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A B S T R A C T

In environmental conservation and management, analysing soil, climate, and stand data within forest ecosystems 
is crucial for understanding ecological dynamics, projecting changes, and developing sustainable forestry 
practices. Often, these data are scattered and unintegrated, complicating their use in modelling and analysis. 
Current tools lack modular integration of soil, climate, and stand data at large and diverse NFI datasets like 
International Co-operative Programme (ICP) scale (12,000+ sites). ForestScope bridges this gap by automating 
harmonization of ICP’s Level I/II datasets, together with soil and climate data, which is essential for informed 
decision-making in forest management.

ForestScope introduces an open-source framework designed to systematically organize, extract, and harmo
nize fragmented soil, climate, and stand data from ICP datasets. It includes comparative analyses of International 
Soil Reference and Information Centre (ISRIC) and Harmonized World Soil Database (HWSD) soil datasets, and 
assessments of Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) climate models and Climatologies 
at High resolution for the Earth’s Land Surface Areas (CHELSA) against observational data, selecting HWSD v2.0 
and CHELSA as optimal for ICP data gaps.

Additionally, ForestScope integrates a vegetation model enhancing National Forest Inventory (NFI) data 
processing, thus improving forest ecosystem modelling. This advancement deepens our understanding of forest 
dynamics and supports more effective management strategies.

1. Introduction

Understanding and harmonizing the key datasets, specifically stand 
dynamics, soil and climatic variables, is crucial for accurate and efficient 
ecological modelling, informed land-use and land management de
cisions. Forests act as sinks and storage for carbon (C), mitigating 
climate change, and providing various other ecosystem services funda
mental for humanity, while hosting a wide variety of species (Ali, 2023; 
Mori et al., 2017; Waring et al., 2020). The complexity of forest eco
systems needs a thorough understanding of a variety of components, 
such as forest stand characteristics and management, climate variability, 
and soil conditions, all of which are required for both empirical study 

and ecological modelling (Gonçalves, 2022; Jain et al., 2023; 
Schwarzwald and Lenssen, 2022; Vereecken et al., 2016).

To understand forest growth patterns, quantifying C stock, and 
developing sustainable harvesting and conservation strategies 
(Gonçalves, 2018; Jonsson et al., 2020; Pan et al., 2018), information of 
forests is needed. Such information includes tree density, age, biomass, 
and species composition, which provides insight into the dynamics of 
forest ecosystems. The ICP NFI data plays an important role in collecting 
such information, delivering a thorough overview of forest resources at 
the national level (Ferretti et al., 2020). However, analysing forest 
growth dynamics is less accurate without incorporating climate and soil 
information.
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Temperature, precipitation, and solar radiation are among the most 
crucial climate variables affecting forest growth, biodiversity, and 
overall forest condition (Itter et al., 2017; Martinez del Castillo et al., 
2022; Yang et al., 2006). Climate change creates major challenges to 
forest ecosystems, including alterations to biodiversity and geographical 
spectrum shifts (Härkönen et al., 2019; Malhi et al., 2020). Accurate and 
reliable climatic data is therefore needed for predicting and mitigating 
these impacts, directing conservation measures, and affecting sustain
able forest management methods (Fremout et al., 2020).

The soil in forest ecosystems plays an important role in nutrient 
cycling, water retention, and providing a foundation for plant growth 
(Nakhavali et al., 2022). Soil attributes such as texture, pH, organic 
content, and water-holding capacity have a direct impact on forest 
productivity (Cajander, 1949; Hatten and Liles, 2019; Shen et al., 2022; 
Van Sundert et al., 2018). Furthermore, the interaction of soil and other 
environmental elements such as climate and topography impact the 
distribution and composition of forest types (Mäkipää et al., 2023; 
Mayer et al., 2020; Tesha et al., 2023; Q. Yang et al., 2021). As a result, 
thorough soil data is required to fully understand and manage forest 
ecosystems (Page-Dumroese et al., 2021).

Therefore, organisation and integration of large-scale NFI data like 
ICP, which includes stand, climate, and soil information, is critical for 
improving empirical and modelling studies in forest ecology (Majasalmi 
et al., 2018; Vangi et al., 2023; Yamaura et al., 2020). Currently, these 
data sets are neither unified nor integrated, challenging their use in 
modelling work or analysis. The climate, soil, and other related data are 
scattered and disjointed. This fragmentation leads to inefficiencies in 
data processing and analysis, as there are no robust tools to handle large, 

diverse datasets effectively. Consequently, researchers struggle to pro
cess these disparate data sources into a cohesive and integrated dataset 
suitable for modelling and informed assessments. Developing such tools 
not only enhances the processing of these data for modelling and forest 
ecosystems analysis but also supports effective policymaking and man
agement methods aimed at preserving these important natural resources 
(FAO, 2022).

This study presents the first tool to automate the extraction and 
harmonization of ICP’s soil, climate, and stand data into structured 
formats (CSV files). Its nearest-neighbour algorithm spatially matches 
ICP sites to high-resolution soil (HWSD/ISRIC) and climate (CHELSA/ 
ISIMIP) datasets, resolving data fragmentation. While we primarily use 
ISRIC and HWSD soil data, our methodology is designed to accommo
date alternative input files of soil data, should they be more applicable to 
a specific analysis. Here we ask whether a unified, open-source platform 
that automatically integrates stand, soil and climate data can demon
strably streamline and improve forest-ecosystem modelling workflows. 
We hypothesise that such a platform will (i) reduce the time required to 
prepare model-ready inputs, (ii) minimise the propagation of data- 
handling errors and (iii) enable rapid testing of process-based models 
at large spatial scales. Additionally, to demonstrate direct ecological- 
modelling utility, rather than merely data stewardship, ForestScope 
embeds the process-based vegetation model 3PGmix as an application 
example. In our approach, we place a strong emphasis on the flexibility 
of data usage. ForestScope offers an integrated analysis platform that 
surpasses existing tools by providing real-time data harmonization, 
advanced analytical functionalities, and user-friendly interaction, 
essential for dynamic and precise forest ecosystem management.

Fig. 1. Schematic Representation of ForestScope Structure, Components, and Functionalities.
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2. Material and methods

2.1. Data processing and analysis framework

In this study, the methodologies are designed for handling three 
components: soil datasets, climate variables, and stand and management 
data (Fig. 1). The soil data component includes a detailed process of 
reading, processing, and analysing soil data, complemented by an 
evaluation of alternative data sources. The climate data section de
scribes the assimilation and evaluation of climate variables from various 
sources against observational data. Lastly, it explains the functionalities 
for analysing stand and management information derived from ICP NFI 
data.

2.2. Data and functions

2.2.1. Soil data
Our methodology incorporates the use of three primary datasets, the 

ICP soil data (Fleck et al., 2016), ISRIC soil data (ISRIC, 2020) and the 
HWSD v1.2 (Nachtergaele et al., 2010) and v2.0 (Nachtergaele, van 
Velthuizen, et al., 2023), to organize and process soil data for specific 
points of the NFI data at ICP sites. These datasets were chosen for their 
comprehensive and diverse range of soil properties, sourced from 
various methods including soil surveys, remote sensing, and modelling.

The dataset from the ICP encompasses detailed physicochemical and 
hydraulic properties, enriched with extensive long-term observations of 
forest conditions across Europe. This includes key soil properties such as 
texture, pH, organic content, and plant-available water (Cools N and De 
Vos B, 2020). However, there are instances where this comprehensive 
soil information is not available for sites covered by the ICP NFI data 
(Ferretti et al., 2020). Additionally, when utilizing NFI data sources 
other than ICP, there is a possibility that such detailed soil information 
may be absent. To address this gap, we supplement our analysis with two 
alternative datasets: 

• The ISRIC dataset is known for its detailed and wide-ranging infor
mation on soil properties. It is characterized by its high spatial res
olution, providing soil property maps at resolutions up to 250 m 
(Poggio et al., 2021). This level of detail is obtained through a 
combination of diverse sources, making it a rich resource for un
derstanding soil characteristics at a finer scale.

• The HWSD complements the ISRIC data by providing information on 
various soil properties as well. This database is compiled based on 
national soil databases, soil survey reports, and expert knowledge. 
The HWSD has a coarser spatial resolution of approximately 1 km, 
making it more suitable for broader, regional analyses(Nachtergaele, 
van Velthuizen Harrij, et al., 2023).

Both datasets include crucial information on soil attributes such as 
clay, silt, sand, soil organic C (SOC), nitrogen (N), and available water 
capacity (AWC), though they differ in their scale and resolution. While 
the ISRIC data provides a more detailed view at a finer scale, the HWSD 
offers a broader perspective. This distinction is vital in our methodology, 
as it allows us to tailor our analysis to the specific requirements of the 
ICP sites.

To integrate gridded soil information, each raster layer from ISRIC or 
HWSD was first resampled to the ICP plot footprint and re-projected to a 
common coordinate system. We then applied a depth- and area-matched 
procedure that (i) averages every resampled raster cell falling inside the 
circular plot buffer and (ii) re-weights the gridded depth intervals. 
Following the nearest-neighbour extraction method (Kramer, 2013) was 
used: 

V(x, y) = Vnn(xnn, ynn) (1) 

where V(x, y) is the estimated value of the data at the target location 

with coordinates (x,y); and Vnn
(
xnn, ynn

)
is the value at nearest neigh

bour data point with the coordinates 
(
xnn, ynn

)
. The target point (x,y) 

receives the value from its nearest neighbour data point in the dataset. 
The nearest neighbour is typically determined based on the shortest 
Euclidean distance from the target point. The Euclidean distance (d) 
between the target point and a potential nearest neighbour point can be 
calculated as: 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − xnn)
2
+ (y − ynn)

2
√

(2) 

A key component of our analysis involves comparing these two 
datasets against the soil data available from ICP sites. This comparison is 
crucial for understanding how global soil datasets align with site-specific 
data, which can reveal important insights about the local soil conditions 
at ICP sites. By examining the similarities and differences between these 
datasets and the ICP site data, we can enhance the accuracy and rele
vance of our environmental assessments and make more informed de
cisions regarding the most appropriate dataset to use for substituting 
missing data. Each record created by this procedure carries a prove
nance flag: “FIELD” when an ICP measurement exists, “DATABASE” 
when the value originates from HWSD or ISRIC, and stores the attribute- 
specific RMSE described below, so that the added uncertainty remains 
explicit throughout the workflow.

The comparative analysis between the two alternative datasets and 
the ICP data was conducted with a focus on soil properties at various 
depths, specifically examining the topsoil layer (0–30 cm) and the bot
tom soil layer (30–100 cm) which are commonly utilized in soil data 
processing (Bachmann, 2006). The Root Mean Square Error (RMSE) was 
used as the primary metric for evaluation, allowing for a quantitative 
assessment of the alignment between the alternative datasets and the 
ICP soil data in terms of soil properties at these respective layers as 
follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

where n is the number of observations at top or bottom soil layers, yi is 
the actual observed value and ŷi is the corresponding point value from 
ISRIC or HWSD data. RMSE statistics for every property and horizon are 
compiled and attached to each record, enabling users to propagate or 
filter the associated uncertainty in subsequent analyses.

2.2.2. Soil function
The soil_data function within the ForestScope serves as a crucial 

component for the processing of HWSD and ISRIC soil data. The function 
extracts soil properties (e.g., clay, silt, sand, SOC, N, and AWC) for each 
ICP site using a nearest-neighbor algorithm. For a target ICP coordinate 
(x,y) the function computes the Euclidean distance (eq.2) to all HWSD/ 
ISRIC raster cells. Following, the soil properties are extracted at 0–30 cm 
and 30–100 cm depths. Organizes results into a structured table with 
columns: site_id, latitude, longitude, soc_top (kg/m²), clay_top ( %), 
soc_bottom (kg/m²), etc. A key feature of this function is its flexibility in 
data input; it allows users to either provide file paths for various soil 
attributes and AWC or choose files interactively through a GUI/R 
package interface. The function sets a predefined spatial extent for 
processing, ensuring that the soil data is cropped and handled within 
specific geographical boundaries. The nested process_isric_data and 
process_hwsd_data functions are the core component that reads and 
crops raster files according to the set extent, effectively converting raster 
data into accessible data frames.

In case that the AWC information is not provided, the function will 
apply the following equation to compute AWC based on soil attributes 
available in ISRIC/HWSD datasets: 

AWC = (FC − WP) ×
(
1 − CRFVOLfrac

)
× Dm 
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where FC is the field capacity, WP is the wilting point, CRFVOLfrac is the 
coarse root-free volume expressed as a fraction, calculated as CRFVOL

100 , and 
Dm is the depth of the soil layer in meters, converted from centimetres 
and limited to a maximum of 1 m, calculated as min (soil depth,100)

100 .

2.2.3. Climate data
ForestScope, similar to its approach with soil data, also offers the 

flexibility to incorporate various climate data sources. While it primarily 
utilizes three data sources, it is designed to accommodate other alter
native climate datasets for extended processing. The primary climate 
data sources include ICP flux tower data (Raspe et al., 2020), CHELSA 
(Karger et al., 2017), and the ISIMIP climate models (Büchner et al., 
2023). Given that ICP climate data may not always be available for all 
corresponding NFI data locations, these alternative sources provide a 
means to supplement missing climate parameters.

The CHELSA dataset Integrates high-resolution global climate data 
from diverse sources, including satellite observations and terrestrial 
measurements. On the other hand, the ISIMIP models encompass an 
array of climate and socio-economic simulations, designed to project the 
effects of climate change across different dimensions. In this research, 
five climate models from the ISIMIP dataset (IPSL, GFDL, MPI, MRI, and 
UKESM) were utilized.

In terms of climate variables, ForestScope focuses on processing key 
parameters like air temperature (average, maximum, and minimum), 
precipitation, solar radiation, and atmospheric CO2. These variables are 
recognized as some of the most critical in both empirical and modelling 
studies due to their significant influence on climate assessments and 
predictions (Baede et al., 2018).

To assess the robustness of the two alternative climate data sources, a 
comparative analysis was conducted against the European Climate 
Assessment & Dataset (ECA) (Cornes et al., 2018), which includes both 
historical and current climate data. The period chosen for this com
parison spanned from 1980 to 2016, a timeframe for which data was 
available in both the observational records of the ECA and the CHELSA 
and ISIMIP datasets. This analysis encompassed a comprehensive range 
of data points: 15,086 for precipitation, 6455 for average temperature, 
6345 for minimum temperature, 6236 for maximum temperature, and 
2052 for solar radiation. The RMSE method was used to quantify the 
discrepancies, with a focus on identifying the least error in the pre
dictions made by the ISIMIP models and the CHELSA climate data.

2.2.4. Climate function
The climate function in the ForestScope framework is designed to 

systematically organize and analyze climate data from multiple sources. 
It starts by pinpointing and extracting site-specific climate information 
(e.g., temperature, precipitation, solar radiation) from a broader ICP 
dataset. For each selected forest site, the function gathers key metri
cs—such as minimum, maximum, and average temperatures, total 
rainfall, and solar radiation levels.

Next, it standardizes the dates linked to these climate variables by 
converting them into a uniform format (e.g., year, month, day) to ensure 
consistency. This step is critical for aligning the climate data’s time
frame with the forest’s growth period (stand age), management activ
ities (e.g., logging or planting schedules), and the study’s target 
duration. For example, if a study focuses on 2005–2020 but the ICP 
dataset only spans 1995–2015, the function adjusts the analysis to the 
overlapping period (2005–2015).

Furthermore, the function performs aggregations to create mean
ingful climate summaries. For temperature, it computes monthly and 
yearly averages, while for precipitation, it sums up the values. In cases 
where direct climate measurements are not available, the function has a 
mechanism to integrate alternative data sources like CHELSA and ISI
MIP. It matches these alternative sources to the site’s geographic co
ordinates, ensuring that the supplementary data is as relevant and 
accurate as possible.

The climate function also includes a calculation for frost days, an 
important variable in many ecological and agricultural models. It pro
cesses CO2 data from sources like ISIMIP and aligns it with the climate 
data by year (Lange and Büchner, 2020). Furthermore, it considers N 
deposition data from ISIMIP data, which is vital for understanding 
nutrient cycles and their impact on ecosystems (Yang and Tian, 2020).

2.2.5. Stand and management data
The third level of data processed and analysed by ForestScope is 

stand and site management data (Fig. 2). The ICP monitoring program is 
structured in two primary levels: the first, known as Level I, often rep
resents a subset of NFI and is characterized by broad-scale monitoring 
across various countries. Level II, on the other hand, involves more 
intensive monitoring with a focus on specific plots, entailing detailed 
data collection on forest conditions and variables (Dobbertin et al., 
2020). However, it is crucial to recognize that Level I monitoring typi
cally provides limited detail, predominantly offering general stand 
metrics such as total basal area or aggregated tree counts, without 
mandatory collection of finer-scale individual-tree attributes. Hence, 
ForestScope’s capability for detailed stand-level analyses, particularly 
those focused on structural dynamics and management practices, is 
substantially enhanced by the availability of comprehensive Level II 
data. In cases where only Level I data are accessible, users should 
consider supplementing their analyses with alternative data sources to 
obtain the necessary granularity and precision for rigorous site-specific 
investigations.

In its current version, ForestScope integrates and processes data from 
these ICP levels, focusing on stand-level data, including number of trees, 
diameter, height, volume, and litter information. This allows for a 
comprehensive understanding of forest stand dynamics. Additionally, 
the application sources management-related data, such as thinning 
volume and periods, basal area, number of removed trees, and stem 
removal/remained volume directly from ICP sites. This approach en
ables ForestScope to capture a holistic view of forest stand structure and 
management practices, which are crucial for assessing forest health and 
planning sustainable forest management strategies (Borghi et al., 2023).

However, should detailed NFI and management data be available 
from alternative sources, ForestScope is designed to integrate these 
additional datasets. It can then perform the necessary analyses, as pre
viously described, to align climate and soil data with the specific stand 
and management data points.

2.2.6. Stand and management function
The stand data function in ForestScope is a complex and multifaceted 

process, designed to handle species data preparation. The function cre
ates a comprehensive list of species names and codes, which is utilized to 
generate a subset of data relevant to the stand history. This subset data 
includes the stand and management-related information, including 
plantation dates, rotation periods, and other time-sensitive features 
found within the observational data. Moreover, the function calculates 
various parameters crucial for modelling the stand dynamics. These 
include the number of trees, C and N content in deadwood and litter. 
Additionally, it processes sapling data, including number, weight frac
tion, root ratio, and stem size, providing a detailed picture of the 
younger trees in the stand (Meyer et al., 2018).

The function also incorporates above ground biomass estimation 
across various species and regions, using equations from the compre
hensive dataset by Zianis et al. (2005). These equations are chosen for 
their wide applicability and robustness in modelling the relationship 
between tree dimensions and different biomass components. The most 
frequent models from Zianis et al. (2005) include: 

1- Logarithmic Equations: 
○ Biomass = a .log(D) + b where D represents the diameter at 

breast height, and a and b are coefficients that have been empirically 
derived for specific tree components, species, and countries.
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2- Power Law Equations: 
○ Biomass = a .Db where a and b are again country-species- 

component specific coefficients, with D indicating the diameter. 
○ Combined Diameter and Height Equations: 

When both diameter and height are considered, the equation 
takes the form: 

○ Biomass = a .Db. Hc

This equation includes an additional height component (H) and its 
relative coefficient (c).

In scenarios where specific local data from the Zianis et al. (2005)
dataset is not available, our package defaults to the generalized 
approach detailed by Forrester et al. (2017). This method uses loga
rithmic transformations and beta coefficients to estimate the biomass of 
different tree components such as stems, roots, foliage, and dead 
branches for each plot, as follows: 

BiomassC= exp (β0C + β1C(log(d)+0.087 × log(H))

where c represents the plant component (foliage, stem, or root), β0C and 
β1C are the modifiers depending on the species, d is the tree diameter and 
H is the tree height.

In addition to species data preparation, the stand data function also 
manages the thinning data, which is vital for understanding stand 
management practices. It determines the age of thinning interventions 
and calculates the rate of stem removal. This is achieved by analysing 
inventory data, which includes stand-level stem volume removed and 
remaining.

2.2.7. Experimental model application
As an addition to the data processing and analysis capabilities of 

ForestScope, an experimental vegetation model, a modified version of 
the 3PG (Physiological Principles Predicting Growth) model, has been 
integrated into its features. This integration enhances ForestScope’s 
ability to demonstrate the practical modelling case using the processed 
data, as well as simulating and understanding forest growth and stand 
dynamics, thus providing a more robust framework for ecological 
analysis. Due to its easy accessibility, flexible design, and minimal 
parameter requirements, the model has been used to evaluate forest 
productivity and the effects of climate change across multiple biomes 
(Gupta and Sharma, 2019).

The 3PGmix model, built on the foundations of the original 3PG 
model, is a process-based tool designed for simulating forest growth 
(Forrester and Tang, 2015). It predicts stand productivity by focusing on 

key factors like the absorbed photosynthetically active radiation and the 
canopy quantum efficiency, which is influenced by various environ
mental conditions including vapor pressure deficit, soil water avail
ability, stand age, air temperature, and soil fertility.

The modified version 3PGmix, extends these capabilities by 
including well-established soil models such as YASSO (Liski et al., 2005; 
Viskari et al., 2022), ICBM (Kätterer and Andrén, 2001), and RothC 
(Coleman and Jenkinson, 2014) into the framework which enables 
simulations of C, N, and phosphorus (P) pools and fluxes in both 
aboveground and belowground components of forest ecosystems (A.L.D. 
Augustynczik et al., 2025). This expanded focus allows for a compre
hensive understanding of nutrient dynamics and their impacts on forest 
growth. The model also includes routines for C allocation, prioritizing 
root allocation in less favourable sites and balancing growth among 
roots, foliage, and stems (For further details see A.L.D. Augustynczik 
et al., 2025).

ForestScope provides essential inputs for the model, including 
climate variables like precipitation, temperature, radiation, vapor 
pressure deficit, and frost days. It also provides data on stand structure, 
such as age, tree density per hectare, and biomass of foliage, roots, and 
stems. Additionally, ForestScope delivers details on site-specific C and N 
content, along with forest management practices such as the timing and 
intensity of thinning and the density of remaining trees after 
intervention.

3. Results and discussion

3.1. Soil data comparison

The comparative analysis of RMSE values against ICP soil data in
dicates that the HWSDv2.0 database typically outperforms the 
HWSDv1.2 and ISRIC database in estimating various soil properties, 
such as AWC (in mm), SOC (in g/kg) at different depths, and the 
composition of soil particles like sand, silt, and clay (in % by weight) 
(Fig. 3, Table S1). In the case of SOC, HWSDv2.0 has a marginally better 
performance in both the top and bottom layers than ISRIC (Table S1). 
HWSDv2.0 yields a lower RMSE for AWC compared to ISRIC (30.16 mm 
and 37.27 mm respectively), suggesting more accurate soil moisture 
content representation by HWSDv2.0. Regarding soil texture, 
HWSDv2.0 typically has better overall accuracy for clay, silt, and sand 
content, except for clay and silt in top layer where ISRIC records a 
slightly lower RMSE. These findings align with HWSDv2.0′s closer cor
relation with the ICP soil data in evaluated properties, highlighting its 

Fig. 2. ICP NFI data points in ForestScope.
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potential for more precise soil property assessments. The differences in 
performance between the two databases may be attributed to the 
methods and data sources used in their development.

However, these findings align with earlier studies comparing the 
ISRIC and HWSD databases, where HWSD consistently demonstrated 
better performance over ISRIC in predicting soil properties like pH, 
cation exchange capacity, and soil organic C (Batjes, 2016; Hengl et al., 
2014). Consequently, our results indicate that HWSD v2.0 is the more 
reliable source for plot-scale soil information, and ForestScope therefore 
defaults to HWSD inputs when field measurements are unavailable 
(Figure S1). To keep potential scale mismatches transparent, every value 
exported by ForestScope carries a provenance flag (“FIELD” or “DATA
BASE”) together with the attribute-specific RMSE reported in Table S1; 
these metrics quantify the residual bias and uncertainty that arise when 
gridded products are down-scaled to individual ICP plots. Users can thus 
propagate, filter or down-weight gap-filled observations in subsequent 
analyses.

It is crucial to recognize that the effectiveness of the ISRIC and HWSD 
databases can vary based on specific soil properties and geographical 
areas. National soil surveys have been shown to surpass these databases 

in accuracy for certain properties in specific regions (Arrouays et al., 
2020). Thus, when choosing a soil database for particular applications, it 
is vital to weigh the strengths and limitations of each database and assess 
their performance in the targeted geographic area. ForestScope’s prov
enance flags and uncertainty annotations are therefore intended to alert 
analysts to locations where database-derived values should be treated 
with caution, or replaced altogether, when higher-resolution national 
data become available.

The soil_data function implemented in ForestScope demonstrates its 
capability to manage diverse and complex soil data effectively. It suc
cessfully streamlines data processing workflows, enabling efficient 
handling and analysis of critical soil parameters. These parameters 
directly support both empirical analyses and modelling studies focused 
on soil properties (Nakhavali et al., 2018)

3.2. Climate data comparison

The analysis of climate data across various climate models reveals 
differences in their performance. In terms of precipitation (in mm), the 
datasets displayed a range in RMSE values, with CHELSA showing a 

Fig. 3. ISRIC and HWSD soil data at top and bottom soil layers evaluation against the ICP data.
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more accurate prediction of mean precipitation, while UKESM was at 
the higher end of the RMSE spectrum (Fig. 4, Table S2). This pattern was 
also evident in the temperature data (in K), with CHELSA maintaining 
lower RMSE values, suggesting its stronger predictive capability for 
mean temperatures compared to the other datasets (Figure S2, 
Table S3). Delving into the extremes of temperature, the datasets again 
showed variability in their RMSE values. CHELSA stood out for having 
the most precise estimates for both the lowest and highest temperatures, 
indicating its potential superiority in capturing temperature variations 
(Figure S3 and S4, Table S4). In contrast, the GFDL dataset appeared to 
have the greatest room for improvement, especially in predicting 
maximum temperatures.

Regarding radiation predictions (in W m-2), the datasets were in 
closer agreement, with similar RMSE values across the board (Figure S5, 
Table S5). This similarity primarily stems from the limited number of 
observational points (2052 in total) available from the ECA dataset for 
comparison. This is a significantly smaller dataset when compared to 
those used for other climate parameters, leading to a more uniform 
agreement in our findings. However, it is important to note that a larger 
pool of observational data would likely provide a more comprehensive 
and clear comparison of solar radiation across different climate models.

Moreover, the methodology adopted by the CHELSA dataset deserves 
special attention. This dataset employs a downscaling technique that 
integrates various climate data sources and utilizes advanced statistical 
methods (Karger et al., 2017). Such an approach enables the generation 
of high-resolution climate data, which are more reflective of local con
ditions. This, in turn, potentially enhances the accuracy of climate var
iable predictions, giving the CHELSA dataset an edge over the ISIMIP 
models.

Consequently, within the ForestScope framework, the CHELSA 
climate data are opted to be used as the primary input (Figure S6). This 
decision also extends to our analysis and methodologies for filling in 
missing climate data points in the ICP NFI dataset.

3.3. Application

ForestScope is configured to integrate inputs from the HWSD soil 
database and CHELSA climate data, as previously described. Addition
ally, it requires NFI data, sourced from the ICP data repository 
(Figure S7), to extract and organise stand and management information. 
Once these data sources are provided, ForestScope processes and 
structures the data into organized data frames suitable for use in 
modelling or analytical frameworks. These frames include: Site Infor
mation (site number, country, latitude, longitude), Climate Data (min
imum, maximum, and average temperature, precipitation, solar 
radiation, frost days, atmospheric CO2), Soil Data (soil class, AWC, SOC, 
N, P), Species Data (species name, planting period, fertility, stem count, 
vegetation biomass, C content), and Management Data (age, vegetation 
biomass removal, basal area, and volume).

To demonstrate this process, a site in Northern Germany (site num
ber: 101; latitude: 54, longitude: 10) as a case study was selected (see 
Fig. 5). The system efficiently extracted and organized the data into 
various data frames, which are also downloadable for extended research 
or modelling applications.

In the experimental phase of ForestScope, the processed data enables 
the execution of modelling experiments using three distinct soil C 
models. Among these, the RothC model only includes N and P limitation 
factors. The models generate outputs covering a range of aspects: 
climate, stand composition, canopy dynamics, stock levels, water cycles, 
and forest production fluxes. Specifically, a comparative analysis con
ducted at the case study site with the RothC model reveals intriguing 
findings. Under conditions without nutrient limitation (Fig. 6-a), the 
model behaves differently compared to scenarios where both N and P 
are co-limiting (Fig. 6-b). The latter scenario shows a slight reduction in 
productivity, attributable to the restricted availability of N and P. This 
outcome aligns with recent nutrient limitation studies (Du et al., 2021; 
Nakhavali et al., 2022), underscoring the necessity of incorporating 

Fig. 4. Comparative Analysis of Precipitation Data from CHELSA and ISIMIP Models with ECA Observational Points.
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nutrient limitations into forest productivity models for more accurate 
estimations.

However, it is important to note that the models within ForestScope 
have not undergone complete calibration, with only the above-ground 
processes having been calibrated against observational data for 
regional and European scale studies so far (Augustynczik et al., 2025. 
Nakhavali et al., 2025). Therefore, while they offer valuable insights, 
users should apply these models with an understanding of this limitation 
in their current state.

4. Conclusion

ForestScope marks a constructive step in forest data analysis, 
providing a structured approach to processing and interpreting soil, 

climate, and stand data. Its ability to integrate data from various sources 
into a coherent framework is essential for advancing our understanding 
of forest ecosystems. By automating data harmonisation, it markedly 
reduces manual preprocessing effort, and its coupling with the process- 
based 3PGmix vegetation model offers a proof-of-concept that the 
platform can deliver model-ready inputs and site-level growth simula
tions within a single workflow. Although 3PGmix serves here as an 
illustrative application, the framework is readily extensible to other 
process-based or empirical models, allowing users to plug in alternative 
or more mechanistic models and thereby enable rapid testing of hy
potheses and management scenarios at large spatial scales.

However, it is important to acknowledge the tool’s current limita
tions, including its reliance on the accuracy and completeness of the 
input datasets and the need for further calibration of the integrated 

Fig. 5. Site Selection and Data Extraction Interface in ForestScope.

Fig. 6. ForestScope Application of Models and Experimental Setup with a) No Nutrient limitation b) with N and P co-limitation.
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vegetation models. As such, while ForestScope offers valuable insights 
and a solid foundation for ecological analysis, ongoing development and 
validation are required to enhance its applicability and accuracy in 
diverse ecological scenarios. Nevertheless, ForestScope represents a 
significant yet evolving contribution to the field, highlighting both the 
complexities and potential of ecological data analysis in modelling 
work, as well as in sustainable forest management and conservation 
strategies.

Code and data availability

The web-based version of the ForestScope application can be 
accessed at: https://nakhavali.shinyapps.io/ForestScope_app/. Its 
source codes are made available at: https://github.com/iiasa/Fores 
tScope_sc. For the ICP data, requests can be made through the ICP 
official website at http://icp-forests.net/page/data-requests. CHELSA 
climate data is accessible for download at https://chelsa-climate.org/d 
ownloads/, and the HWSD v2.0 soil data can be sourced from https 
://data.apps.fao.org/catalog/dataset/ff5c613c-75bb-46a9-a162-bc7 
28059b465.
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