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2 Robust statistical estimation, machine learning and two-stage decision making … 

Abstract 

The paper discusses the connections between two-stage stochastic optimization and 
robust statistical estimation. Main question related to statistical predictions is how to 
use the predictions to optimize the overall decisions and how current decisions can 
affect predictions. In general problems of decision-making, feasible solutions, 
concepts of optimality and robustness are characterized from the context of decision-
making situations, i.e., systems structure, goals, security constraints, safety norms, 
supply-demand relationships, thresholds. Robust statistical approaches can be 
effectively combined with disciplinary or interdisciplinary models, e.g., land use 
model GLOBIOM, for effective decision-making in the conditions of uncertainty, 
increasing interdependencies and systemic risks. We discuss a quantile- regression 
EPIC meta-model for tracking dynamics and uncertainties of Soil Organic Carbon 
(SOC), which is an important agri-environmental indicator. SOC levels (quantiles) 
can be controlled with GLOBIOM, to analyze costs and robust land management 
practices to sequester SOC and fulfill food-energy-water-environmental NEXUS 
security goals. Quantiles identify critical SOC levels signaling how close is a 
threshold or a targeted level. The SOC-EPIC meta-model is developed using 
multisource data from historical observations and results of the bio-physical model 
EPIC. It enables the analysis of SOC content and respective probabilities as a function 
of exogenous parameters such as monthly temperature and precipitation and 
endogenous, decision-dependent parameters, which can be altered by the land 
management decisions computed with GLOBIOM.  

 

Key words: two-stage STO, robust decision-making and statistical estimation, 
quantile regression, uncertainties, agri-environmental indicators, soil organic carbon, 
GLOBIOM 

 

3.1. Introduction  

Interdependencies among food, energy, water, environmental systems are 
increasing. Proper management (control) of such interdependent systems becomes a 
challenging multidisciplinary problem. Ensuring robust and sustainable performance 
of the systems in the face of uncertainty and risks is equivalent to equipping the 
systems with measures that prepare them in advance and facilitate their proper 
adaptive (operational) responses to changing conditions, minimizing chances of 
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critical imbalances, thresholds’ exceedance, and thus systemic failures due to 
combinations of various possible uncertain conditions/scenarios.  

The robust interdependent ex-ate and ex-post decisions account for various risk-
adjusted goals and constraints of the involved systems and agents (Ermoliev and 
Hordijk 2003; Ermoliev and von Winterfeldt 2012; Ermolieva et al. 2016; Ermolieva 
et al. 2022). The risk-adjusted safety (or security) constraints are imposed as critical 
levels of vital socio-economic, resource, environmental indicators analyzed by robust 
statistical and machine learning methods (Ermolieva et al. 2021). For example, 
quantiles identify different air and soil pollution levels and their respective 
probabilities signaling how close is the environmental pollution threshold. Quantile-
based analysis of socio-economic, environmental, and demographic indicators allows, 
e.g., to distinguish population by their socio-economic and environmental 
vulnerability levels, agricultural production by climatic factors and soil types. The 
quantile regression addresses the questions regarding what percentage of population 
leaves in highly polluted areas or in water scarce regions, or the relation between the 
high air/water pollution and health indicators, or levels of crop yields and soil and 
climate characteristics (Ermolieva et al. 2023). In interdependent natural and 
anthropogenic systems, it may be possible to controlled critical indicators by 
decisions. For example, agri-environmental indicators reflecting soil health 
characteristics depend on land use practices and, therefore, can be improved by robust 
and sustainable land use management.  

Thus, in general problems of robust decision-making, feasible solutions, concepts 
of optimality and robustness are characterized from the context of decision-making 
situations, i.e., systems structure, goals, constraints, safety norms, supply-demand 
relationships, thresholds. In statistics and machine learning, robustness property 
means that the solution is insensitive to outliers, i.e., additional observations/data 
cannot significantly affect the solution/estimate (Huber 1981; Vapnik 1995; Knopov 
2002). Various problems of decision-making under uncertainty, statistics, big data 
analysis, artificial intelligence (AI) can be formulated or can be reduced to the two-
stage stochastic optimization (STO) problems. For example, these are problems 
inherent to engineering, economics, finance, operations research, that involve 
minimization or maximization of an objective or a goal function when randomness is 
present in model's data and parameters, e.g., observations, costs, prices, returns, crop 
yields, temperature, precipitation, soil characteristics, water availability, emissions, 
return periods of natural disasters, etc. Uncertain parameters can be interpreted as 
environment-determining variables (Ermoliev 1976; Ermoliev and Wets 1988; 
Ermoliev and Hordijk 2003; Borodina et al. 2020; Ermolieva et al. 2016; Gorbachuk 
et al. 2019; Ermolieva et al. 2022), that condition the performance of the system under 
investigation.  
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Stochastic variables can be characterized by means of probability distribution 
(parametric or nonparametric) functions or can be represented by probabilistic 
scenarios. Typically, in problems of managing environmental pollution, catastrophic 
risks, food-water-energy-environmental nexus security, probability distributions of 
stochastic parameters are non-normal, heavy tailed and even multimodal. For 
decision-making, statistical estimation and machine learning problems in the presence 
of non-normal, heavy tailed and possibly multimodal probability distributions it is 
appropriate to use quantile-based criteria instead of mathematical expectations. The 
problems can be formulated in the form of two-stage STOs with discontinuous chance 
(probabilistic or quantile-based) constraints defining vital threshold levels, e.g., food-
energy-water-environmental security indicators, used for robust decision-making 
under uncertainty and risks and for FEWE nexus security management (Ermolieva et 
al. 2016; Ren et al. 2018; Ermolieva et al. 2021; Gao et al. 2021; Ermolieva et al. 
2022). 

3.1.1. Two-stage decisions 

Often, decisions (actions) or parameter estimation have to be performed ex-ante 
before the values (realizations) of the uncertain parameters become known or 
observed (Ermoliev 2009a; Ermolieva et al. 2022). Sometimes, the observations can 
be only partial or incomplete, i.e., incomplete “learning”. These situations happen, for 
example, in the process of agricultural production planning under weather variability 
and market risks (Ermolieva et al. 2021, 2022), water reservoir management (Ortiz-
Partida et al. 2019), investments in irrigation and crop storage facilities (Ermolieva et 
al. 2022), energy technologies investments planning (Ermoliev et al. 2023), and in 
many other application problems.  

The ex-ante decisions may require revisions and corrections after receiving 
additional information (i.e., after “learning” or partial “learning” of uncertain 
parameters values). Therefore, the ex-ante decisions/solutions can incur costs for their 
correction, revision, or reversion. Thus, there are two types (two-stage) of decisions. 
The ex-ante decisions x in the face of uncertainty may be a “here-and-now” decision 
whereas ex-post decisions y correspond to all future actions to be taken in different 
time periods in response to the environment created by the chosen x and the observed 
value of the uncertain parameter 𝜔𝜔 in that specific time period. The x and y solutions 
may represent sequences of interdependent ex-ante and ex-post control actions over a 
given time horizon. In the case of dynamical systems, there may also be an additional 
group of variables z characterizing states of the system in different time periods. These 
problems often emerge in operations research models, economics and system analysis, 
in the theory of optimal control and its applications in engineering, inventory control, 
etc. Specific applications include: deriving parameters of a statistical model 
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(parametric or nonparametric) or training a machine learning model that maps an input 
to an output based on examples of input-output pair through minimizing/maximizing 
a quantile-based “goodness-of-fit” criteria; deciding on optimal dynamic investments 
allocation into new technologies (irrigation, energy, agricultural, water management) 
to minimize costs or/and maximize profits accounting for various norms and 
constraints; deciding when to release water from a multipurpose reservoir for 
hydroelectric power generation, agricultural and industrial production, household 
requirements, environmental constraints, food protection; defining insurance 
coverage and premiums to minimize risk of bankruptcy of insurers and risk of 
overpayments of individuals.  

3.1.2. Basic model of a two-stage decision-making and parameter 
estimation. 

Let us illustrate the concept of the two-stage decision making and robust statistical 
estimation problem with an example of a simplest two-stage STO model. The idea of 
this model is implemented in stochastic GLOBIOM (Ermolieva et al. 2016, 2021). 
Assume, there are observations of an uncertain variable 𝜔𝜔 , which can be associated 
with a stochastic parameter, e.g., demand for a certain product or resource (water 
level). The stochastic variable 𝜔𝜔 can define the uncertain level of pollution or 
catastrophe losses to be mittigated ex-ante.  

The choice of the decision 𝑥̅𝑥 ≥ 𝑥𝑥 ≥ 0, to match the stochastic variable 𝜔𝜔 can be 
associated with a function 𝑓𝑓(𝑥𝑥,𝜔𝜔) reflecting costs of overestimation and 
underestimation of 𝜔𝜔. In the simplest case, 𝑓𝑓(𝑥𝑥,𝜔𝜔) is a random piecewise linear 
function 𝑓𝑓(𝑥𝑥,𝜔𝜔) = max {𝛼𝛼(𝑥𝑥 − 𝜔𝜔),𝛽𝛽((𝜔𝜔 − 𝑥𝑥)}, where 𝛼𝛼 defines the unit 
overestimation/surplus cost and 𝛽𝛽 is the unit underestimation/shortage cost 
(associated e.g., with implementing measures ex-post, which also can be interpreted 
as costs of imports, borrowing, or costs of ex-post emergency actions and recovery). 
The problem is to find the level 𝑥𝑥 that is “optimal”, in a sense, for all foreseeable 
random scenarios/observations 𝜔𝜔.  

The expected cost criterion leads to the minimization of the following function: 

𝐹𝐹(𝑥𝑥) = max {𝛼𝛼(𝑥𝑥 − 𝜔𝜔),𝛽𝛽((𝜔𝜔 − 𝑥𝑥)}     

subject to 𝑥̅𝑥 ≥ 𝑥𝑥 ≥ 0 for a given upper bound 𝑥𝑥. This stochastic minimax problem is 
also reformulated as a two-stage stochastic programming.  
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The optimal solution minimizing 𝐹𝐹(𝑥𝑥) and more general stochastic minimax 
problems defines quantile type characteristics of solutions (Ermoliev 2009a,b; 
Ermolieva et al. 2022), e.g., CVaR risk measures. For example, if the distribution of 
𝜔𝜔 has a density, 𝛼𝛼,𝛽𝛽 > 0, then the optimal solution 𝑥𝑥 minimizing 𝐹𝐹(𝑥𝑥) is the quantile 
defined as 𝑃𝑃𝑃𝑃{𝜔𝜔 ≤ 𝑥𝑥} = 𝛽𝛽/(𝛼𝛼 + 𝛽𝛽).  

The problem of minimizing 𝐹𝐹(𝑥𝑥) illustrates the essential difference between the 
so-called scenario analysis aiming at the straightforward calculation of 𝑥𝑥(𝜔𝜔) for 
various scenarios of 𝜔𝜔 and the STO optimization approach. The STO model produces 
one solution that is optimal (“robust”) against all possible stochastic scenarios 𝜔𝜔).  

3.2. Concept of robustness in statistical and general decision-making 
problems 

3.2.1. Stochastic optimization and safety quantile-based constraints 

A rather general STO problem is formulated as the maximization (minimization) 
of the expectation function  

𝐹𝐹0(𝑥𝑥) = 𝐸𝐸𝑓𝑓0(𝑥𝑥,𝜔𝜔) = ∫ 𝑓𝑓0(𝑥𝑥,𝜔𝜔)𝑃𝑃(𝑑𝑑𝑑𝑑),  [3.1] 
 
subject to constraints 
 
𝐹𝐹𝑖𝑖(𝑥𝑥) = 𝐸𝐸𝑓𝑓𝑖𝑖(𝑥𝑥,𝜔𝜔) = ∫ 𝑓𝑓𝑖𝑖(𝑥𝑥,𝜔𝜔)𝑃𝑃(𝑑𝑑𝑑𝑑) ≥ 0, 𝑖𝑖 = 1, . . . ,𝑚𝑚.  [3.2]  

 
The choice of goal function 𝑓𝑓0(𝑥𝑥,𝜔𝜔) and indicators 𝑓𝑓𝑖𝑖(𝑥𝑥,𝜔𝜔) is essential for the 

robustness of 𝑥𝑥. By choosing appropriate functions 𝑓𝑓0(𝑥𝑥,𝜔𝜔) and 𝑓𝑓𝑖𝑖(𝑥𝑥,𝜔𝜔), STO 
models allow in a natural and flexible way to represent various risks, spatial, social, 
and temporal heterogeneities, and the sequential resolution of uncertainty in time. 
Often, as in Example below, constraints 𝑓𝑓𝑖𝑖(𝑥𝑥,𝜔𝜔), 𝑖𝑖 = 0, . . . ,𝑚𝑚 are analytically 
intractable, nonsmooth, and even discontinuous functions, and probability measure 𝑃𝑃 
is unknown, or only partially known, and may depend on decisions 𝑥𝑥.  

Moreover, decisions 𝑥𝑥 according to a two-stage STO can be composed of 
anticipative precautionary (mitigation) ex-ante and adaptive (operational) coping ex-
post components, which allows to model dynamic decision making processes with 
flexible adaptive adjustments of anticipative decisions when new information is 
revealed. The main challenge confronted by STO theory is that it may be practically 
impossible to evaluate exact values of 𝐹𝐹𝑖𝑖(𝑥𝑥), 𝑖𝑖 = 0,1, . . . ,𝑚𝑚, see, e.g., Example. As 
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"deterministic" is a degenerated case of "stochastic", STO methods allow to deal with 
problems which are not solved by standard deterministic methods. 

Example: Pollution control and nutrients balance accounting. A common feature 
of most models used in designing pollution-control policies and nutrients balance 
accounting (Balkovič et al. 2014; Ermolieva et al. 2024 and references therein) is the 
use of transfer coefficients 𝑎𝑎𝑖𝑖𝑖𝑖  that link the amount of pollution (nutrient) 𝑥𝑥𝑗𝑗 released 
by source 𝑗𝑗 to the pollution/nutrient concentrations 𝑔𝑔𝑖𝑖(𝑥𝑥,𝜔𝜔) at the receptor location 𝑖𝑖 
as 𝑔𝑔𝑖𝑖(𝑥𝑥,𝜔𝜔) = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑛𝑛

𝑗𝑗=1 , 𝑖𝑖 = 0,1, . . . ,𝑚𝑚. The coefficients often depend on 
meterorological conditions, soil properties, etc. In complex problems, the transfer 
coefficients 𝑎𝑎𝑖𝑖𝑖𝑖  are also stochastic values with intractable decision-depedent 
probability distribution.  

The deterministic models ascertain cost-effective pollution/nutrients control 
strategies 𝑥𝑥𝑗𝑗, 𝑗𝑗 = 1, . . . ,𝑛𝑛 subject to achieving exogenously specified environmental 
targets, such as standard/norms 𝑏𝑏𝑖𝑖 at receptors 𝑖𝑖 = 1, . . . ,𝑚𝑚. These models can be 
improved by the inclusion of safety constraints that account for the random nature of 
coefficients 𝑎𝑎𝑖𝑖𝑖𝑖  and ambient standards 𝑏𝑏𝑖𝑖 to reduce impacts of extreme events or 
exceedance of certain environmnetal thresholds: 

𝐹𝐹𝑖𝑖(𝑥𝑥) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖𝑛𝑛
𝑗𝑗=1 ] ≥ 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1, . . .𝑚𝑚,  [3.3] 

namely, the probability that the accumulated nutrients level in each receptor (region, 
grid, or country) 𝑖𝑖 will not exceed uncertain critical load 𝑏𝑏𝑖𝑖 at a given probability 
(acceptable safety level) 𝑝𝑝𝑖𝑖 . The critical load 𝑏𝑏𝑖𝑖 can be identified by experts or through 
the quantile-based robust statistical or machine learning approaches, as it it discussed 
in section 3.3. 

The constraints [3.3] are known as chance constraints (Ermoliev and Wets 1988; 
Ermoliev and Hordijk 2003; Ermolieva et al. 2016, 2021, 2022, 2013). They can be 
written in the form of the standard STO model with discontinuous functions: 
𝑓𝑓𝑗𝑗(𝑥𝑥,𝜔𝜔) = 1 − 𝑝𝑝𝑖𝑖 if ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑛𝑛

𝑗𝑗=1 ≤ 0 and 𝑓𝑓𝑗𝑗(𝑥𝑥,𝜔𝜔) = −𝑝𝑝𝑖𝑖 , otherwise. If 𝑝𝑝𝑖𝑖 = 1, 
𝑖𝑖 = 1, . . . ,𝑚𝑚, the constraints [3.3] are reduced to constraints of deterministic 
robustness.  

The main computational complexity confronted by STO methods is the lack of 
explicit analytical formulas for goal functions 𝐹𝐹𝑖𝑖(𝑥𝑥), 𝑖𝑖 = 0,1, … ,𝑚𝑚. For example, 
consider constraints [3.3]. If there is a finite number of possible scenarios 𝜔𝜔 =
(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑖𝑖 = 1,𝑚𝑚, 𝑗𝑗 = 1,𝑛𝑛) reflecting, say, prevailing weather conditions, then 𝐹𝐹𝑖𝑖(𝑥𝑥) 
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are piecewise constant functions, i.e., gradients of 𝐹𝐹𝑖𝑖(𝑥𝑥) are 0 almost everywhere. 
Hence, the straightforward conventional optimization methods cannot be used. 

Ignorance of risks defined by constraints [3.3]  may cause irreversible catastrophic 
events. Although an average daily concentration of a toxicant in a lake is far below a 
vital threshold, real concentrations may exceed this threshold for only a few minutes 
and yet be enough to kill off fish. Constraints of the type [3.3] are important for the 
regulation of stability in the insurance industry, known as the insolvency constraints. 
The safety regulation of nuclear reactors requires 𝑝𝑝𝑖𝑖 = 1 − 10−7, i.e., a major failure 
occurs on average only once in 107 years. Stochastic models do not, however, exclude 
the possibility that a disaster may occur next year. 

2.2.2. New problems of statistics and stochastic optimization 

Standard statistical problems are formulated as the minimization of the type [3.1] 
functionals in the case when the probability measure 𝑃𝑃 is unknown but the sample 𝜔𝜔1, 
…, 𝜔𝜔𝑁𝑁 of observations drawn randomly according to 𝑃𝑃 is available. It is assumed that 
𝑃𝑃 does not depend on 𝑋𝑋. In general problems of robust decision maaking, the exact 
evaluation of 𝐹𝐹(𝑥𝑥) can be practically impossible due to various reasons: probability 
measure 𝑃𝑃(𝑥𝑥,𝑑𝑑𝜔𝜔)  is unknown or only partially known, random function 𝑓𝑓(𝑥𝑥,𝜔𝜔) is 
analytically intractable, or the evaluation of 𝐹𝐹(𝑥𝑥) is analytically intractable despite 
well-defined 𝑓𝑓(𝑥𝑥,𝜔𝜔) and 𝑃𝑃.  

Statistics (statistical decision theory) deals with situations in which the model of 
uncertainty and the optimal solution are defined by unknown sampling model 𝑃𝑃. The 
main issue is to recover 𝑃𝑃 by using available samples. In other words, the desirable 
optimal solutions 𝑥𝑥 = 𝑥𝑥∗ is associated with 𝑃𝑃 (or its parameters), the performance of 
𝑥𝑥∗ can be observed from available random data on its performance.  

STO models were introduced for decision making problems under uncertainty 
arising in operation research and systems analysis which are typically described by a 
large number of decision variables and uncertainties. These models deal with 
fundamentally different situations. The uncertainty, feasible solutions, and 
performance of the optimal solution are not given by the sampling model. All of these 
have to be characterized from the context of the decision-making situation. As a 
consequence, multiple performance indicators, constraints, and dependencies among 
decisions and uncertainties play a key role. Thus, in STO, which in fact arose as an 
extension of linear and non-linear programming with their sophisticated computation 
techniques, the accent is on solving problems (1), (2) with large number of decisions 
variables, random parameters and constraints.  
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The classical statistics has been developed on the basis of asymptotic analysis 
requiring large samples of historical data. New important problems in statistics and 
STO have to confront situations with small data samples, cases of missing 
observations or absence of direct observations. These new problems require explicit 
joint treatment of all relevant interdependent observable, partially observable and non-
observable variables by using various prior information in the form of additional 
constraints describing these interdependencies. These leads to high dimensions. The 
key issue is the representation of interdependencies enabling to organize pseudo-
sampling based on proper characterization of probability measure 𝑃𝑃 by using all 
available information.  

Consequently, these new problems are formulated as general constrained STO 
problems where estimation of unknown probability measure 𝑃𝑃 is directly associated 
with goals of overall decision-making problem. Since only specific data are essential 
for desirable decisions, the combined consideration of statistical estimation within 
overall decision-making problem can considerably reduce the quality and quantity of 
estimated information, e.g., the accuracy of the true parameters of 𝑃𝑃 including even 
requirements on the uniqueness of 𝑃𝑃.  

Consider some important statistical estimation problems which can be formulated 
as STO model [3.1-3.2]. Instead of asymptotic analysis, this provides the natural 
criterion of efficiency which can be used to evaluate the convergence to optimal 
solutions with respect to increasing number of real observations, resampling schemes, 
and pseudo sampling procedures. This section characterizes also loss functions which 
are typical for statistics. 

2.2.3. Regression estimation 

Assume that a random function 𝑢𝑢(𝑣𝑣) for each element 𝑣𝑣 from a set 𝑉𝑉 corresponds 
a random element 𝑢𝑢(𝑣𝑣) of the set 𝑈𝑈. Assume that 𝑉𝑉 ⊂ 𝑅𝑅𝑙𝑙 , 𝑈𝑈 ⊂ 𝑅𝑅1. Let 𝑃𝑃 is a joint 
probability measure defined on pairs 𝜃𝜃 = (𝑢𝑢, 𝑣𝑣). The regression function is defined 
as the conditional mathematical expectation  

𝑟𝑟(𝑣𝑣) = 𝐸𝐸(𝑢𝑢|𝑣𝑣) = ∫𝑢𝑢𝑢𝑢(𝑈𝑈|𝑣𝑣).      [3.4] 

It is easy to see that 𝑟𝑟(𝑣𝑣) minimizes the functional (providing it is well defined) 

𝐹𝐹(𝑥𝑥(𝑣𝑣)) = 𝐸𝐸(𝑢𝑢(𝑣𝑣) − 𝑥𝑥(𝑣𝑣))2,      [3.5] 

where 𝐸𝐸𝑢𝑢2(𝑣𝑣) < ∞, 𝐸𝐸𝑥𝑥2(𝑣𝑣) < ∞. 

 
It follows from the fact that  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥(𝑣𝑣)

𝐹𝐹(𝑥𝑥(𝑣𝑣)) = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥
𝐸𝐸[(𝑢𝑢(𝑣𝑣) − 𝑥𝑥)2|𝑣𝑣], 
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𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐸𝐸[(𝑢𝑢(𝑣𝑣) − 𝑥𝑥)2|𝑣𝑣] = −2(𝐸𝐸(𝑢𝑢|𝑣𝑣) − 𝑥𝑥) = 0. 

The estimation of 𝑟𝑟(𝑣𝑣) is usually considered in the set of functions given in a 
parametric form  {𝑟𝑟(𝑥𝑥, 𝑣𝑣), 𝑥𝑥 ∈ 𝑋𝑋}. In this case, the criterion (5 4) can be rewritten as  

𝐹𝐹(𝑥𝑥) = 𝐸𝐸(𝑢𝑢(𝑣𝑣) − 𝑟𝑟(𝑥𝑥, 𝑣𝑣))2 = 𝐸𝐸(𝑟𝑟(𝑣𝑣) − 𝑟𝑟(𝑥𝑥, 𝑣𝑣))2 + 𝐸𝐸(𝑢𝑢(𝑣𝑣) − 𝑟𝑟(𝑥𝑥, 𝑣𝑣))2, 

i.e., the minimum of 𝐹𝐹(𝑥𝑥) is attained at the function 𝑟𝑟(𝑥𝑥, 𝑣𝑣) which is close to 𝑟𝑟(𝑣𝑣) in 
the metric 𝐿𝐿2(𝑃𝑃) defined as �𝐸𝐸(𝑟𝑟(𝑣𝑣) − 𝑟𝑟(𝑥𝑥, 𝑣𝑣))2 

2.2.3. Quantile based regression 

The conditional expectation 𝑟𝑟(𝑣𝑣) provides a satisfactory representation of 
stochastic dependencies 𝑢𝑢(𝑣𝑣) when they are well approximated by two first moments, 
e.g., for normal distributions. For general (possibly, multimodal) distributions it is 
more natural to use the median or other quantiles instead of the expectation. Let us 
define the quantile regression function 𝑟𝑟𝜌𝜌(𝑣𝑣) as the maximal value 𝑦𝑦 satisfying 
equation  

𝑃𝑃(𝑢𝑢(𝑣𝑣) ≥ 𝑦𝑦|𝑣𝑣) = 𝜌𝜌(𝑣𝑣),       [3.6] 

where 0 < 𝜌𝜌(𝑣𝑣) < 1 . It can be shown that function 𝑟𝑟𝜌𝜌(𝑣𝑣) minimizes the functional 

𝐹𝐹(𝑥𝑥(𝑣𝑣)) = 𝐸𝐸(𝜌𝜌(𝑣𝑣)𝑥𝑥(𝑣𝑣) + 𝑚𝑚𝑚𝑚𝑚𝑚{ 0,𝑢𝑢(𝑣𝑣) − 𝑥𝑥(𝑣𝑣)})    [3.7] 

This is due to the following. First of all, we have 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥(𝑣𝑣)

𝐹𝐹(𝑥𝑥(𝑣𝑣)) = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥
𝐸𝐸[𝜌𝜌(𝑣𝑣)𝑥𝑥 + 𝑚𝑚𝑚𝑚𝑚𝑚{ 0,𝑢𝑢(𝑣𝑣) − 𝑥𝑥(𝑣𝑣)|𝑣𝑣}]. 

Assume that probability 𝑃𝑃(𝑑𝑑𝑑𝑑) has continuous density function  𝑝𝑝(𝜃𝜃), 𝑃𝑃(𝑑𝑑𝑑𝑑) =
𝑝𝑝(𝜃𝜃)𝑑𝑑𝑑𝑑. Then from the optimality condition for internal stochastic minimax problem 
follows that optimal solution 𝑥𝑥 satisfies the equation:  

𝜌𝜌(𝑣𝑣) − ∫ 𝑃𝑃(𝑑𝑑𝑑𝑑|𝑣𝑣) = 0∞
𝑥𝑥 ,       [3.8] 

i.e., indeed, it satisfies (6). Let us note, that the minimization of more general at the 
first glance functional  

𝐹𝐹(𝑥𝑥(𝑣𝑣)) = 𝐸𝐸(𝑎𝑎(𝑣𝑣)𝑥𝑥(𝑣𝑣) + 𝑚𝑚𝑚𝑚𝑚𝑚{𝛼𝛼(𝑣𝑣)(𝑢𝑢(𝑣𝑣) − 𝑥𝑥(𝑢𝑢)),𝛽𝛽(𝑣𝑣)(𝑥𝑥(𝑣𝑣) − 𝑢𝑢(𝑣𝑣))}), 

is reduced to the minimization of (7) with 𝜌𝜌(𝑣𝑣) = (𝑎𝑎 + 𝛽𝛽)(𝛼𝛼 + 𝛽𝛽)−1. The median 
corresponds to the case when 𝑎𝑎 ≡ 0, 𝛼𝛼 = 𝛽𝛽.  The existence of optimal solution 
requires 𝑎𝑎 < 𝛼𝛼.  
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3.3. Quantile based machine learning regression model for tracking the 
dynamics and uncertainties of soil organic carbon in agricultural soils 
using multisource data 

In this section we introduce a quantile-based statistical (or machine learning) 
regression model for estimating and predicting annual Soil Organic Carbon (SOC) 
stocks and stock changes at plow depth under the variability and changing seasonal 
patterns of temperature and precipitation. Soil Organic Carbon and Soil Organic 
Matter are important agri-environmental indicators characterizing soil health. The 
quantile-based linear regression is a two-stage STO model similar to the described in 
section 2.1.2. It enables estimation of quantiles, in particular, critical environmental 
loads and thresholds as it is discussed in Example of pollution/nutrients accumulation 
processes.  

2.3.1. Motivation  

The monitoring, modelling, and mapping of agri-environmental indicators, in 
particular, SOC, is important for many reasons. SOC is an indicator for soil organic 
matter (SOM) content, which is a major determinant of soil quality and fertility for 
food production. Soils with higher SOC can better filter, degrade organic molecules 
and purify water. SOC accumulation can substantially contribute to climate change 
mitigation (see discussion and references in Ermolieva et al. 2024). SOC stock is a 
Land Degradation Neutrality indicator used by the United Nations Convention to 
Combat Desertification (UNCCD). The EU Soil Strategy for 2030 contributes to the 
objectives of the EU Green Deal and is a part of the Biodiversity Strategy.   

Soils have recently become part of the global carbon agenda for climate-change 
mitigation and adaptation. The “4p1000 initiative” was launched at COP21 by 
UNFCC under the framework of the Lima-Paris Action Plan (LPAP) in Paris on 
December 1, 2015. The name of the initiative reflects that a comparatively small 
proportional increase (4%) of the global SOC stocks in the top-soil of all non-
permafrost soils would be similar in magnitude to the annual global net carbon dioxide 
(CO2) growth.  

The new strategy updates the 2006 EU Soil Thematic Strategy and intends to 
address land degradation trends. The EU Mission Board for Soil Health and Food 
proposed a series of quantitative targets to make soils of Europe healthier. Among 
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them, the aim is to reverse the current SOC concentration losses in croplands (0.5%/yr 
on average at 20 cm depth) to an increase of 0.1–0.4%/yr by 2030. 

Thus, the quantiles (e.g., low and high) of SOC in agricultural soils can serve as 
targets in a land use model GLOBIOM for estimating optimal land use practices to 
increase SOC to required levels.  

3.3.2. SOC quantile regression meta model 

The SOC meta-model operates at different spatial scales and provides an effective 
means for scaling biophysical and land use models’ results to required resolutions. By 
introducing SOC constraints, e.g., equal to the 50th or 75th quantile as estimated from 
the meta-model, GLOBIOM model (Havlik et al., 2011; Ermolieva et al., 2016, 2021, 
2022) can derive an optimal combination of land use practices increasing SOC to the 
desired level. SOC and other food-energy-water-environmental security constraints 
identify the overall costs of achieving the food-water-energy-environmental NEXUS 
security. In fact, in our research, for each EU NUTS2 regions, a separate quantile-
based meta model is estimated from historical data and results generated by bio-
physical process-based model EPIC (Balkovič et al. 2014), at the level of grid cells. 
The NUTS (Nomenclature of territorial units for statistics) is the EU division of each 
EU country into 3 levels. NUTS2 is the level of country-specific basic regions.  

NUTS2-level SOC quantiles are approximated by fitting separate quantile-based 
regression models. In classical LR approaches, the regression coefficients (𝛽𝛽 
coefficients) represent the mean increase in the response variable produced by one 
unit increase in the associated explanatory variables. The 𝛽𝛽-coefficients obtained from 
QR represent the change in a specific quantile of the response variable produced by a 
one unit increase in the associated driver. In this way, QR allows to study how certain 
drivers affect median (quantile τ=0.5) or extremely low (e.g., τ=0.05) or high (e.g., 
τ=0.95) SOC stock values. Therefore, it gives a more comprehensive description of 
the effect of SOC predictors on the whole SOC stock level and the probability 
distribution (i.e., not just the mean) and may be used to analyze differential SOC stock 
responses to land practices.  

For a random sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛, … with empirical distribution function 𝐹𝐹�𝑋𝑋(𝑥𝑥), 
the 𝜏𝜏th empirical quantile function can be defined as 𝑄𝑄�(𝑝𝑝) = 𝐹𝐹�𝑋𝑋−1(𝑥𝑥) =
inf {𝑥𝑥:𝐹𝐹�𝑋𝑋(𝑥𝑥) ≥ 𝜏𝜏}. The 𝜏𝜏th empirical quantile can be determined by solving the 
minimization problem 
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𝑄𝑄�(𝑝𝑝) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥�∑ 𝜏𝜏|𝑋𝑋𝑖𝑖 − 𝑥𝑥|𝑖𝑖|𝑋𝑋𝑖𝑖≥𝑥𝑥 + (1 − 𝜏𝜏)∑ |𝑋𝑋𝑖𝑖 − 𝑥𝑥|𝑖𝑖|𝑋𝑋𝑖𝑖<𝑥𝑥 �. 

For the linear quantile regression, we make an assumption that the 𝜏𝜏th quantile is 
given as a linear function of the explanatory variables. For quantile regression, it is 
possible to calculate any quantile (percentage) for particular values of the dependent 
variables. Solving the problem for all 𝜏𝜏 ∈ [0,1], it is possible to recover the entire 
conditional quantile function, i.e., the conditional distribution function, of 𝑌𝑌. 
Coefficients 𝛽𝛽𝑚𝑚(𝜏𝜏) are functions of the required quantile 𝜏𝜏. They are defined as  
 
𝛽𝛽(𝜏𝜏) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽∈𝑅𝑅𝑚𝑚�∑ 𝜏𝜏|𝑌𝑌𝑖𝑖 − 𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖|𝑖𝑖|𝑌𝑌𝑖𝑖≥𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖 + (1 − 𝜏𝜏)∑ |𝑌𝑌𝑖𝑖 −𝑖𝑖|𝑌𝑌𝑖𝑖<𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖
𝛽𝛽′(𝜏𝜏)𝑋𝑋𝑖𝑖|�,         

where 𝑌𝑌𝑖𝑖 are observations of dependent variables, 𝑋𝑋𝑖𝑖 is a vector of independent 
variables 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖), and 𝛽𝛽(𝜏𝜏) is a vector of coefficients 𝛽𝛽(𝜏𝜏) =
(𝛽𝛽1(𝜏𝜏), … ,𝛽𝛽𝑚𝑚(𝜏𝜏)), and 𝑚𝑚 is a number of observations. The QR models give much 
deeper insights into the complete conditional distribution of SOC stock values as a 
function of spatial and temporal predictors. By focusing on low (or high) quantiles, 
regression coefficients inform us about predictors that mainly influence the absence 
(or presence) of high/low SOC stock over space. By considering independent QR 
models for different values of τ, this allows for the possibility that the importance of 
certain predictors may change according to SOC level.  

The estimates of the SOC quantile level 𝑄𝑄𝜏𝜏(𝑦𝑦𝑖𝑖) in each SimUs within all NUTS2 
regions and EU countries have a probability of  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝑄𝑄𝜏𝜏(𝑦𝑦𝑖𝑖) ≤ 𝛽𝛽0(𝜏𝜏) + 𝛽𝛽1(𝜏𝜏)𝑥𝑥𝑖𝑖1 + 𝛽𝛽2(𝜏𝜏)𝑥𝑥𝑖𝑖2 + 𝛽𝛽3(𝜏𝜏)𝑥𝑥𝑖𝑖3 + ⋯+ 𝛽𝛽𝑚𝑚(𝜏𝜏)𝑥𝑥𝑖𝑖𝑖𝑖} =  𝜏𝜏. 

The equation means that 100𝜏𝜏 percent of the SOC observations/data are less than the 
value of the 𝜏𝜏-quantile.  

3.3.3. Selected results 

The linear regression (LR) analysis of the relationship between the response 
variable (SOC) and the set of covariate variables was carried out to establish the 
reference scenario for comparing the SOC quantiles with the mean value predictions.  

Trained on EPIC model inputs and results, the estimated NUTS2-specific LR 
meta-models have an R2 of about 0.9 to 0.98 for all NUTS2 regions. The estimated 
QR trends identify the ranges and the respective probabilities of possible SOC content 
in different years. Figures 1–4 display the SOC content change between the 
consequent years for NUTS2 regions in the period from 1980 to 2020 in mean change, 
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the percentage difference between the 50th quantile and the mean value, the 75th 
quantile change, and the 25th quantile change, respectively, in t/ha.  

In Figure 1, more brownish colors indicate the decrease in SOC between the years, 
and the greenish point to the NUTS2 regions with positive changes between the 
consequent years. In the upper-left panel of Figure 1, the mean changes in SOC are 
positive in Central Europe, i.e., the SOC stocks increased. However, the decreasing 
accumulation of SOC stocks can be observed already in the period from 1985 to 1995; 
the upper-right panel has less green color when compared to the upper-left one. More 
of a rapid decumulation of SOC stocks is observed in the southern countries of Europe 
such as Spain and Portugal. The SOC loss slows down in the north, especially in 
Sweden, perhaps because of increasing ley farming and subsidies introduced in the 
early 1990s. This can reveal the strong impact of rather local socio-economic policies 
on soil carbon storage, which can be captured by the QR meta-model at the resolution 
of the NUTS2 regions characterized by region- and country-specific characteristics. 
The policy-driven context needs to be considered in the models’ design and 
applications. The slowing down of SOC decumulation in Sweden and Finland persists 
as time goes on, as it is shown in the panels of Figure 1. Figure 2 visualizes the 
percentage difference between the 50th quantile and the mean value of the SOC 
content change for NUTS2 regions from 1980 to 2020. Figure 2 shows that the mean 
value of the SOC content change, as estimated by the LR model, can differ from the 
most likely one, i.e., the 50th quantile. The brownish colors in Figure 2 correspond to 
the locations (NUTS2 regions), where the mean value is lower than the 50th quantile 
and the greenish colors correspond to where it is higher. Thus, the brownish colors 
identify the NUTS2 with underestimated and the greenish with overestimated SOC 
changes by the traditional LR (using symmetrical or least square goodness-of-fit 
criteria) models as they cannot properly address the non-normality and the variability 
of the covariates. 
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Figure 3.1. Mean value of the SOC content change for 1980–2000  

 

Figure 3.2. Percentage difference between the 50th quantile and the mean value of 
the SOC content change for NUTS2 regions from 1980 to 2020  

The discrepancies between the 50th percentile and the mean value of the SOC 
content changes indicate that the interannual changes in the SOC content are non-
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normally distributed. The non-normality can be explained by the variability of the 
monthly precipitation and temperature patterns affecting components of SOC 
differently for different soil characteristics and land management practicies. SOC 
meta-models have been estimated at the NUTS2 level, and, therefore, the 
discrepancies between the LR and the quantile estimates point to heterogeneities 
across SimUs within respective NUTS2 regions.  

The 50th quantile of the SOC content changes identifies the dominating response 
of the SOC labile fraction to the interannual variability of climatic indicators including 
the response to possible extreme weather conditions as well as the response to 
prevailing land practices. The effects of precipitation on different SOC fractions can 
be opposite at wet and dry sites. Both the soil DOC (Dissolved Organic Carbon) and 
MBC (Microbial Organic Carbon) concentrations can decrease at the wet sites but 
increase at the dry sites under increased precipitation conditions.  

SOC accumulation is also influenced by interannual N response to changing 
climatic conditions in different soils under alternative land use practices. This 
determines the C:N ratio and, therefore, can significantly influence DOC 
degradability and leaching and, thus, affect SOC content. The combined effects of 
precipitation and temperature patterns and their variability on SOC content changes 
indicate the differing response mechanisms in different soils under alternative land 
use practices, which can be addressed by the quantile-based SOC meta-models. 

Figures 3 and 4 show the 75th and the 25th quantiles of the SOC content changes, 
thus estimating the ranges and the respective probabilities of how slow and how fast 
the SOC can change under varying exogenous drivers and local economic and policy 
conditions. Figure 3, displaying the 75th quantile value, tells that the SOC changes 
can be “better” than the 75th quantile value exhibited in the figure, however, only with 
a probability of 0.25. Correspondingly, the 25th quantile value in Figure 4 tells that 
the SOC changes with the probability of 0.25 can drop below the 25th quantile value 
exhibited in Figure 4, i.e., below 0.5 t/ha.  
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Figure 3.3. The 75th quantile of the SOC content changes between the consequent 
years for NUTS2 regions from 1980 to 2020  

 

Figure 3.4. The 25th quantile of the SOC content changes between the consequent 
years for NUTS2 regions from 1980 to 2020  
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2.4. Conclusions 

The paper discusses the connections between the two-stage stochastic 
optimization and quantile based robust statistical and machine learning models. In 
general problems of decision-making, feasible solutions, concepts of optimality and 
robustness are characterized from the context of decision-making situations, i.e., 
systems structure, goals, constraints, safety norms, supply-demand relationships, 
thresholds. Main question related to statistical estimation and predictions is how to 
use these predictions to optimize the overall decisions and how current decisions can 
affect predictions?  

In the paper we discuss quantile-based machine learning regression meta-model 
for tracking dynamics and uncertainties of Soil Organic Carbon (SOC) in agricultural 
soils as a function of exogenous parameters such as monthly temperature and 
precipitation and endogenous, decision-dependent parameters, which can be altered 
by land use decisions derived with GLOBIOM model. The SOC meta-model is 
developed using multisource data from historical observations and results of a bio-
physical model EPIC. Thus, it emulates the EPIC model and can be explicitly linked 
with GLOBIOM providing an effective means to analyse responces of environmental 
indicators to land management decisions computed by GLOBIOM 

Incorporated as environmental targets into GLOBIOM, the quantiles of SOC 
meta-models enable the analysis of robust land management practices and the 
respective costs to increase SOC content to targeted levels.  
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