for the 
2014 South Napa earthquake. Nateghi et al. (Nateghi et al., 2011) develops statistical 
methods for predicting indirect damages from natural hazards, in particular, 
hurricanes.  

Approach based on statistical and machine learning can be developed and applied 
to estimate and predict future socio-economic vulnerability based on vulnerability 
drivers. For example, (Kalaycıoglu et al., 2023) develops a predictive model that 
allows to identify households with high social vulnerability. A ML social vulnerability 
model can rely on previously constructed social vulnerability indexes and relevant 
variables (as, e.g., Armas et al. 2017; Toma-Danila et al., 2015, 2017).  

Thus, the trained ML model can serve as a scenario generator of plausible future 
structural and socio-economic vulnerability scenarios accounting for changing new 
conditions and scenarios of relevant covariates, for testing feasible mitigation 
precautionary and reconstruction BBB measures. The approach can reduce the time 
and costs for new data collection and revision of social vulnerability indexes 
(Kalaycıoglu et al., 2023). 

3.4.1. The choice of covariates for statistical and machine learning 
model 

3.4.1.1. Socio-economic vulnerability predictors 

As presented in section 3. 3.1, the predictors of socio-economic vulnerabilities can 
be classified into four main indicator groups: social, educational, housing, and social 
dependence. The drivers of these indicators are: social – dwelling population density, 
widows female population in total population, elderly (e.g., over 65 years), female 
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population in total population, room occupancy per household; educational – 
minimum level of education, unemployed population (inactive population), women 
with more than 3 children (in total women who gave birth); housing – housing density, 
average room area per person on census tract, average household room area on census 
tract, average no. of private/owned houses, number of rooms, etc. The ML model can 
be trained based on a pre-calculated SVI and relevant covariates. Then, it can be used 
to predict socio-economic vulnerability for different scenarios of predictors.  

3.4.1.2. Structural vulnerability predictors 

Selection of predictors (also, independent variables, covariates, or drivers) is 
essential for explaining and predicting the target (dependent) variable. For modeling 
and predicting structural vulnerability, the number of building stories, building 
material, distance to epicentre, and other variable characterizing structural and 
physical properties of buildings and earthquakes can be used in statistical methods to 
explain the damage volume. In some regions, also foundation type, land type, roof 
type, ground floor type, and superstructure type based on construction materials are 
considered as predictor variables.  

The data for structural (physical) vulnerability (or damage) assessment can be 
compiled from the historical earthquake data or come from simulation models. 
Detailed information about earthquake characteristics, building typology, position, 
foundation, floor, and roof type, and site condition can be incorporated as input 
features in machine learning models to estimate the dependencies between, e.g., 
damages and buildings typology. The methods can be used to predict the damages and 
the need for new type of buildings, buildings retrofitting and rehabilitation 
intervention.  

3.4.2. Methodology and selected results 

The truly integrative developments planning, foremost in urban areas, benefits 
from incorporating the statistical and machine learning methods into ISCRiMM 
model (as discussed in section 3.2) for designing interdependent robust ex-ante 
mitigation and ex-post adaptive risk management options. Informed decisions based 
on the safety norms and a disaster-resistant systemic urban planning would decrease 
the damages and vulnerabilities of all types. The development of statistical and 
machine learning models for the analysis and prediction of future vulnerabilities can 
shed the light on the role of decisions, their contribution to the vulnerability decrease, 
increase of resilience and BBB capacity. 

The development of the statistical and machine learning models aims to analyze 
the correlation between exploratory variables and the drivers. Machine learning 
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models are gaining popularity for the analysis of vulnerability to natural hazards, 
including random forest, neural networks, convolutional neural networks, recurrent 
neural networks, classification and regression tree, support vector machine, naïve 
Bayes, k-nearest neighbours. Because many of these models have a black-box nature, 
the tractability of the results is not straightforward. Also, the prediction accuracy is 
sensitive to model structure and parameter calibration, and it can be difficult to explain 
the accuracy or inaccuracy of the derived results.  

In this study we develop a linear regression model which enables easy tractability 
of individual independent variable’s contributions to the total vulnerability indicator. 
Furthermore, the linear regression can be extended to the quantile (linear) regression 
to identify the quantiles of vulnerabilities based on various combinations of the 
drivers. 

3.4.2.1. Multivariate linear regression model 

Multivariate regression analysis has been extensively used in earthquake-related 
studies, including predictions, damage reduction strategies through various indicators, 
vulnerability detection, and the development of more resilient structures and cities. 
Researchers such as Godschalk et al. (Godschalk et al., 1998 ; Bostenaru Dan and 
Armas (Bostenaru Dan and Armas, 2014, 2015), Rahman et al. (Rahman et al., 2023) 
and Mitsova et al. (Mitsova et al., 2018) have emphasized the use of multivariate 
regression analysis to enhance the design and policy-making processes in urban 
planning related to natural disasters. They have demonstrated the relationships 
between disaster-resilient urban infrastructure, superstructure development, and 
earthquake damage using this method. The multiple regression analysis has been 
ustilized in Jia and Yan (2015), Bostenaru Dan and Armaş (2014, 2015), Yariyan et 
al. (2020), and Saputra et al. (2017) to identify the factors influencing earthquake 
damage and to create earthquake vulnerability indices. 

A (multiple) linear regression (MLR) can be considered as one of the machine 
learning algorithms, which is in fact one of the most popular models in machine 
learning. It is widely used because it is simple and tractable. The simplicity means it 
is easy to understand the responses of the dependent variables to each covariate, i.e., 
the regression coefficient of an independent variable reflects the change in the 
dependent variable as a result of a unit-change in the respective independent variables.  

On the other hand, the MLR assumes that the residuals are normally distributed. 
The linear regression model for calculating the mean responce takes the form  
 
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + 𝛽𝛽3𝑥𝑥𝑖𝑖3 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑖𝑖𝑖𝑖,    (6) 
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where 𝑖𝑖 = 1, … 𝑛𝑛 is a number of observations and 𝑚𝑚 is a number of covariates. 
Coefficients of the MLR are found by minimizing the Mean Square Error “Goodness-
of-Fit” function  
 
𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑦𝑦𝑖𝑖 − (𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + 𝛽𝛽3𝑥𝑥𝑖𝑖3 + ⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑖𝑖𝑖𝑖))2,  
 
which gives the “best regression line”. 

To distinguish vulnerability by classes, i.e., very high, high, moderate, low, very 
low, in response to various combinations of drivers, a quantile-based criteria instead 
of the mathematical expectation can be used. Quantile regression is an extension of 
linear regression that is used when the conditions of linear regression are not met (i.e., 
linearity, homoscedasticity, independence, or normality).  

For the quantile regression it is assumed, that the 𝜏𝜏th quantile is given as a linear 
function of the explanatory variables. Taking a similar structure to the linear 
regression model, the “best” quantile regression model equation for the 𝜏𝜏th quantile 
is 

 
𝑄𝑄𝜏𝜏(𝑦𝑦𝑖𝑖) = 𝛽𝛽0(𝜏𝜏) + 𝛽𝛽1(𝜏𝜏)𝑥𝑥𝑖𝑖1 + 𝛽𝛽2(𝜏𝜏)𝑥𝑥𝑖𝑖2 + 𝛽𝛽3(𝜏𝜏)𝑥𝑥𝑖𝑖3 + ⋯+ 𝛽𝛽𝑚𝑚(𝜏𝜏)𝑥𝑥𝑖𝑖𝑖𝑖,  
 

where 𝑖𝑖 = 1, … 𝑛𝑛 is a number of observations and 𝑚𝑚 is a number of covariates 
(independent variables). Coefficients 𝛽𝛽𝑚𝑚(𝜏𝜏) are functions of the required quantile 𝜏𝜏. 
They are defined as 
 
𝛽𝛽(𝜏𝜏) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽∈𝑅𝑅𝑚𝑚�∑ 𝜏𝜏|𝑌𝑌𝑖𝑖 − 𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖|𝑖𝑖|𝑌𝑌𝑖𝑖≥𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖 + (1 − 𝜏𝜏)∑ |𝑌𝑌𝑖𝑖 −𝑖𝑖|𝑌𝑌𝑖𝑖<𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖
𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖|�, (11)  

where 𝑌𝑌𝑖𝑖 are observations of dependent variables, 𝑋𝑋𝑖𝑖 is a vector of independent 
variables 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖), and 𝛽𝛽(𝜏𝜏) is a vector of coefficients 𝛽𝛽(𝜏𝜏) =
(𝛽𝛽1(𝜏𝜏), … ,𝛽𝛽𝑚𝑚(𝜏𝜏)), and 𝑚𝑚 is a number of observations. 

3.4.2.2. Socio-economic vulnerability 

The dataset utilized for this study is based on studies in (Armas et al. 2017; Toma-
Danila et al. 2015). For the socio-economic vulnerabilities, we establish a relationship 
between pre-computed in Armas et al., 2017 human vulnerability indicators and the 
indicators reflecting social dependency, education, housing conditions. That is, the 
vulnerabilities computed for Bucharest (Romania) by Armas et al. (2017) are used to 
train the regression model.  

The LR dependence between, e.g., human vulnerability and the other four indices 
(social dependence, housing, education, social factor) is measured by R2=0.95. From 
the 4 explanatory variables, most contribution to human vulnerability is due to social 
and social dependence factors comprised of such variables as share of dependents, 
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share of children in total population, population density, share of widows in total 
population, population over 65 years old, share of women in total population, room 
occupancy per household.    

In Figure 4, the human vulnerability indice is visualized with a 
Risk&Vulnerability Scenario (RVS) generator (see Zobeydi, Komendantova, 
Ermolieva forthcoming), the software being developed by Cooperation and 
Transformative Governance group of Advanced Systems Analysis Program (CAT-
ASA, IIASA) for PARATUS project. Figure 5 displays the front page of the software 
enabling a short introduction into the PARATUS project.  

 
Figure 4: Front page of the Risk&Vulnerability Scenario (RVS) generator, the 
software being developed by CAT group of ASA Program, IIASA. 
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Figure 5: Human vulnerability indice (Armas et al., 2017). 

The RVS allows for the interactive update of the covariates (vulnerability drivers) 
and recalculation of the vulnerability indices according to plausible alternative 
scenarios of population density, buildings typologies, buildings codes, etc. Thus, it 
allows for testing outcomes of implementing vulnerability reduction decisions 
regarding retrofitting, population relocation, building shelters, etc,  

3.5. Application of the ML regression model to future vulnerability 
scenarios testing  

Using the developed ML regression models for the assessment of the 
vulnerabilities and damages based on historical data and previous model-based results 
reflecting socio-economic, demographic, structural indicators, several scenario 
combinations of vulnerability drivers for the analysis of future vulnerabilities can be 
designed and estimated. 

3.5.1. Buildings upgrading and retrofitting  

In urban areas, centers of large cities, with higher percentage of dependent and 
elderly population residing in old houses, the human vulnerability is rather high. The 
human vulnerability can be decreased by decreasing structural vulnerability, which 
can be assessed from the available data on structural damages. For example, several 
dynamic scenarios of buildings’ upgrading and retrofitting can be considered in areas 
of Bucharest (Romania) and Istanbul (Turkey), which are most vulnerable to 
structural damages :  
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1. Do nothing scenario: No taxes/insurance premiums will be accumulated and, 
therefore, no retrofitting will be done. 

2. Flat scenario: Average annual losses from the previous events will be 
collected as taxes or premiums and invested equally in retrofitting. 

3. Risk-based scenario: Average annual losses from the previous events will be 
collected as taxes or premiums and invested on risk-based principle. 

 

The retrofitting can be financed through tax (insurance premiums) collection into 
a catastrophe fund, loss coverage can be provided by local and national 
government(s), administrative authorities, private and state companies, insurance 
companies.  The optimal retrofiting scenario (Risk-based scenario 3) can be designed 
with ISCRiMM model (see section 3.2). The accumulation of catastrophe fund and 
the the contributions from the population into the fund are constraint by incomes, 
prices, running costs, etc., as it is also outlined in section 3.2.  

3.5.2. Construction of shelters  

The building of earthquake evacuation shelters is an effective way to reduce 
earthquake disaster risk and protect lives. The shelters can be built in areas with 
highest population and infrastructure density and, e.g., with high risk of structural 
damages. Urban earthquake evacuation shelters are safe places that provide 
evacuation protection and basic life support services after an earthquake. They can be 
classified into three categories: emergency shelter, fixed shelter and central shelter. 
Facility location models can address assessment of optimal places for locating 
earthquake evacuation shelters. The evacuation shelter location models are effective 
and suitable tools to assist in risk-based urban planning (Lomer et al., 2023; Qiu et al., 
2024 ; Xu et al., 2016). 

3.5.3. Population relocation  

Millions of people have been forced by natural disasters to move away from their 
native places. One of such events is Hurricane Irma, which has brought devastation 
on the islands of the Caribbean as well as South Florida. In Indonesian, on Ruang 
island, government plans focused on permanently relocate almost 10,000 residents 
after a series of explosive eruptions of the Ruang volcano.  

On Caribbean islands, the island of Montserrat, has been completed destroyed by 
a volcano and it required population relocation. On the morning of 9th of April 2021, 
the La Soufrière Volcano on the main island of St. Vincent and the Grenadines erupted 
-filling the sky with ash and transforming the lives, livelihoods and landscape of this 
small Southern Caribbean nation. More than 22,000 people were displaced from their 
homes, buildings including schools and businesses were damaged, livestock was 
destroyed and almost an entire population was cut off from clean drinking water and 
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other basic necessities for five months. In total the damage amounted to more than $ 
234 million; the impact of which was felt well beyond the main island to communities 
across the archipelago. Two years later, the ash from La Soufrière has settled, but the 
aftermath of the eruption continues to shape ordinary life and the development 
trajectory of this Small Island Developing State. 

Governments have a responsibility to protect their people, including from disasters 
and the effects of climate change. While efforts are underway to reduce the risks of 
disasters, sometimes these measures are insufficient. A landslide or earthquake can 
destroy a village and people cannot return home. Sea-level rise may also make it 
impossible for people to remain on their coastal land and they need to move – or be 
moved – to safer areas. 

Relocating people and communities is a complex undertaking and should be used only 
as a last resort – after all other alternatives have been explored.  No one wants to be 
forced to leave their homes, only when it is absolutely necessary people should be 
relocated.  

 

3.6. Conclusions  
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