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A B S T R A C T

Remotely sensed imagery plays a crucial role in analyzing and monitoring land cover and urban 
growth. The accuracy and applicability of European CORINE Land Cover (CLC) maps in Land Use 
and Land Cover (LULC) monitoring across European regions, especially at local scales, have been 
critiqued and remain limited due to temporal methodological variations. This study aims to 
understand the dynamics of LULC, assess the effectiveness of vegetation indices in estimating 
forest cover, and validate the local applicability of CORINE maps in the Lower Austrian district of 
Mödling in the neighbourhood of Vienna from 1999 to 2022. We employed a supervised 
maximum likelihood classifier and class-based change detection to analyze multi-decadal mul-
tispectral imagery for mapping and quantifying vegetation and land use changes across the dis-
trict, in comparison with satellite indices and CORINE data. The study identified changing 
patterns and assessed the accuracy of the Normalized Difference Vegetation Index (NDVI) and the 
Soil Adjusted Vegetation Index (SAVI) in estimating Mödling’s forest cover, determining optimal 
thresholds for improved assessment. Our findings reveal a slight reduction in Mödling’s forest 
area – decreasing from 39.11 % in 1999 to 36.5 % in 2022 – with an overall reduction of 2.61 %. 
Agriculture primarily caused forest loss in the early period, expanding by over 37 %. In the most 
recent decade, settlement expansion, with built-up areas gaining approximately 650 ha, has 
exacerbated the loss of forest and agricultural lands. Our classification achieved high overall 
accuracy (92 %–94 %) and Kappa accuracy (0.90–0.93). The supervised classification exhibited a 
consistent reduction, aligning with CORINE outputs and refuting reports of its limited local 
applicability and accuracy. Although NDVI and SAVI estimates revealed a non-monotonic trend in 
forest cover across different years, NDVI performed better than SAVI. The results of this study are 
vital, providing evidence and recommending effective measures for enhancing monitoring, policy 
development, and decision-making regarding vegetation conservation, urban development, and 
overall land management. This research contributes to the limited body of core studies employing 
spectral imagery and GIS tools to monitor changes in land cover or assess CORINE maps in Austria 
and across Europe, with a special focus on the peri-urban interface.
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1. Introduction

The use of remote sensing data has become indispensable for analyzing the dynamics of land cover [1,2]. Satellite imagery has 
gained widespread recognition in global research projects, particularly in the domains of climate change, ecological monitoring, and 
environmental research [3–6]. In recent times, change detection methodologies employing Geographic Information System (GIS) tools 
and remote sensing (RS) data for image processing and classification have been given significant attention [7–9]. Hence, these ap-
proaches (GIS and RS) prove to be well-suited for identifying changes in land use and land cover patterns [10–12].

Global population growth, settlement expansion, industrialization, and climate change impacts have resulted in unforeseen shifts 
in Land Use and Land Cover (LULC) dynamics, and resilient land use management and monitoring measures are more important than 
ever before [13]. To this end, the significance of LULC mapping and analysis, coupled with the regular monitoring of dynamic changes, 
cannot be overstated. This underscores the imperativeness of utilizing suitable remote sensing-based data alongside effective change 
detection approaches [5,14]. Of utmost importance, gathering, classifying, validating, and storing change-related data requires 
consideration of many factors and methods that have garnered increasing prominence in recent times [3,15,16]. This widespread 
recognition is due to RS data being collected and stored in a digital format, which facilitates subsequent operations on computers and 
supports modelling approaches [2,17,18]. Remote sensing technologies provide extended spatial coverage and multispectral data, 
ensuring a consistent supply of reliable and precise information [2,17].

Over the years, researchers worldwide have published and presented several scientific studies focusing on the use of satellite 
imagery with varying resolutions to detect changes in land-use patterns [2,12,19–21]. Satellite imagery – including Landsat data, 
Sentinel data, and other data sources – has become crucial for conducting effective analysis, mapping, accounting, and monitoring of 
LULC changes on local, national, and global scales [16,22–24]. Despite the suitability of remotely sensed data for detecting and 
analyzing LULC changes across different spatial and temporal scales within the Austrian context, limited attention has been given to 
municipal-level analysis [25,26]. To the best of the authors’ knowledge, no research has been conducted to analyze land-use changes in 
Mödling, a significant district in Lower Austria currently undergoing landscape transformation. Such a study would be instrumental in 
predicting the progression of future vegetation cover, especially in light of anticipated LULC transformations within the region. 
Consequently, LULC change detection studies are essential for helping the government and land managers at the local level implement 
improved land use management policies and provide appropriate strategies for maintaining various natural environments.

Vegetation indices (VIs) derived from geospatial data obtained from sensors have become vital tools for researchers all over the 
world [27–29]. VIs are widely utilized for analyzing the characteristics of vegetation and forest structures [28,30,31]. The effec-
tiveness of these indices has been demonstrated in studies which have shown their ability to provide relatively precise estimations of 
multispectral imaging [32–34]. In addition, they are critical for scientists studying the complexities of vegetative dynamics and their 
responses to environmental changes [32,35]. Among the VIs available, the Normalized Difference Vegetation Index (NDVI) and Soil 
Adjusted Vegetation Index (SAVI) have been extensively used in various RS applications [32,35–37]. Normalized Difference Vege-
tation Index and Soil Adjusted Vegetation Index are calculated based on the differences in reflectance between the near-infrared (NIR) 
and RED bands. These provide an integral metric for assessing vegetation density and tracking its temporal growth [38,39]. 
Normalized Difference Vegetation Index stands out as the most important and popular index for vegetation assessment, mainly because 
of its ability to distinguish between vegetative and non-vegetative entities such as soil or water and detect even minor vegetation 
changes [40,41]. However, despite its strength, NDVI has drawbacks, which include its inability to accurately predict changes in soil 
colour and soil water content, and its susceptibility to saturation from densely vegetated areas [39,42]. To address these limitations, 
the adoption of SAVI has become crucial and is garnering increasing attention in RS studies. Soil Adjusted Vegetation Index is an 
effective algorithm that is more suitable for analyzing vegetation in areas with bare soil or high soil reflectance [39,43,44]. Therefore, 
the combined use of NDVI and SAVI has revolutionized how researchers obtain more detailed and accurate information about 
vegetation and soil conditions, making these algorithms essential tools for climate change, ecological, and GIS/RS studies [32]. 
Consequently, it is important to better understand their limitations and capabilities to maximize the effectiveness and application of 
these spectral indices, as studies have demonstrated variability in their accuracy and suitability for assessing certain LULC classes [45,
46]. This knowledge will aid researchers in accurately monitoring vegetation growth patterns, assessing forest health conditions, and 
tracking the effects of climate change on vegetation ecosystems.

CORINE Land Cover (CLC) maps are standardized periodic maps developed for monitoring and analyzing changes in LULC across 
diverse European regions [47–50]. These maps are valuable for researchers and policymakers and have become essential tools for 
numerous purposes, including environmental monitoring, natural resource management, and land-use planning [50]. However, 
despite their considerable benefits, the use of these maps has been limited, especially at the local level, such as in Mödling, Lower 
Austria. Therefore, it is imperative to integrate these mapping methodologies to better understand and monitor changes in LULC 
dynamics, which can aid in developing robust land management strategies [51,52]. Nevertheless, the accuracy of available European 
CLC maps in monitoring land-use changes tends to vary with the geographical complexity and land cover heterogeneity of the specific 
country to which they are applied [49]. Studies have highlighted uncertainties, inaccuracies, and limitations in the applicability of the 
maps in specific national cases like Spain and the Netherlands [47,51], but no known case study exists for Austria. Furthermore, 
existing studies have evaluated accuracy by comparing new CORINE maps with previous editions, a method that might not be the most 
effective approach for validation. A more suitable approach involves using unique land cover products and dynamic LULC maps on the 
same geographical or territorial extent, an approach that is scarce in the region, except for the study conducted across the European 
Alps using a low-resolution MODIS-based land cover comparative analysis [53]. Additionally, the variability in CORINE accuracy is 
exacerbated by methodological variations in the temporal production of the CORINE maps. Since its initiation in 1990, CORINE has 
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been updated every six years, experiencing changes in methodologies from photo interpretation techniques to the generalization 
approach of individual national maps [47,52]. This phenomenon is argued to pose limitations on their usability for long-term LULC 
change analysis, albeit with limited justification.

This study aimed to examine LULC dynamics in the Mödling district, Lower Austria, from 1999 to 2022 using Landsat multispectral 
imagery. The study objectives are: (a) to understand the land cover dynamics of Mödling using a supervised classification algorithm, 
(b) to explore the suitability and accuracy of vegetation spectral indices in estimating forest cover in the study area, and (c) to conduct 
a two-way validation between the CORINE Land Cover maps and our supervised classification outputs to enhance the overall precision 
and confidence in land cover information derived from both methodologies.

2. Methods

2.1. Study area

Mödling is one of the 20 districts in Lower Austria, situated between latitudes 47◦57ʹ30ʺN and 48◦13ʹ9ʺN and longitudes 16◦3ʹ30ʺE 
and 16◦33ʹ21ʺE (Fig. 1). It is located adjacent to southern Vienna in the “Industriviertel” (industrial area) of Lower Austria. Lower 
Austria (Niederosterreich) is in the northeastern part of Austria and is one of the nine states in the country. It is one of the largest states, 
covering an area of 19,186 km2, and shares international borders with the Czech Republic in the South Bohemia and South Moravia 
regions, as well as Slovakia in the Bratislava and Tmava regions. The state is divided into four regions, often referred to as Vierta: 
Weinveirtel (wine quarter), Waldviertel (forest quarter), Mostviertel (most quarter), and Industrieviertel (industrial quarter). The 
industrial quarter comprises seven districts, one of which is Mödling. Geographically, the district of Mödling has a total population of 
121,039 inhabitants [54]. It experiences a temperate climate typical of Central Europe, characterized by four distinct seasons, 
including cold winters and warm summer periods. The climate in this region is of a Pannonic sub-continental type, with annual 
precipitation and temperature averaging around 650–800 mm and 7–10 ◦C, respectively [55–57]. The Lower Austria region en-
compasses various soil types, primarily consisting of Cambisols, Planosols, and Kolluvisols [57]. It contains several water bodies and 
watersheds that serve as essential habitats for biodiversity, including Mödlinger Bach, Schwechat River, and Wienerwald lakes, among 
others [57,58]. The vegetation in the Mödling district is characterized by a diverse mixture of forests, meadows, agricultural and 
grassland areas, as well as urban settlements. The forested areas in this district are home to various tree species, predominantly 
coniferous forests, and mixed forests dominated by broadleaves, including beech, oak, fir, spruce, larch, black pine, red pine, and 
hornbeam [55,59]. These forests provide diverse habitats for a variety of fauna including mammals like deer, birds, insects, and 
cricetids [55,59,60].

2.2. Data collection, processing and analysis

Fig. 2 illustrates the research methodology, encompassing imagery acquisition and pre-processing, training of samples, image 
corrections, supervised classification, accuracy assessment, change detection, as well as forest cover estimation based on vegetation 
indices.

Fig. 1. Map of Austria showing the four regions in Lower Austria (Industrieviertel, Mostviertel, Waldviertel, and Weinviertel), and the study 
area (Mödling).
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2.2.1. Imagery acquisition
Landsat imagery was used for this study. Due to the time steps involved, which cover 1999–2022, two variations of Landsat imagery 

were utilized. Landsat 7 Enhanced Thematic Map Plus (ETM+) was acquired for 1999 and 2003, while Landsat 8 Optical Land Imaging 
(OLI) – Thermal Infrared Sensor (TIRS) was obtained for 2013 and 2022 (Table 1). The rationale behind this selection is that the OLI- 
TIRS sensor for land surface observation started in 2013 – rendering it unavailable for the earlier periods under examination in this 
study (1999 and 2003). Hence, the ETM + sensor was employed, as it provides imagery dating back to April 1999, rendering it suitable 
for these two early periods. Beyond considerations of sensor changes and technological advances, the choice to adopt irregular time 
intervals in data acquisition was based on the availability of high-quality data and the necessity to analyze long-term patterns 
encompassing specific periods of significance in Austria’s LULC dynamics. All images were acquired during the late spring (May) and 
summer months (June, July, and August). While we acknowledge the potential bias that may result from the data source not covering 
all the seasons, we ensured that these selected images corresponded to the periods with the highest sunlight and optimal reflection of 
the infrared wave (band 4 in Landsat 7 and band 5 in Landsat 8) by vegetation. These months align with the peak growth and sig-
nificant phenological changes in vegetation, coinciding with Austria’s agricultural growing period and rainy season, providing a 
comprehensive representation of the seasonal dynamics for the analysis of various LULC classes. Moreover, the selected images from 
these periods experienced the least atmospheric interference, ensuring the highest data quality and accessibility for the study. This 
approach minimizes potential bias, improves land cover classification accuracy, and ensures optimal estimation through vegetation 
indices.

In addition, images collected during the summer have less cloud cover, which is vital for accurately estimating various land cover 
characteristics. A reconnaissance survey was further conducted, involving a thorough examination of the study area’s environment. 
Point samples representing different land cover classes were obtained using global positioning systems (GPS). This process allowed us 
to compare the ground data acquired during the survey with observations from remotely sensed imagery, such that we could obtain 
information that would provide optimal guidance for effective training of samples for the supervised classification.

2.2.2. Imagery preprocessing
Earth data acquisition by sensors is subject to various limitations and can be affected by atmospheric distortions. Therefore, 

comparing imagery sourced from different sensors requires image preprocessing and corrections to minimize the effect of cloud cover 
and other atmospheric disturbances. To achieve this, the direct reflection of land cover features recorded by the sensor – often referred 
to as the Digital Number (DN) values, in the acquired images was converted to top-of-atmosphere reflectance. This conversion was 
aimed at reducing the influence of cloud and other atmospheric distortions on the images, ensuring that they could be compared 
effectively across different sensors. Additionally, a correction for sun angles was applied to the converted images to minimize the effect 
of varying sun angles during imagery collection on different dates. These corrected images were subsequently used for conducting 
supervised land cover classifications and for deriving vegetation spectral indices (i.e., NDVI and SAVI) used in this analysis – 
employing these equations as proposed by Huete [39] and Huang [40]. 

TOA Reflectance=Reflectance multi band x DN values + Reflectance add band (1) 

Sun angle correction=
TOA Reflectance

sin(Sun elevation)
(2) 

Fig. 2. Flowchart illustrating the sequential stages of the methodology.
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NDVI=
NIR − RED
NIR + RED

(3) 

SAVI=
NIR − RED

NIR + RED + L
x (1+ L) (4) 

where: NIR = Near Infrared Band; RED: Red Band; the TOA reflectance is the top of the atmosphere reflectance without solar angle 
correction; reflectance multi-band and add band refer to the band-specific multiplicative and additive rescaling factors, respectively, 
both obtained from the imagery metadata; the sun angle correction provides the final top-of-atmosphere planetary reflectance used for 
the analysis. We further analyzed the outputs of the vegetation indices and removed outliers to improve the accuracy of computations 
and forest cover estimation.

2.2.3. False colour composite
The false colour composite identifies different land cover features based on their reflective intensity in the electromagnetic 

spectrum’s Near Infrared band (NIR). Typically, green surfaces, such as agricultural and forest areas, absorb light in the red and blue 
bands while reflecting light in the green band of the spectrum, resulting in the green colour visible to the human eye. They also tend to 
reflect NIR light, which, when combined with visible bands, enables the visualisation of wavelengths that are not visible to the human 
eye. This distinctive reflectance pattern across the electromagnetic spectrum enables the differentiation of various land cover surfaces. 
The false colour composite of Mödling for 2022 (Fig. 3) reveals the different land cover characteristics within the study area. Spe-
cifically, five land cover classes can be distinguished in the imagery: forested and dense vegetation appears as deep red, agricultural 
and grassland areas have a lighter red hue compared to forests, water bodies such as lakes and ponds are represented in deep blue and 
sky blue, bare ground exhibits a slight green tint, and buildings are depicted in cyan. These variations in reflection aided the training of 

Table 1 
Imagery sources used in this study: collection dates, path/row, satellite and sensor types, resolutions, and bandwidths.

Year Collection date (dd/mm/yyyy) Path/Row Satellite Sensor Resolution (m) Bandwidth (μm)

1999 07/08/1999 190/027 Landsat-7 ETM+ 30 B2 (Green): 0.52–0.60 
B3 (Red): 0.63–0.69 
B4 (NIR): 0.77–0.90 
B7 (SWIR): 2.09–2.35

2003 30/05/2003 190/027 Landsat-7 ETM+ 30 B2 (Green): 0.52–0.60 
B3 (Red): 0.63–0.69 
B4 (NIR): 0.77–0.90 
B7 (SWIR): 2.09–2.35

2013 11/06/2013 190/027 Landsat-8 OLI-TIRS 30 B3 (Green): 0.53–0.59 
B4 (Red): 0.64–0.67 
B5 (NIR): 0.85–0.88 
B7 (SWIR): 2.11–2.29

2022 13/07/2022 190/027 Landsat-8 OLI-TIRS 30 B3 (Green): 0.53–0.59 
B4 (Red): 0.64–0.67 
B5 (NIR): 0.85–0.88 
B7 (SWIR): 2.11–2.29

Fig. 3. False colour composite 2022 for Mödling.
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samples for the subsequent supervised classification of the images.

2.2.4. Training of samples and image classification
Supervised classification of multitemporal imagery is widely recognized as one of the most effective, well-established, and prev-

alent techniques for LULC classification, quantification, and change detection. This approach relies on the utilization of training 
samples and predefined classes [61]. Among the various supervised classification algorithms available, the maximum likelihood 
classifier stands out as the most extensively employed method in numerous prior studies focused on LULC classification due to its 
comparatively higher accuracy [62,63]. Therefore, in this study, we adopted the supervised maximum likelihood algorithm to classify 
the LULC and detect the spatiotemporal changes in Mödling. Maximum likelihood classifies imagery features based on the highest 
statistical probability of every pixel and its spectral value belonging to certain classes defined in the training samples. Due to this 
feature, the strength of this algorithm lies in having adequate training samples to represent the different features in the images and 
obtain a satisfactory level of accuracy in feature representation. Furthermore, the combination of feature representation observed from 
the ground truthing process, local knowledge of the environment, reflections from different Landsat band combinations, and very 
high-resolution images from Google Earth provided guidance to accurately train samples for running the image classification. 
Following Al Mamun [64], we utilized the Maximum Likelihood Image Classification toolbar of ArcMap 10.7 to train the samples, 
create the signature files, compute the spectral signatures, and conduct the classification for each of the images between 1999 and 
2022.

2.2.5. Accuracy assessment
The image classification process is incomplete without assessing the accuracy of the classification. Accuracy assessment involves 

comparing pixel samples from classified imagery features with the ground feature (often known as the reality), which can be obtained 
from very high-resolution images, to reveal the extent to which the classified land cover classes represent the actual earth observation. 
Random points ≥ 160 points were generated for each period using the “Create Accuracy Assessments Points” in the Spatial Analyst 
toolbox of ArcMap 10.7 to ensure optimal representation of individual land cover classes. The random points representing different 
land cover classes were exported and displayed on Google Earth to compare the classification results with the ground reality. The 
reference points from Google Earth were verified using the information from the ground truthing to improve the precision of feature 
representation. The comparison of the maximum general and mutual means of classification results to actual accuracy outcomes for 
each land cover class, regarded as the error, contingency, or confusion matrix [65,66], was developed for every classified image. It 
helps to quantify the correct and incorrect classifications for each class. Common pixel-based accuracy statistical measures, including 
user’s accuracy and producer’s accuracy, were computed from the matrix at the class level [46,66–68]. The overall accuracy, which 
provides a standard measure of the reliability of the classified images [66,68], was further obtained for each image using Eq. (5). 
Overall accuracy is the ratio of correctly classified pixels (often in diagonal) to the total number of reference pixels [69]. Additionally, 
the Kappa accuracy coefficient, which evaluates how a classification performs better when compared to a random type, was obtained 
using Eq. (6) as proposed by Petit [70]. Its values range from 0 to 1, with a higher value indicating greater accuracy. 

Overall accuracy=
Number of correctly classified pixels (Diagonal)

Total number of reference pixels
x 100 (5) 

Kappa coefficient (T)=
(TS x TCS) −

∑
(Column total x Row total)

TS2 −
∑

(column total x Row total)
x 100 (6) 

Where:
TS = Total Samples.
TCS = Total Correctly Classified Samples.

2.2.6. Change detection
Change detection involves the evaluation of the differences between imagery of the same study areas collected on different dates 

[70,71]. It compares the spatial characteristics of two points within an exact location along a period while controlling variations 
resulting from variable differences. The understanding and identification of changes on the land surface across different periods have 
been identified as a practical and crucial requirement for a better understanding of the multidimensional interaction between natural 
events and human activities, thus facilitating optimal resource planning, allocation, and management [72]. Several change detection 
methods have been identified across different studies, each adopting different forms of datasets and techniques. Generally, geographic 
data such as satellite imagery, maps, and aerial images have been widely used in change detection studies [73]. Furthermore, the 
development of advanced databases, which house a large volume of archival datasets, has aided the development, evaluation, and 
optimization of several digital change detection methodologies and algorithms for accurate LULC change detection and assessment 
[74].

A GIS-based change detection technique was adopted in this study. This approach integrates the remote sensing method and GIS to 
understand the spatial-temporal changes within our study location [72]. The strength of this method, which necessitated its use, is in 
the ability to incorporate different data sources, with varied accuracy and formats [70,73] into LULC change detection evaluation for 
long-period intervals [72]. A post-classification change technique was done by overlaying classified maps of different assessment 
periods to obtain the changes between them. The differences in areas of each land cover class and changes between land cover classes 

G.L. Alawode et al.                                                                                                                                                                                                    Heliyon 11 (2025) e43454 

6 



across the study period were further obtained using the equations below: 

Land Cover Change (Ha)=Afy − Aiy (7) 

% Land Cover Change=
Afy − Aiy

Aiy
x 100 (8) 

% LULC Area=
Alu

Am
x 100 (9) 

where:
Afy = Area of land at the latter year
Aiy = Area of land at the initial year
Alu = Land cover area
Am = Area of Mödling

3. Results and discussions

3.1. Accuracy assessment of classified images

Assessing the accuracy and confirming the validity of the resulting classified maps is considered imperative for change detection 
analysis following LULC classification. Typically, this assessment involves computing classification errors for each category and 
overall, for each classified image, as well as analyzing class-level user’s accuracy (UA), producer’s accuracy (PA), and overall Kappa 
measures [46,75]. Therefore, in this study, we evaluated the classification accuracy of Mödling using confusion matrices and sum-
marized overall (Kappa) accuracy, as presented in Tables 2 and 3, respectively. The observed class-level accuracies ranged from 85 to 
100 % across all the assessed periods, demonstrating the high performance and reliability of our land cover classification and classified 
maps. According to Anderson et al. [75], a standard accuracy value of 85–90 % is recommended for a credible and valid land cover 
classification. 85 % of our class-based UA and PA values exceeded this standard, with only six values falling below 90 %, primarily in 
the 2013 and 2022 OLI-TIRS classified images. The lowest UA (85 %) was observed in the classification of water body in 2013, which 
however still met the credibility threshold. Overall, the classification results were consistent with Anderson et al. [75] standards, 
indicating good accuracy.

The classification accuracy in our study is further confirmed by the high overall accuracy of 93.75 %, 94.38 %, 93.13 %, and 91.88 

Table 2 
Accuracy assessment (confusion matrix) for supervised LULC classification of Mödling for the study period (1999–2022).

Year Predict Water 
body

Built-up 
area

Bare 
ground

Agriculture/ 
grassland

Forested 
area

Total User 
accuracy

Producer 
accuracy

1999 Water body 18 2 0 0 0 20 90 100
Built-up area 0 28 1 0 2 31 90.32 90.32
Bare ground 0 1 31 1 0 33 93.94 91.18
Agriculture/ 
grassland

0 0 2 33 0 35 94.29 94.29

Forested area 0 0 0 1 40 41 97.56 95.24
Total (Producer) 18 31 34 35 42 160 – –

2003 Water body 19 1 0 0 0 20 95 100
Built-up area 0 29 0 0 2 31 93.55 96.67
Bare ground 0 0 30 3 0 33 90.91 96.77
Agriculture/ 
grassland

0 0 1 34 0 35 97.14 87.18

Forested area 0 0 0 2 39 41 95.12 95.12
Total (Producer) 19 30 31 39 41 160 – –

2013 Water body 17 2 0 0 1 20 85 100
Built-up area 0 29 0 1 1 31 93.55 85.29
Bare ground 0 2 30 1 0 33 90.91 96.77
Agriculture/ 
grassland

0 1 1 33 0 35 94.29 91.67

Forested area 0 0 0 1 40 41 97.57 95.24
Total (Producer) 17 34 31 36 42 160 – –

2022 Water body 18 1 1 0 0 20 90 94.74
Built-up area 0 28 2 1 0 31 90.32 93.33
Bare ground 0 0 31 2 0 33 93.94 86.11
Agriculture/ 
grassland

1 1 2 31 0 35 88.57 86.11

Forested area 0 0 0 2 39 41 95.12 100
Total (Producer) 19 30 36 36 39 160 – –
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%, and excellent Kappa coefficients of 0.921, 0.929, 0.913, and 0.897 for 1999, 2003, 2013, and 2022, respectively. The accuracy 
evaluation results we obtained are consistent with and even surpass what many other LULC classification or mapping studies have 
reported [6,46]. The observed good accuracy in our classification study could be ascribed to the maximum likelihood classification 
technique, which has been reported to provide the best accuracy among other supervised classifiers, including Mahalanobis distance 
and minimum distance classifiers [62,76]. This was coupled with extensive training sampling to represent different spectral reflections 
for each class and validation through meticulous ground-truthing. However, it is important to emphasize the potential influence of 
landscape complexity on classification accuracy. Mödling’s landscape is distinctive in that its land cover classes are quite well-defined 
and easily distinguishable (as evident in the false colour composite, Fig. 3) with forests dominating the western part, built-up areas 
prevalent around the east-central region, and agricultural patches occupying most of the eastern land areas. This contributed to 
minimizing misclassification and facilitating accurate classification of the district’s land cover.

3.2. LULC classification of Mödling (1999–2022)

The applications of LULC classification of remotely sensed imagery extend beyond the mapping of individual forest environments 
and changes to analyzing the patterns of larger and more complex geospatial units, including urban and regional landscapes [6,77], 
like Mödling. In this study, we evaluated and quantified the LULC features and patterns across the Mödling district in Austria over a 
two-decadal epoch (1999–2022), specifically considering four years − 1999, 2003, 2013, and 2022. The four supervised classification 
raster outputs of the study area for these periods are depicted in Fig. 4, while Table 4 summarizes the statistics of the area covered by 
each LULC class for the respective years of assessment. We identified and classified the land cover features in this district into five (5) 
categories: water bodies, built-up areas, bare ground, agriculture/grassland, and forested areas, aligning with several other global 
LULC studies [21,46,78,79]. These categories are also adapted from and typically correspond to the top-level classes within the Eu-
ropean CLC, which is the standardized land cover classification system used in Europe [48].

In 1999, the forested area in Mödling accounted for 39.11 % of the total land cover, covering around 11,139 ha out of 28,484 ha, 
making it the largest spatial component. This land cover class, along with agricultural areas, which accounted for 25.63 % (7301 ha), 
and built-up areas, occupying 21.8 % (6209 ha) of the total land surface, constituted the top three dominant land uses within the 
district during that period (Table 4). By 2003, a slight reduction in forested area was observed, with its land cover accounting for 37.73 
% (10,474 ha) of the total land cover. During that period, agricultural areas already covered 10,013 ha, representing over 35 % of the 
entire district, while built-up areas covered nearly one-quarter of the district’s land surface area, i.e., 23.83 %, amounting to 6787 ha 

Table 3 
Accuracy matrices for supervised LULC classification.

Period Overall accuracy (%) Kappa accuracy

1999 93.75 0.921
2003 94.38 0.929
2013 93.13 0.913
2022 91.88 0.897

Fig. 4. Supervised land use land cover classification of Mödling for the study periods (1999–2022).
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(Table 4). The results of the 2013 LULC classified map showed that forested areas accounted for 37.19 % (equivalent to 10,593 ha) of 
the total area, maintaining a sizable portion of the district. This was consistently followed by agricultural areas, which occupied 29.33 
%, accounting for over 8354 ha, with a less noticeable difference in the spatial extent between these two vegetation-based LULC 
classes. In that same year (2013), settlement areas had expanded to cover nearly as much land as the agricultural/grassland category, 
amounting to 24.85 % (~7078 ha) of the total land area in Mödling. According to the most recent classification results in 2022, 
although forests still consistently occupied the largest area, accounting for a total area of approximately 10,396 ha, representing 36.5 
% of the total land area, other classes like built-up areas had evidently started to occupy more land area. Contrasting to previous years, 
the settlement area had slightly overtaken the agricultural area, covering 3 % of the total land surface, more than the farming and 
grazing area category. Both classes occupied 7725 ha and 7002 ha, accounting for 27.12 % and 24.58 % of the total district area, 
respectively (Table 4).

Generally, water bodies occupied the smallest portions of the land cover across the years (1999, 2003, 2013, and 2022), followed 
by bare soil, when compared to the total land surfaces occupied by other land use classes. Although this observation of the low spatial 
extent of water bodies could have been partly influenced by the season of data collection, as the images were taken during late spring 
(May) and summer (June, July, and August) when there was little or no rainfall, Mödling is not typically characterized by extensive 
water bodies owing to its location in the rugged region of Lower Austria. In 1999, the water bodies covered 0.42 % (119.43 ha) of the 
land cover area, with 0.48 % (135.99 ha) in 2003, resulting in a 0.06 % expansion in water bodies during that year. Based on the 2013 
classification map, that year experienced the lowest coverage of water bodies, occupying only 0.25 % (72.18 ha) of the land surface, 
while in 2022, the water bodies had reached 0.31 % or 87.39 ha of the total area. Similarly, the bare ground covered a small portion of 
the land surface around the years, although its pattern was more pronounced than the water body category. The land area covered by 
bare soil in 1999 was 13.04 % (3714.30 ha) of the total area, but it was only sporadically occupied, 2.81 % (800.91 ha), just about four 
years later in 2003. As of 2013 and more recently in 2022, bare ground already covered between 8 and 11 % of the total district area, 
amounting to about 3000 ha (Table 4).

Lower Austrian districts, including Mödling, are renowned for their wide-ranging conventional and organic agricultural produc-
tion, facilitated by the diverse geography, encompassing fertile plains, hilly areas, and catchment areas [57,80]. Historically, agri-
culture has been a well-established and prevalent land-use activity in many parts of Mödling, as in other districts within the region 
[81]. This is evident through the substantial land area, accounting for up to 35 % of the total land area, dedicated to agriculture for the 
cultivation of grains, oilseeds, fruits, and livestock grazing. However, the spatial coverage of agriculture has decreased in the more 
recent assessment years when compared to 2003. This trend aligns with the findings of [81] and others who reported and anticipated a 
reduction in land consumption by agriculture over the years, influenced by agricultural policy changes and settlement expansion. From 
our findings, in 2022, built-up areas had expanded to cover approximately 28 % of the total land area of the district. This trend is 
consistent with reports that suggest that built-up areas in Austria have generally experienced a higher rate of growth compared to other 
EU regions [81]. Nevertheless, we observed that across the assessed periods, forests continued to represent the dominant land cover 
type in Mödling. Despite the district’s location in the industrial quarter hub of Lower Austria and the intensification of settlement, it 
retains a significant forested area that has remained relatively stable over the years. Most of these forested areas are situated in the 
western part of the district, while residential areas are primarily located in the transition zone between forests and agricultural lands – 
pronounced towards the east (see Fig. 4). Mödling’s forests transition from lower-elevation montane forests to higher-elevation areas 
that exhibit characteristics of alpine and subalpine ecosystems. Its forest compositions often include a mix of deciduous tree species like 
oak (Quercus spp.), beech (Ficus sylvatic), and maple (Acer spp.) and coniferous forest tree species such as Scots pine (Pinus sylvestris), 
Norway spruce (Picea abies), Austrian pine (Pinus nigra) and among others [55,59].

3.3. LULC change detection for Mödling (1999–2022)

Through geospatial analysis conducted on the LULC classification maps of Mödling, we assessed and quantified the patterns of 
change in the LULC classes across the evaluation periods (1999–2022). The change detection analysis was carried out for three distinct 
time frames by developing and analyzing three land area change matrices: 1999–2003, 2003–2013, and 2013–2022, for the Lower 
Austrian district. Fig. 5 illustrates the class-based change detection outputs, while Fig. 6 and Table 5 present the statistics summarizing 
the relative changes and corresponding percentages in each cover category in the form of matrices. Additionally, we aimed to 
comprehend the overall changes within the assessment period by incorporating the 1999–2022 change epoch and evaluating tran-
sitions across the cover classes. This was further summarized in Table 6, highlighting the spatiotemporal land cover dynamics in the 

Table 4 
LULC area by class and its percentage of the total area (ha) for Mödling (1999–2022).

LULC Class 1999 2003 2013 2022

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Bare ground 3714.3 13.04 800.91 2.81 2387.7 8.38 3273.21 11.49
Built-up area 6209.91 21.80 6786.99 23.83 7077.78 24.85 7725.42 27.12
Forested area 11139.66 39.11 10747.08 37.73 10593.09 37.19 10396.44 36.50
Agriculture/grassland 7301.52 25.63 10013.85 35.16 8354.07 29.33 7002.36 24.58
Water body 119.43 0.42 135.99 0.48 72.18 0.25 87.39 0.31
Total 28484.82 100 28484.82 100 28484.82 100 28484.82 100
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study area over the past 24 years.
Across the study periods, different LULC types have undergone varying degrees of change in terms of land area (in hectares), with 

some land cover types experiencing a greater magnitude of change than others (Fig. 5). However, it is noteworthy that the total land 
area of the district has remained constant, summing up to 28,484.82 ha. While this consistency in spatial land coverage is a common 
feature in many regions worldwide, there are geographical areas where empirical evidence from remotely sensed change detection 
indicates a spatiotemporal change in their total land area coverage. For example, in Bahrain, dredging and reclamation activities in the 
island’s shallow water areas have led to an increase in its land area by over 12 % [73]. Furthermore, our analysis revealed that the 
forested area in Mödling has remained relatively stable for more than two decades, with an overall reduction of − 6.67 % (equivalent to 
743.22 ha) in forest cover from 1999 to 2022 (Fig. 6 and Table 5). The highest level of forest loss occurred during the shortest epoch, 
from 1999 to 2003, with a decrease of 392.58 ha, constituting a − 3.52 % reduction. In contrast, the decadal period from 2003 to 2013 
witnessed the lowest forest loss, with only a − 1.43 % reduction in forested areas, amounting to 153.99 ha. This reduction was notably 
lower than the losses observed in other timeframes, such as the − 1.86 % decrease observed between 2013 and 2022 and about − 3.5 % 
in 1999–2003. Interestingly, the most substantial removal and loss of forest cover, experienced between 1999 and 2003, coincided 
with a considerable expansion in agriculture and grassland. During that period, there was a remarkable increase of over 37 % in the 
agricultural land area, accounting for 2712.33 ha (Fig. 6 and Table 5). The distinctive accretion in agricultural areas during this period 
can be partly attributed to the differences in the collection dates of the satellite imagery (Table 1).

The 1999 imagery was acquired in August, coinciding with the harvest season in Lower Austria, which contrasts with the 2003 
imagery that was obtained in late May, a period with less harvesting activity. Consequently, this timing difference could have 
contributed to a relatively high estimate of the agricultural area in 2003. It is understandable that agricultural production and har-
vesting in Lower Austria, as well as in other areas worldwide, can be estimated using multispectral imagery by selecting images 
corresponding to periods before and after harvesting. Nevertheless, we established that the earliest period witnessed the most sub-
stantial agricultural expansion compared to the subsequent years, as it was the closest to the agricultural industrialization era 
(1950–1995) across Austria. Since around 2000, changes in agricultural policy and modernization efforts across the country, including 
our study region, have discouraged agricultural overproduction. Instead, they have facilitated improved agricultural land consumption 
and sustainable land use practices, partly culminating in a declining trend in cropland and grassland areas [81,82], as evident in our 
change detection results. By 2022, approximately − 4.10 % of the agricultural land area in Mödling, equivalent to 299.16 ha, had been 
lost relative to the year 1999.

Furthermore, we observed a combination of increasing and decreasing trends in the region’s water bodies, with the most sub-
stantial change being a loss of approximately 63 ha between 2003 and 2013. This decline can be partly attributed to climate change 
impacts on the water balance, as many water bodies were recorded to have dried up during this period [83,84]. The situation was 
exacerbated by the historically severe heatwave in 2003, which occurred two months after our 2003 imagery was captured. Also, 
Lower Austria experienced several drought episodes within this period, likely contributing to higher evaporation rates and the 
expansion of bare land areas. However, there appears to have been an improvement in hydrological management practices in the 
region in the recent decade (2013–2022), as highlighted by Muskoya et al. [57] and Funk et al. [85], which may have contributed to an 
increase in water bodies. The region has also experienced a series of extreme flood events, potentially influenced by shifts in climate 
patterns and the dynamics of the Lower Austrian Danube River Basin [86].

Fig. 5. Class-based land cover changes between study periods (BG = Bare ground, BU = Built-up area, F = Forested area, A = Agriculture/grassland, 
W = Water body).
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The most prevalent factor influencing the loss of forest and agricultural land areas in the study area is settlement expansion, driven 
by population growth, industrialization, and urbanization. Our findings revealed that the built-up area was the only LULC type in the 
district that consistently gained more areas throughout the study period. The expansion in built-up areas had been substantial since the 
earliest period (1999–2003), with a 9.29 % gain, equivalent to 577.08 ha. Within the subsequent decade (2003–2013) and the most 
recent period (2013–2022), Mödling’s settlements continued to experience a substantive expansion by 290.79 ha and 647.64 ha, 
accounting for relative increases of 4.28 % and 9.15 %, respectively. Cumulatively, the change in the built-up area amounted to over 
1515 ha, representing a 24.40 % increase. This observed change aligns with the trend of settlement sprawl and urban development 
witnessed in several districts across Austria, given that the country’s population growth has increased by approximately 9 % over the 
past two decades and continues to grow at an annual rate of 0.4 % [87]. According to Getzner and Kadi [87], built-up land areas in 
Austria have increased by 52 % over the past 20 years, which even doubles the rate we observed in Mödling, thus indicating a pro-
gressive conversion of vegetation-based LULC types—agriculture and forest cover—into built-up areas for residential, commercial or 
infrastructure purposes. Aust et al. [88] reported that about 15 % of the agricultural land in an adjacent Austrian community was 
converted into residential or other types of infrastructure over a span of 50 years. Such urban development necessitates land clearance, 

Fig. 6. Land cover changes across study years (1999–2022).

Table 5 
Land cover changes and percentages in Mödling across study periods (1999–2022).

LULC 1999–2003 2003–2013 2013–2022 1999–2022

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Bare ground − 2913.39 − 78.44 1586.79 198.12 885.51 37.09 − 441.09 − 11.88
Built-up area 577.08 9.29 290.79 4.28 647.64 9.15 1515.51 24.40
Forested area − 392.58 − 3.52 − 153.99 − 1.43 − 196.65 − 1.86 − 743.22 − 6.67
Agriculture/grassland 2712.33 37.15 − 1659.78 − 16.57 − 1351.71 − 16.18 − 299.16 − 4.10
Water body 16.56 13.87 − 63.81 − 46.92 15.21 21.07 − 32.04 − 26.83

Table 6 
Cross-tabulation of class-based change detection between 1999 and 2022.

LULC Period Water body Built-up area Bare ground Agriculture/grassland Forested area

Water body 1999–2003 111.6 3.24 0 3.24 1.35
2003–2013 72.18 51.12 3.69 4.77 4.23
2013–2022 71.28 0.9 0 0 0
1999–2022 86.58 27.99 4.14 0.54 0.18

Built-up area 1999–2003 8.55 4572.63 132.39 1406.97 89.37
2003–2013 0 4888.26 717.66 1103.4 77.67
2013–2022 16.11 5628.96 522.36 843.21 67.14
1999–2022 0.54 5139.99 272.12 707.4 89.46

Bare ground 1999–2003 1.44 682.29 347.94 2680.92 1.71
2003–2013 0 167.76 242.91 389.43 0.81
2013–2022 0 643.68 537.66 1191.87 14.49
1999–2022 0.18 720.54 1918.26 1074.06 1.26

Agriculture/grassland 1999–2003 8.19 1401.39 316.35 5128.56 447.03
2003–2013 0 1832.49 1387.17 6212.88 581.31
2013–2022 0 1383.21 2209.32 4273.65 487.89
1999–2022 0 1658.7 1066.41 4136.4 440.01

Forested area 1999–2003 6.21 127.44 4.23 794.16 10207.62
2003–2013 0 138.15 36.27 643.59 9929.07
2013–2022 0 68.67 3.87 693.63 9826.92
1999–2022 0.09 178.2 11.88 1083.96 9865.53
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which corresponds to the observed incremental expansion in the bare ground category in Mödling, from 2.81 % (800.9 ha) in 2003 to 
8.38 % (2387.7 ha) in 2013, and further to 11.49 % (3273.21 ha) in 2022.

It is crucial to note that increasing forest cover loss and rapid settlement development, without adequate urban planning and land 
resource management, can potentially pose biological impacts such as biodiversity loss, environmental impacts including climate 
change and urban heat islands, as well as socio-economic implications such as agrarian livelihood loss and food insecurity [24,46,89]. 
Extreme weather events, such as prolonged drought, partly attributed to forest loss, have already been linked to various biotic 
disturbance agents causing considerable damage and mortality across Austrian forest landscapes, including Mödling’s, over the past 
two decades [90]. For instance, different infestations, such as bark beetle infestations in Norway Spruce forests [91] and Phytophthora 
outbreaks in European beech forest stands [92], as well as the episodic forest fires during heatwaves and drought periods [93] have 
contributed to forest damage in Lower Austria and Mödling. These factors could partially explain the observed reduction in forest cover 
in our study.

Furthermore, we investigated the actual transitions occurring with each LULC class. This involved analyzing how the land area was 
shifting between certain categories, either gained or converted to another category, through a more perceptible cross-tabulation of 
land use changes (Table 6). Our pixel-based cross-tabulation analysis of the LULC classes confirmed considerable variations in changes 
across land cover types and assessment periods, with water bodies exhibiting the least changes and the most remarkable trans-
formations observed in agriculture/grassland and built-up categories. Areas covered with water bodies did not experience much 
change. However, they lost over 27 ha of their initial cover to built-up areas within the entire assessment period, with only negligible 
area losses (i.e., 0.18–4.14 ha) to other LULC categories. Many lakes have experienced and are predicted to continue drying up, 
recording significant negative areal trends and threatening future water availability in and around the study region [83,94]. This 
phenomenon is attributed to reduced groundwater recharge, heatwaves with decreased rainfall, and drought events during extreme 
summer in Austria, all of which are exacerbated by climate change effects [84,94,95]. On the other hand, forested lands have un-
dergone conversion to other classes, predominantly agriculture/grassland and built-up areas. The highest forest loss, which occurred 
between 1999 and 2003, was to agriculture, amounting to a total of 794.16 ha, although it was partially offset by an area gain of at 
least 447 ha. In subsequent periods, the conversion of forest lands for farming declined to approximately 650 ha, partly due to 
technological advancements in agriculture, such as precision agriculture and policies promoting sustainable forest and land man-
agement. During these periods, especially between 2003 and 2013, there was a relatively increasing conversion of forest lands (138.15 
ha) into urban and built-up areas, although the rate of conversion appeared to reduce slightly in the most recent epoch (Table 6).

Conversely, agricultural lands continued to transition into built-up as well as bare ground, likely for future settlement development. 
Approximately 1832 ha and 1386 ha of agriculture/grassland were converted to built-up areas and barren land, respectively, between 
2003 and 2013 (Table 6). Despite having gained more land area, cumulatively from all other LULC categories than it lost during the 
earliest period (1999–2003), agricultural lands continued to give way to the expansion of bare soil and settlements at a substantial 
degree. The pressure for human settlement in Mödling, as in other Austrian districts, is expected to become increasingly prominent, 
especially given the high average daily land consumption rate of about 26 ha across the country [87]. A considerable portion of 
Austrian land is considered sealed and marginal due to its predominantly mountainous and alpine terrains, coupled with the fact that 
land consumption has increased by more than 50 % over the past two decades [87]. These conditions might incite further degradation 
of forested lands, as a sizeable expanse of existing agricultural land available for farming is already being heavily consumed and 
developed for settlements. The ongoing demand for land to support food production could intensify the conversion of forested areas. 

Fig. 7. NDVI of Mödling for the study periods (1999–2022).
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Our findings are consistent with several other global LULC studies that have observed land cover transformation for settlement and 
building use as a primary factor driving LULC dynamics, which is aggravated by population growth, urbanization, human migration 
and intrusion, and increasing pressure on local communities to meet their habitation needs [6,24,46,73,79,96].

3.4. Vegetation indices

Normalized difference vegetation index has been widely used to assess green production, vitality, and changes in vegetation cover 
[97] by quantifying the relationship between the differences in spectral reflectance and vegetation growth rate [98]. Regarding the 
vegetation cover in Mödling, the NDVI results for the four study periods are depicted in Fig. 7. The index values for the district ranged 
from +0.737 to − 0.324, with higher positive values indicating the presence of dense vegetation, while low NDVI values represent 
sparse vegetation [30,46]. A reduction in dense vegetation, indicating forest cover, was observed across the study period. Specifically, 
the maximum NDVI value decreased from +0.724 in 1999 to +0.654 in 2022, resulting in a 9.7 % reduction in the maximum NDVI 
value. However, a slight increase of +0.01 was initially observed between 1999 and 2003, while a minute increase of +0.003 was 
noted between 2013 and 2022. The most considerable decrease in the maximum value occurred between 2003 and 2013, with a total 
reduction of 11.7 % from +0.737 to +0.651. Overall, this vegetation index revealed a general decrease in vegetation cover in Mödling 
across the study period, which aligns with several other NDVI-based LULC mapping studies [6,30,46,99]. The further estimation of 
forest cover from the NDVI was based on selecting an NDVI threshold to represent dense vegetation in Mödling. Several NDVI values 
have been used for this purpose, with most values above +0.3 [46,99]. In our case, we selected the value based on the inspection of the 
value representation of feature classes in each pixel based on extensive information obtained from the ground truthing process. Finally, 
pixels with values ≥ 0.55 were selected as representative of forest cover.

SAVI, developed by Huete [39], is employed to estimate vegetation cover while minimizing the influence of soil brightness in 
vegetation indices that use near-infrared and red wavelengths like NDVI. It introduces an adjustment value (L) to minimize soil 
brightness’s influence on vegetation estimation. Several studies have used a range of adjusted values for SAVI, with values typically 
ranging from 0.25 for dense vegetation to 1 for sparsely distributed vegetation [39]. Following this recommendation, we selected an 
adjustment level of 0.5, a value widely adopted in several literature sources [100], for this study. The resulting SAVI values for the 
Mödling district across the evaluation periods are presented in Fig. 8, ranging from +0.993 to − 0.435. Comparable to the NDVI, a 
reduction was observed in SAVI values for the district over the study periods, consistent with Hossain et al. [46] and Islam et al. [99]. 
Although there was an initial increase in both maximum and minimum values between 1999 and 2003 (from +0.975 to +0.993 and 
− 0.435 to − 0.093, respectively), the overall maximum SAVI value decreased from +0.975 in 1999 to +0.882 in 2022. The highest 
change in the maximum value was recorded between 2003 and 2013, with a − 0.114 reduction, followed by a slight increase between 
2013 and 2022. The minute relative increases in NDVI and SAVI values within the periods 1999–2003 and 2013–2022 can be 
attributed to the substantial spatial expansion in agriculture cover and potentially improved greenness of forest vegetation, respec-
tively, despite a reduction in forest cover as earlier identified in the supervised change detection. Furthermore, a similar pixel eval-
uation method used for NDVI was applied to select the forest cover threshold for SAVI. Consequently, pixels with values ≥ 0.7 were 
classified as forest cover.

Fig. 8. SAVI of Mödling for the study periods (1999–2022).
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3.5. Forest cover estimation based on vegetation indices (NDVI and SAVI) and CORINE land cover

In addition to estimating forest cover through a direct LULC classification process, forest cover quantification and change detection 
can also be performed using vegetation indices. Direct LULC classification involves accurately determining the appropriate pixel 
threshold value for the forest class in the respective index. Studies have shown that NDVI and SAVI have the potential to assess forest 
cover distribution and changes [46,99]. Consequently, we applied these two indices (NDVI and SAVI) to quantify the forest cover in 
Mödling for each assessment period and compared their estimates with the supervised classification outputs and the standard CLC 
maps, which cover many European countries, including Austria. Our goal was to evaluate the suitability of vegetation indices in 
assessing and monitoring forest cover in the district and to validate our estimation using the European land cover maps, while also 
mutually validating the applicability and accuracy of the CLC maps. The CLC maps are relatively static, with available data for the 
years 2000, 2006, 2012, and 2018, which posed a limitation in directly comparing our estimates to the cover maps due to the slight 
mismatch in assessment periods. Nevertheless, this analysis helped visualize the potential comparative trends in forest cover changes 
over the past two decades using different methods (Table 7 and Fig. 9).

Our results showed that the supervised classification estimated a total forest cover of 11,139 ha in 1999, accounting for 39.1 % of 
the total land use in the region. This estimate closely matched with the forest cover estimate from NDVI – 11,159 ha or 39.18 % of 
Mödling’s land area. However, the estimated forest cover from SAVI in 1999 exceeded both NDVI and supervised classification, 
totalling 12,084 ha or 42.2 % of the land area (Table 7). When examining forest cover changes between 1999 and 2003, the supervised 
classification revealed a reduction to 10,747 ha, representing 37.7 % of the total land cover. In contrast, NDVI and SAVI estimates 
indicated an increase in forest cover by 2003. Hence, NDVI estimated a total forest cover of 11,431 ha (40.13 %), while SAVI reported 
12,968 ha (45.53 %). A similar trend was observed between 2003 and 2013, with supervised classification showing a slightly lower 
reduction in forest cover, while NDVI and SAVI still overestimated the forest area, indicating an increase. Specifically, NDVI and SAVI 
evaluated a total forest cover of 12,240 ha (42.97 %) and 13,245 ha (46.50 %), respectively, while the supervised classification only 
detected a forest cover of 10,593 ha in 2013. A different trend was observed in the forest cover estimation obtained in 2022, with both 
supervised classification and NDVI showing a decline in forest cover, while SAVI continued to estimate an expansion. A total forest 
cover of 10,396 ha was calculated from the supervised classification, while NDVI reported a total forest cover of 11,398 ha, and SAVI 
estimated 13,448 ha of forest cover in the study area (Table 7 and Fig. 9).

Overall, there is a noticeable trend of continuous increase in forest cover estimates obtained from SAVI throughout the study 
periods, consistently deviating from the supervised classification, which detected a slight decrease in forest cover across the periods. 
On the other hand, although NDVI also overestimated the forest cover of Mödling, its estimates were still more closely aligned with the 
supervised classification estimates for most years, except for 2013. These biases in forest cover estimation are consistent with findings 
from other studies, which have reported varying levels of underestimation or overestimation of forest area using these indices [46,99]. 

Table 7 
Forest cover estimates of Mödling from the supervised classification, vegetation indices, and CORINE land cover maps (1999–2022).

Categories Year

1999 2003 2013 2022

Area (ha) (%) Area (ha) (%) Area (ha) (%) Area (ha) (%)

Supervised 11139.66 39.11 10747.08 37.73 10593.09 37.19 10396.44 36.50
NDVI 11159.01 39.18 11430.90 40.13 12240.36 42.97 11398.23 40.02
SAVI 12084.39 42.42 12968.46 45.53 13245.48 46.50 13448.7 47.21

 2000 2006 2012 2018

CORINE 11050.14 38.79 10989.87 38.58 10991.4 38.59 10982.15 38.55

Fig. 9. Percentage of forest area in Mödling across different methods.

G.L. Alawode et al.                                                                                                                                                                                                    Heliyon 11 (2025) e43454 

14 



According to Hossain et al. [46], these biases may arise due to the sensitivity of the vegetation indices to factors such as soil reflectance, 
atmospheric effects, clouds, and vegetation extent. However, if either of these indices were to be considered for a quick forest cover 
assessment and monitoring in Mödling, preference should be given to NDVI over SAVI due to its relatively smaller deviations, aligning 
with some previous reports [46,99,101]. In contrast, da Silva et al. [45] found SAVI to be comparatively more adequate, especially for 
assessing planted forests, agricultural areas, and native fields.

The forest cover estimates from the available CLC maps revealed a slight decrease in forest cover from 2000 to 2018. To be precise, 
a total forest cover of 11,050 ha was estimated in 2000, 10,989 ha in 2006, 10,991 ha in 2012, and 10,982 ha in 2018 (Table 7 and 
Fig. 9). The observed similar reducing trend of forest cover estimation from the CLC maps further confirms the performance of our 
supervised classification results over the vegetation indices. It may be somewhat challenging to perfectly ascertain the accuracy of the 
European CLC maps in analyzing long-term land cover changes in Mödling and other local European landscapes due to recognized 
shortfalls attributed to methodological changes in production and periodic static availability of the cover maps [47,51,52]. However, 
we can infer and validate the forest cover estimation accuracy of the CLC system from the near convergence of the forest cover es-
timates of our supervised classification in 2013 (10,593 ha) and the CLC map in 2012 (10,991 ha), contrary to other validation studies 
that have reported greater levels of estimation errors by the European cover maps [51,53,102].

Our findings suggest that temporal changes in CORINE production techniques do not significantly impact accuracy in Mödling, 
given their temporal consistency with our supervised technique. Meanwhile, Martínez-Fernández [51] asserted that the accuracy and 
consistency of estimations in CORINE cover maps vary depending on the country and the complexity, fragmentation, and heteroge-
neity of the assessed landscape. Waser and Schwarz [53] also discovered that the relative accuracy of CORINE maps is contingent on 
the type of reference maps used for comparison. Their use of MODIS-based land cover products resulted in significant forest area 
overestimations, in contrast to our higher-resolution Landsat imagery with better accuracies. Nevertheless, we recommend 
landscape/site-specific supervised classification for a more accurate and contextually appropriate forest cover analysis, as in our study. 
This approach allows for adequate ground-truthing and assessment of land cover and change events for specific periods of significance 
in forest cover dynamics, considering the limitation of consistent temporal data availability in the European CLC system. In this 
process, CLC maps can be utilized to aid in training and analyzing a more extensive set of supervised LULC classes.

4. Conclusions

This study used multispectral imagery to assess LULC changes in the district of Mödling, Lower Austria, over a period of more than 
two decades (1999–2022). The land cover classes identified within the district include water bodies, built-up areas, bare ground, 
agriculture/grasslands, and forests. The overall accuracies and Kappa coefficients of the classified images ranged from 91.8 % to 94.3 
% and from 0.897 to 0.929, respectively, demonstrating credible classification results in this study. The forested area in the district 
experienced a reduction in cover over the evaluation period, although this was not very substantial. Forest cover, which initially 
accounted for over 39 % of the total land area, decreased to approximately 36 % by 2022, resulting in a loss of nearly 750 ha. The 
highest forest loss occurred in the earliest period of assessment (1999–2003), accounting for a − 3.52 % cover reduction. Initially, 
forest loss led to the accretion of agricultural land during this period. However, in subsequent epochs, both forest and agricultural land 
areas were converted for settlement expansion, which became the most prevalent factor for LULC changes in the district. Consequently, 
the continuous expansion of built-up areas in the region, driven by a sporadic increase in population, industrialization, and urbani-
zation in the Lower Austrian industrial quarter (Industrieviertel), has not only resulted in a reduction in forest and other vegetation 
with potential climate and biodiversity impacts but also reduced agricultural land availability and related livelihood potential for the 
people in the area.

Furthermore, this study demonstrates the suitability of vegetation indices (NDVI and SAVI) for mapping LULC changes and esti-
mating forest cover, as validated by supervised classification and the CORINE land cover maps. The NDVI and SAVI values for the 
district were observed to range from +0.74 to − 0.32 and + 0.99 to − 0.43, respectively. Both indices also exhibited an average decline 
over the study period, confirming the results of supervised change detection. However, during certain assessment periods, both indices 
overestimated forest cover in the district. NDVI outperformed SAVI, indicating its superior applicability for rapid vegetation analysis 
and monitoring in Mödling. Our study revealed consistency between the European CORINE cover maps and our supervised classifi-
cation outputs, suggesting overall precision and confidence in utilizing both methodologies for LULC analysis. However, we emphasize 
a preference for a dynamic, context-specific land cover classification over static cover maps derived from a continental database 
whenever feasible. Lastly, given the observed expansion of settlements in our study, we recommend the implementation of effective 
measures to regulate and ensure the sustainability of built-up expansion. In addition, advancing policy instruments that promote 
sustainable forest and agricultural land management practices, such as zoning, land-use planning, and other relevant market-based 
mechanisms, is crucial for long-term environmental and economic stability. The results of our study are important as they provide 
evidence-based insights to support decision-making for effective monitoring and policy development related to vegetation conser-
vation, urban development, and overall land management, particularly in peri-urban areas like Mödling.
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