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Abstract

Street green space (SGS) - the presence of vegetation along streets of cities—is a key piece of urban
infrastructure. SGS provides a broad range of functions, such as mitigating the urban heat island
effect, reducing the impact of extreme precipitation events, and supporting human and animal
well-being. Here we introduce an approach to estimate SGS based on the statistical modeling of a
street-based indicator of canopy coverage (the green view index, GVI) with multispectral satellite
observations and ancillary spatially granular data. Based on our trained and cross-validated
non-parametric model, we conduct spatial sampling and prediction in 190 large cities distributed
across twenty regions and estimate local to continental GVI trends between 2016-2023. Jointly
considering such global pool of cities, we find evidence of a trend of GVI decrease of 0.3%—0.5%
per year (p < 0.01). Yet, both the direction and magnitude of trends show high heterogeneity
across and within regions and cities, which we explore, along with stark inequalities in SGS
availability within each city. Our analysis provides an updated estimate of the GVI as a measure of
SGS across a global pool of cities and an open-source, validated approach to assess its future
changes and support the design of policies for sustainable cities.

1. Introduction

While appreciated already in ancient times [1], urban vegetation is being considered ever more crucial in the
context of global urbanization and growing anthropogenic impact of human and natural systems [2—4], also
in the ambition of the Sustainable Development Goal 11 of ‘making cities inclusive, safe, resilient and
sustainable’ (https://sdgs.un.org/goals/goall1). Urban vegetation provides a broad range of ecosystem
services [5]. For instance, urban vegetation is known to be an important factor that affects the effect of urban
heat islands (e.g. through shade [6] and evaporative cooling [7, 8]) and therefore the active air cooling energy
requirements in buildings [8—14]. Other important services include the flood control function [15, 16],
carbon sequestration [17, 18] and biodiversity preservation [19]. Urban vegetation is also a source of
intangible benefits for human health, psychological well-being [20-23] and happiness [24, 25] and it is
positively associated with urban real estate prices [26]. Overall, because of this broad range of functions, the
World Health Organization [27] recommends a minimum of 9 m? of urban vegetation-covered area per
person with an ideal value of 50 m?.

Street green space (SGS)-the presence of vegetation along public streets of cities—is a major contributor
to urban green space (UGS). The key role of SGS and its canopy coverage is related to its general proximity to
buildings and people [28] and its public nature [29]. Research demonstrated that it is mainly the density of
SGS within the city core that drives the perception of greenness of a city, rather than large peripheral parks
[30-32].

Previous studies have analyzed urban vegetation at different levels of geographical coverage [33-36]. For
instance, at the global and continental scales some large-scale assessments based have been carried out based

© 2025 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Illustrative representation of the green view index (GVI) assessment and monitoring analysis carried out in this study.
(a) Graphical representation of the green view index (GVI) of street green space (SGS) city database from Seiferling et al [52] and
within-city distribution of labeled GVI data; (b) and (c) machine learning (ML) model training and prediction across a pool of
major world cities; (d) change detection and within-city inequality analysis.

on pre-classified land cover data [37-40], while other studies have derived satellite data-based estimates of
different green space indicators [36, 41-49]. However, these estimates largely lack street-level validation and
do not capture the specific features of vegetation along public streets, as opposed to other types of vegetation
(such as private gardens and parks).

With specific regard to SGS, previous studies have developed approaches its quantification using
street-based imagery across individual cities as well as regional or global pools of cities [50-58]. A related
strand of research focused on quantifying the role of SGS relevance for within-city distribution (and
environmental justice issues) [8, 59—62], as well as in terms of its temperature cooling potential [63, 64].

Yet, there is little evidence of an approach for estimating the spatial variability of SGS within and across
cities with street-level relevance and for assessing its evolution over time based on globally available and
frequently updated data. We attribute this gap to the challenge of upscaling existing localized street
imagery-based assessment to a large-scale analysis. In a context where the release of public and spatially
granular street-level imagery is limited and unwieldy, such goal requires resorting to granular, globally
available datasets from earth observation to develop modeling approaches for emulating such street-based
indicators [65, 66].

Here we aim at providing a global analysis of recent trends of the green view index (GVI) [52], a widely
used metric of UGS at the street level [50, 67]. We develop a machine learning (eXtreme Gradient Boosted
decision trees) modeling approach using 10-meter resolution multispectral satellite imagery data, climate
records, and ancillary datasets to estimate ground-truth GVI measurements obtained from street-based
georeferenced imagery from 23 cites in 14 countries around the world, mapped in figure 1(A). Based on the
trained and validated model, we estimate local to continental trends of GVI over the 2016-2023 period over
190 large cities (visualized in figure 1(C)) distributed in twenty world macro-regions. Our analysis provides
an updated estimate of GVI of SGS across world cities and its recent evolution, together with an open-source,
validated approach to assessing its changes in near real-time.

The remainder of the paper is structured as follows: section 2 presents and describes the data used for
model training and prediction, as well as the data processing steps conducted; it then elaborates on the
statistical approach and model validation techniques implemented, as well as on the prediction stage and
change analysis over time and space. Section 3 presents the results of the analysis, and it is divided into two
main parts: first, the results of the model prediction and change analysis over time are illustrated, then
within-city inequality over space and in relation to the urban population is assessed. Section 4 concludes the
paper by summarizing the main findings, their implications, as well as highlighting the key limitations of the
paper and paving the way for future work in the domain, as well as discussing potential uses of the
open-source methodology and data produced in the paper.
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Figure 2. Illustrative examples of different levels of SGS and its correspondence to GVI values in four selected cities. The three
selected locations in each city represent the location of the first, second, and third quartiles of the within-city distribution of the
GVI of SGS. Captions above each street photograph report the corresponding GVI level. Street View image data (c) 2024 Google.

2. Materials and methods

2.1. Data

2.1.1. Labeled GVI data

Labeled GVI data are sourced from Seiferling ef al [52], available at http://senseable.mit.edu/treepedia. These
data express the percentage fraction of canopy coverage in a given location as perceived on the street level,
and thus are a useful description of SGS. The data are obtained based on street-level Google Street View
(GSV) imagery. Each point comes with latitude and longitude attributes, GVI, and date of measurement. To
put the GVI indicator of SGS into perspective and visually associate it with perceived street-level greenness,
figure 2 provides illustrative examples of GVI levels in the training data in relation to the original street
photography upon which they are based on different cities located in different geographical and climatic
zones, Amsterdam (Europe, oceanic climate); Miami (North America, tropical monsoon climate); Singapore
(Asia, tropical rain-forest climate); and Cape Town (Africa, Mediterranean climate). Each photograph is
based on the location where the first (25th), second (50th), and third (75th) quartiles of the local
distribution of GVI in each city lie.

The GVI labeled data covers 23 cities across 14 countries (figure SI-1 maps them and shows the estimated
GVI distribution, while table SI-14 provides count of labeled points by city). Figure SI-3 illustrates the
distribution of the years of street imagery acquisition and thus the reference date of GVI estimation,
highlighting how about two-thirds of the snapshots on which the GVI estimation is based are derived from
street imagery from years 2015-2016. This informs the use of multispectral satellite data and historical
climate and land use records from years 2015 and 2016 in the model training phase.

In addition, figure SI-4 shows that the vast majority of training data points are based on imagery taken in
periods of the year when in each city deciduous trees are growing green leaves, thus rendering the training
data suitable to capture the presence of canopy coverage. Finally, tables SI-16 and SI-17 show the distribution
of training points across Koppen-Geiger macroclimate zones. To ensure consistency, we filter the residual
GVl labeled data to remove observations based on street photographs taken in periods of the year and
locations where canopy coverage is likely to be absent or strongly reduced, such as for the case of broadleaved
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trees and other seasonal vegetation. Specifically, we remove observations which—based on the within-city
GVI distribution—are taken in periods of the year where the GVI is more than two standard deviations lower
than the mean (of all periods of the year, within each city).

2.1.2. Urban areas definition

Comparing GVI values and trends across cities around the world requires a standard definition of city
boundaries. To define urban areas we use vector data from the EC-JRC Urban Centers Database
[68]—namely the GHS Urban Centre Database UCDB R2019A (https://ghsl.jrc.ec.europa.eu/
ucdb2018visual.php). Urban Centres are defined in a consistent way (by specific cut-off values on resident
population and built-up surface share in a 1-km uniform global grid) across geographical locations and over
time, applying the ‘Global Definition of Cities and Settlements’ developed by the European Union to the
Global Human Settlement Layer Built-up (GHS-BUILT) areas and Population (GHS-POP) grids. Finally,
national boundaries are based on the GADM v4.1 database [69].

2.1.3. Multispectral satellite data

To predict GVI values we adopt an approach based on multispectral satellite data. We use Sentinel 2 data due
to their open nature, high spatial resolution (10 — 60 m, depending on the band), and global coverage. In
particular, as seen from table SI-1, we select bands having a 10-meter resolution covering wavelengths
between 443.9 nm and 833 nm. The data are available from 2016 to the current date and are planned to be
released in near real-time in future years, thus currently allowing both for a 7 year change assessment and for
tracking of future changes.

Note that whilst labeled GVI data include the date of acquisition of the original street-based imagery, we
do not merge satellite and ancillary data by the month of acquisition, as this would impair the possibility of
making extrapolative predictions, which is the key purpose of our model and analysis. On the other hand, for
each variable, we include monthly values for all 12 months of the year and we let the model determine the
most important features to predict GVI values in different areas of the world.

2.1.4. Ancillary training data

As an additional data source to the statistical model, we consider the ERA5 Monthly Averaged by Hour of
Day climate reanalysis data product from the European Centre for Medium-Range Weather Forecasts
(ECMWE). We calculate the monthly median value for each year of interest considering five variables:
temperature of air at 2 m above the surface; temperature of the soil in layer 1 (0-7 cm); surface solar
radiation; accumulated liquid and frozen water falling to the Earth’s surface; and amount of evaporation
from vegetation transpiration. In addition, we also use the Dynamic World land cover [70] data (near
real-time global 10 m resolution) as additional covariates in the model, providing probabilities of each pixel
being classified as one of eight dominant land cover types. As a third ancillary spatial covariate, we consider
gridded population Global Human Settlement Layer 2020 [71] to capture the density of population within
the urban areas. To account for variations in the outcome variable between cities and geographical areas
driven by different levels of economic development, we include GDP per capita in our set of explanatory
variables (https://data.worldbank.org/).

2.1.5. Data processing and extraction

To extract data we use Google Earth Engine. In particular, we extract monthly median values within a 10 m
buffer around each GVI point coordinates for each year between 2016 and 2023. Note that for both periods,
the month-wise 2 year median is calculated to smooth the potential impact of an anomalous year on the
assessment. The resulting dataset is a 12 month multi-band raster file.

The data is then processed to extract imagery onto 10 m radius GVI buffer polygons using the R scientific
programming environment [72]. Latitude and longitude are transformed into polar coordinates to enhance
the spatial representation of the data points. As additional features, we calculate the spatial median for the
percentage coverage of trees, bare ground, and grass within the ten nearest neighbor points. We also
determine the median population distribution for these neighboring points.

Missing data account for 2.6% of the whole training dataset and 1.9% after removing Canada and
Australia, which are excluded from the model training data due to the small number of data points with
non-missing data available. Note that in the prediction stage following model training, cities from Canada
and Australia are nonetheless included in the pool of cities where GVI prediction is carried out. The final
dataset compiled for model training comprises 1295999 observations and 104 variables. Table 1 shows
descriptive statistics for the variables included as features in the model training, where the monthly data for
the satellite bands and for the climate variables are presented as yearly averages.
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Table 1. Descriptive statistics of the training dataset.

Statistic Mean Median St. Dev. Min Max
Green view index (GVI) 19.11 17.55 10.67 1.00 91.07
GDP per capita (USD) 55345.82 63 768.20 20261.28 11720.64 116 486.50
Population density (pop km™2) 124.51 71.75 168.47 0.00 8344.41
Trees (%) 5.59 3.70 6.82 1.63 77.81

Bare (%) 4.37 3.69 2.69 1.86 60.60
Grass (%) 3.85 2.97 3.16 1.76 58.95
Water (%) 4.53 3.98 291 1.59 74.40
Shrub and scrub (%) 4.17 3.45 2.21 1.46 52.98
Flooded vegetation (%) 3.49 3.35 1.05 1.63 58.26
Built (%) 65.62 72.08 16.36 2.05 79.90
Snow and ice (%) 3.34 3.12 1.04 1.76 46.37
Crops (%) 4.52 3.27 5.04 1.68 71.17

B2 2685.80 2771.29 705.17 896.08 5407.75
B3 2456.04 2545.25 641.34 758.25 5417.58
B4 251091 2590.96 675.33 552.67 5907.21
B8 3039.24 3049.33 707.61 672.79 5823.17

2 m air temperature (°C) 16.21 17.30 5.02 10.28 27.24
Surface pressure (Pa) 99159.76 100 928.00 4066.17 72378.70 101 964.60
Total precipitation (m) 0.06 0.06 0.05 0.01 0.42

2.2. Statistical methods and model validation

We apply the extreme gradient boosted decision trees algorithm (XGBoost) [73, 74] as implemented in the
H20 R library [75] to capture the underlying non-linear relations between the GVI and the set of predictors
derived from satellite measurements. Huber loss function is used to handle outliers, and 10-fold spatial
cross-validation (SCV) is adopted to avoid an overconfident assessment of model predictive power in the
testing phase and to account for the inherited spatial dependence in our data points [76, 77]*. We include
pixels classified as water-covered as a spatial sampling variable to account for the presence of water bodies, as
vegetation near water bodies often differs significantly from vegetation farther away due to variations in
microclimate, soil moisture, and nutrient availability. As a final stage, after model tuning, we retrain the
algorithm on the entire dataset before the prediction phase’.

Table 2 shows different evaluation metrics on the training, testing and retrained model over the full
dataset. Metrics included are the R-squared (R?), the root mean squared percentage error (RMSPE) and the
mean absolute percentage error (MAPE). Figure SI-5 visually represents the R? results for the three datasets.
We estimate 10-fold SCV values R? of 75% and 68% in the training and testing set, respectively, resulting in a
full sample model R? of 75%. Comparing the three error metrics indicates that our model is able to capture a
substantial portion of the variation in GVI (R? of 75%) with an average deviation from the actual values of
approximately 27.1% as measured by the MAPE®. The relatively high RMSPE suggests that there are outlier
cases where the model performs poorly. In order to investigate the error distribution of the model, we carry
out country-level and macroclimate zone error analysis. Figure SI-6 reports country-level accuracy results,
with differences in model prediction skill likely driven by heterogeneous urban structures and different cloud
coverage frequencies. Table SI-12 shows the results of error analysis for each city in the training sample.
Finally, table SI-10 shows how the model performs best in the continental and dry climate zone with the
lowest RMSPE and MAPE values. The MAPE values do not vary significantly across different climatic classes.
On the other hand, a more pronounced misalignment with the actual values is found in the temperate and
tropical climate zones when considering the RMSPE.

2.3. Prediction and statistical testing of change over time

We sample points along streets located within urban boundaries with a constant density across cities,
proportional to the cumulative urban street network length. Street network data is obtained by querying
Open Street Map (OSM), as exemplified in figure SI-4). The sampling of points along roads is first random
to ensure independence and then refined via Latin hypercube sampling (LHS). While new sample points are
generated in random sampling without considering the previously generated sample points, LHS ensures

4 The use of SCV instead of standard cross-validation is still a topic of debate in the literature. The interested reader can also refer to the
work of [78] for a different perspective.

5 Additional packages used in this work include data.Table [79],ggplot2[80],stargazer [81].

6 For comparison, we also trained a deep neuronal network model. However, this resulted in a lower level of accuracy compared with
XGBoost (R? of 0.64 on both train and test).
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Table 2. Model training and testing benchmarks.

Dataset R-Squared RMSPE  MAPE
Train 0.754 0.472 0.268
Test 0.684 0.609 0.31

All (post-tuning) 0.749 0.483 0.271

there is only one sample in each row and each column of the two-dimensional (latitude and longitude)
spatial data. Table SI-15 provides count of sampled points in each city where model predictions are
generated. Figure 2 provides a schematic visual representation of sampled points along streets, while tables
SI-2-SI-9 provides descriptive statistics for the sampled prediction points for each year between 2016 and
2023, and figures SI-25-SI-33 demonstrate the consistency of the random sampling procedure with the
spatial distribution of the training data.

To predict GVI values in cities out of the labeled data sample or for different time steps, we use the
trained model and multispectral satellite imagery on the sampled points within each city for each of the years
of interest. To appraise the statistical change in GVI levels, we estimate regression on the full global sample
and on regional and city-level subsets of sampled points to test for the existence of time trends at different
scales, quantified as 3 in the following equation:

log (GVIiy) = o + Byear, + i + 6. + €icy (1)

where, i is each sample point, ¢ is each city, t is each year in the sample and p and 6 are vector of sample
points and city-level fixed effects.

We evaluate the statistical significance of the /5 coefficient by calculating a ¢ — statistic and the related
p — value for the difference in means across years in the sample. As seen from table SI-20, we also test
additional specifications with inclusion or removal of fixed effects and where the year variable is treated as a
set of binary variables instead of a linear continuous time trend variable.

2.4. Within city inequality in population exposure to SGS assessment

To appraise within-city inequalities in exposure to GVI, we calculate the resident population in the
surrounding (with a 250 m radius buffer) of each sampled point (based on the GHS-POP (2022 revision)
[82] and the 2016-2023 mean predicted GVI at each point. This procedure allows to characterize the city
population by GVI exposure at the within-city level and thus to characterize heterogeneity and inequalities,
which are visualized through cumulative exposure curves.

3. Results and discussion

3.1. Mapping and tracking the evolution of SGS in world cities

Based on sampling points along streets in 190 large cities distributed across twenty global macro-regions, we
estimate a median GVI of 15.5 in 2016-2023, with a trend of decrease of 0.3%-0.5% per year (0.02-0.03 GVI
points/yr., depending on the regression model specification to estimate the time trend). Table SI-20 reports
the results of the regression models estimated on the repeated predictions in the sampled points along streets
within each city to evaluate the time trend at a global scale.

Mapping the results (figure 3) reveals that during the eight-year period investigated, the average GVI
levels in Oceanic, European, South East Asian and Eastern and Southern African cities show significantly
higher values than those in continental Asia, North and Western Africa, and American continents. Looking
at the direction and magnitude of GVI evolution over 2016-2023 reveals a high level of heterogeneity both
between and within regions (figure 4(A)). For instance, during the 2016—2023 eight-year period, we estimate
median GVI declines by 1.7%/yr. in cities of Asia and 2.6% in urban areas in Oceania, while we find evidence
of growth rates of similar magnitude (about 1%/yr.) in European and North American cities. Conversely, in
African and Latin American cities we only find evidence of a small trend of change.

As an additional experiment, we compare the correlation of the estimated values of GVI with the yearly
average NDVI over time and space (see table SI-21). This exercise is useful for evaluating the agreement
between an estimated street-based indicator (the GVI) and an index directly calculated from multispectral
remote sensing data (the NDVI) in the large, globally-relevant pool of locations and cities covered by our
study. Previous studies [12, 83] have already shown that the two metrics are not substitutes, even if
correlated. Accordingly, our experiment shows a significant correlation between the two measures across the
years covered by the analysis and over space when aggregated at the city and country levels.

6



Predicted city-level mean GVI, average 2016-2023

o

5 10 15 20 25

Figure 3. Map of the estimated green view index (GVI, a metric estimating local street canopy coverage in percentage terms) in 190 major world cities distributed in 20 regions. Each dot represents the geographical coordinates
of the centroid of a city and its color coding describes the average value across the sampled points along the streets of the city in years 2016-2023. National boundaries are based on the GADM v4.1 database [69].
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Figure 4. Distribution of the estimated green view index (GVI) in randomly sampled points along streets within (selected) cities
boundaries in 2016 and 2023. (A) Regional distribution of city-level median GVI (based on sampled points in all cities analyzed
in this paper) and p-values of regression coefficient of region-level mean GVI change linear trend; (B) city-level estimated average
percentage change per year of GVI based on sampled points in the 50 largest cities analyzed, by population. In both panels,
p-values above each box represent the probability of rejecting the null-hypothesis of no trend of change in the local GVI between
2016 and 2023.

While it is beyond the scope of this paper to address the mechanisms underlying the observed trend of
GVI decrease in the pool of global cities analyzed—as well as the regionally and city-level heterogeneous
trends—it should be noted that the detected SGS canopy coverage change via the GVI indicator may depend
on a broad range of interacting factors. These might include global urbanization patterns determining land
use change and deforestation [84], in particular in the Global South, but also urban afforestation policies
[85]; climate change impacts on vegetation health and canopy growth [86] and the already documented
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Figure 5. Map of the estimated green view index (GVI) for the illustrative example of six selected cities. Each dot in each city
represents the geographical coordinates of a sampling point in a city and its color coding describes the average local estimated
GVI value in the 2016-2023 period.

ongoing CO?2 fertilization [87]; or even weather variability during the eight observation years (2016-2023),
potentially affecting the observed variations.

Zooming into each city covered by our global analysis (see table SI-18 for a comprehensive summary of
all cities covered), considering the ten most populated urban areas in each of six global macro-regions, we
estimate the cities with the highest city-level median GVI (in 2016—2023) to be the following: Dar es Salaam
(Tanzania) in Africa; Brisbane (Australia) in Oceania; Dortmund (Germany) in Europe; Kolkata (India), in
Asia; Belo Horizonte (Brazil) in Latin America; and New York (USA) in North America. On the other hand,
the large cities with the lowest values in each region are Cairo (Egypt) in Africa; Tokyo (Japan) in Asia; Saint
Petersburg (Russia) in Europe; Lima (Peru) in Latin America; Phoenix (USA) in North America; and
Adelaide (Australia) in Oceania.

Moving to the analysis of SGS change within each city over the eight-year period covered by our analysis,
figure 4(B) shows (for a subset of highly populated urban areas) that we find evidence of statistically
significant (p-value < 0.01) changes in the vast majority of city-level median GVI levels between 2016 and
2023. The five cities with the strongest, statistically significant mean GVI increase trend are Helsinki
(Finland), Kyiv (Ukraine), Leeds (United Kingdom), Houston (US) and Ciudad Judrez (Mexico). Among
others, additional large cities witnessing a GVI growth rate >5%/yr. include Windhoek (Namibia), Kolkata
(India), Rio de Janeiro (Brazil), and Singapore. Conversely, the top five cities by mean GVI decreasing trend
are Osaka (Japan), Guangzhou (China), Auckland (New Zealand), Douala (Cameroon) and Port Moresby
(Papua New Guinea).

3.2. Measuring within-city inequalities in SGS

While appraising across-cities and regions trends is crucial to provide a global picture of change dynamics,
SGS can also be highly unequally distributed within each city in terms of neighborhoods and accessibility of
the residential population [38, 88—92]. This issue is widely discussed in the literature in relation to within-city
gentrification and segregation dynamics and, more broadly, to urban environmental justice [93]. Figure 5
provides a representation of the within-city variation in the GVI for selected cities across the six continents
covered by our study (see figures SI-7—SI-22 for similar maps of sampled points in additional cities).

Based on the within-city variations in each city covered by our analysis, we carry out an assessment of the
inequality in the distribution of GVI (i.e. the estimated availability of SGS) with respect to the population
living in proximity of each sampling point. Curves of the cumulative GVI exposure of the residential
population (figure 6) demonstrate that substantial heterogeneity across cities within the same region is
observed: in Europe, for instance, the GVI is much more equally distributed in relation to the local resident
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Figure 6. Residential population exposure inequality to the green view index (GVI). (A) city-level curves, faceted by region; (B)
Region-level curves (based on city-level curves aggregation).

population in Paris than in Madrid, Barcelona, or Moscow. To explore such within-city inequalities, we also
calculate Gini index values of GVI inequality weighted by the local population (see table SI-19) suggest that
among the cities covered by our global assessment, those with the most unequal GVI accessibility are Cape
Town (South Africa), Athens (Greece), Alexandria (Egypt), Nairobi (Kenya), and Rabat (Morocco), whilst
the (relatively) most equal distribution is estimated in several Oceanian and Caribbean cities.

When aggregating the sampling point-level results for the full set of cities analyzed in the paper to the
macro-regional level, Oceania stands out as the region with the most equal distribution of GVI, followed by
Europe and North America. The most unequal regions are found to be Latin America and Africa. This result
is in line with recent research, such as Li et al [8], demonstrating strong inequalities in green space quantity
and quality between cities in the Global North and South as a consequence of both socio-economic and
natural factors. Such environmental injustice manifests itself the most in Global South cities, where dynamics
of ‘green apartheid’ [94] have been highlighted, in relation to both income [95] and social and racial factors,
as well as urban center-edge gradients [96].
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4, Conclusion

4.1. Summary of the study and implications

The approach developed to estimate and track the evolution of GVI—an estimate of canopy coverage along
urban roads—by modeling street-level data with openly and globally available, frequently updated remotely
sensed, geospatial, and climate reanalysis datasets has important implications. This is because SGS has great
relevance for several dimensions of sustainable cities related to SDG 11. For instance, in relation to climate
change mitigation and adaptation, greener cities bear greater potential to reduce the socio-economic impacts
of extreme climate events [97], adverse heat-related impacts on human health [98, 99], and decrease thermal
energy needs in buildings, such as cooling demand [8, 13]. Thus, it is key that national and local
decision-makers and public planners seek to expand SGS and tackle the drivers of SGS decline where this is
ongoing. Global initiatives such as the FAO’s Tree Cities of the World (https://treecitiesoftheworld.org/) are
encouraging cities to join a global effort for urban vegetation expansion.

The methodology and results of this study can be used by policymakers in the design and the evaluation
of multi-scale policies (e.g. from national funding allocation to local council implementation actions) for
greener, more sustainable, ecosystem services-rich and equitably designed cities to pursue environmental
goals for climate change mitigation and adaptation and pollution reduction, as well as other social
development goals. To achieve these aims, the output data should be combined with other key indicators of
urban resource use and impacts to appraise the relevance and potential benefit of SGS expansion and
densification. Such dimensions and data include local temperature records from weather stations, energy
demand for thermal regulation in buildings, records of the impact of extreme weather events on people and
urban infrastructure, climate-related adverse impacts on human health such as morbidity and mortality, as
well as subjective well-being indicators. Moreover, environmental justice dimensions are increasingly pivotal
in the quest for a just transition [100]. Thus, also within-region and within-city inequalities are worth careful
equity-oriented planning to ensure that the benefits of urban vegetation are equitably accessible and
infrastructure inequalities are reduced [101]. Indicators of SGS distribution should hence be analyzed in
relation to socio-demographic group distribution inside and across cities to identify the context of
environmental justice relative to income, gender, age, race and other dimensions.

4.2, Limitations and future work

Coming to the limitations of this study, although model training and validation show satisfactory accuracy
levels (figure SI-5), the analysis is not without caveats and the nature of the training data has to be taken into
account. First, the GVI metric used to assess SGS, describes the percentage fraction of canopy coverage as
perceived from street-level 360-degree photography taken at a given geographical point. Thus, the coverage
and quality of the street-based imagery underlying the labeled GVI data is likely mixed across and within the
cities for which it is available and on which the ML statistical model is trained. Sources of bias associated
with mixed coverage of sample data points of vegetation within cities and across the globe include the
presence of water bodies, cloud cover, varying types of canopy and trees, as well as differences in land use and
management practices. Water bodies can create microclimates that enhance vegetation health, potentially
skewing results if not evenly distributed across the sample. Cloud cover can obscure satellite imagery, leading
to incomplete or inaccurate data collection, particularly in regions with frequent cloud cover. The diversity in
canopy types and tree species can influence the reflectance values captured by remote sensors, causing
variability in vegetation indices. From a more general standpoint, the primary challenge we are undertaking
involves predicting a street greenness indicator, which manifests in a three-dimensional space, using satellite
data derived through extrapolation from images captured in a two-dimensional space. Moreover, the latter
provides a more coarse-grained picture of SGS. While this makes reaching high accuracy challenging, it
might, in turn, induce the model to yield heterogeneously accurate estimates across different geographical,
urban, and social settings across and within the global pool of cities analyzed.

Irrespective of limitations, our analysis provides a globally relevant estimate of the GVI of SGS across
world cities validated against street-level imagery in a range of highly diverse cities in terms of climate and
socio-economic conditions, and it contributes to future research through an open-source, open-data,
statistically validated approach to assess future changes in near real-time. The approach is suitable for
scalability to additional cities and geographies and for low-cost and rapid tracking of future SGS change, as
the statistical model can be updated at the high frequency of the release of multispectral satellite imagery and
climate records. Future work can build on ever more available and high-coverage street imagery databases
[102] to further assess and improve the understanding of the trends and determinants of urban landscape
change.
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