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Abstract: This study introduces a novel forecast combination method for monthly Japanese
tourism demand, analyzed at both aggregated and disaggregated levels, including tourist,
business, and other travel purposes. The sample period spans from January 1996 to Decem-
ber 2018. Initially, the time series data were decomposed into high and low frequencies
using the Ensemble Empirical Mode Decomposition (EEMD) technique. Following this,
Autoregressive Integrated Moving Average (ARIMA), Neural Network (NN), and Support
Vector Machine (SVM) forecasting models were applied to each decomposed component
individually. The forecasts from these models were then combined to produce the final
predictions. Our findings indicate that the two-stage forecast combination method signifi-
cantly enhances forecasting accuracy in most cases. Consequently, the combined forecasts
utilizing EEMD outperform those generated by individual models.

Keywords: empirical ensemble mode decomposition; tourism demand; time series analysis;
forecast combination; decomposition; Japan

1. Introduction
The successful vaccination rollouts and coordinated lifting of travel restrictions are

expected to boost consumer confidence and accelerate the recovery of international tourism.
According to UNWTO, initial estimates suggest a 2% growth above 2019 levels. In the first
seven months of 2024, international tourist arrivals reached 96% of pre-pandemic levels,
indicating a near-full recovery (UNWTO, 2024). However, the central forecast depends on
the pace of recovery in Asia and existing economic and geopolitical risks. Studies focused
on improving the accuracy of tourism demand forecasts are important as these enable
enhanced planning and better allocation of scarce resources (for e.g., rooms, transport,
access to food, and security) for tourism purposes.

In this paper, we focus on evaluating the forecasting accuracy of EEMD technique
and compare it with other forecasting models such as ARIMA, NN, and SVM. This study
utilizes Japanese tourism demand data.

There are several reasons for considering Japan as a case study. First, Japanese tourism
is particularly interesting because, traditionally, tourism was not strongly associated with
Japan (Polunin, 1989). However, the implementation of the inbound travel promotion
campaign, Visit Japan, in 2003 (Soshiroda, 2005), led to significant growth in tourist arrivals,
with over 31 million tourist arrivals in 2018, a 263% increase since 2010 (UNWTO, 2019).
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Second, before the pandemic, travel and tourism were becoming major economic drivers for
Japan, with the country experiencing some of the fastest inbound tourism growth rates in
the world (Andonian et al., 2016). Despite the significant impact of the pandemic on global
travel and tourism, Japan managed to maintain its global ranking within the sector. For
instance, Japanese tourism demand had been increasing annually since the global financial
crisis in 2009 (Yagasaki, 2021). Despite the ongoing pandemic, in 2020, Japan’s travel and
tourism industry maintained its position as the third largest total contributor to GDP in
the world. Third, tourism statistics indicate that the sector continues to be of significant
importance to the Japanese economy, with the total contribution of travel and tourism to
GDP being 4.7% of the total economy in 2020, while the total contribution of the sector to
employment stood at 8.1% of total employment. Fourth, despite the continued growth
in tourism demand since the global recession, research into forecasting Japanese tourism
demand has been sparse. Finally, Yagasaki (2021) outlines several efforts by the Japanese
government to revive tourism demand post-COVID-19. Accurate tourist arrivals forecasts
are essential for safeguarding positive returns on significant investments in infrastructure
and promotional activities, and for enabling policymakers to make informed decisions to
boost economic development, well-being, and employment (Silva et al., 2019).

This study aims to provide insights into the effectiveness of combining EEMD with
various forecasting models, using the dynamic and evolving context of Japanese tourism
demand as a backdrop.

Interestingly, the majority of previous research has focused on Japanese outbound
tourism and its impact on other economies (see, for example, Law (2001), Park et al. (2017),
and Song et al. (2003)). In contrast, a recent attempt which directly tackles the issue of
tourism demand for Japan is the work by W. Chen et al. (2017) through which they proposed
a single dendritic neuron model for forecasting Japanese tourist arrivals. The authors found
that their proposed model outperforms several other NN models. Russell (2017) performed
a SWOT analysis for inbound Japanese tourism to provide policy recommendations to
facilitate Japanese tourism industry, showing their effort in promoting Japanese tourism
in line with the Japanese government’s aims and objectives. Many years ago, Turner et al.
(1997) compared forecasts for inbound tourism to New Zealand, Australia, and Japan. Their
findings showed the following: the periodic model is not a good candidate for tourism
demand forecasting; there is no significant difference between the forecasts from a basic
structural model and ARIMA; and the naïve model cannot be a substitute for seasonal
integrated models. Accordingly, it is evident that there is a significant gap in the Japanese
tourism demand forecasting literature in terms of methods considered and data that has
been used. Japan’s tourism demand data is complex due to the presence of structural
breaks and nonlinearity caused by the severe acute respiratory syndrome (SARS) outbreak
in 2003, the Global Financial Crisis in 2008, the 2011 Japanese earthquake, tsunamis, and
nuclear plant leakage incidents.

Since 2010, there has been an increase in the development and use of hybrid models
and forecast combinations for tourism demand forecasting, and these have resulted in
improved forecasting accuracy (Song et al., 2019). However, no single paper has evaluated
the practical relevance and feasibility of a combination forecast for Japanese tourism
demand. Therefore, our study aims to introduce a combination forecast which is based on
a decomposition method and time series forecasting techniques. Here, we rely on a model
based on Empirical Mode Decomposition (EMD) which is an adaptive decomposition
method based on the original data. However, in comparison to other decomposition
techniques like Wavelet Transform, EMD is affected by the modal aliasing effect. Therefore,
in order to overcome this disadvantage, we employ EEMD, which is an extension of EMD
that overcomes its limitations (Z. Wu & Huang, 2009). Thus, we propose decomposing
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the data with EEMD and then generating forecasts with SVM (Vapnik, 1998), NN, and
classical ARIMA models, which are then combined, to predict Japanese tourism demand at
an aggregated and disaggregated level based on the purpose of travel (tourism, business,
and other). Forecasts from the proposed model are compared with several different linear
and non-linear models as we seek to determine whether forecast combination improves
the accuracy of overall forecasts. The evaluation of forecast combinations concerning
Japanese tourist arrivals is important because research indicates that combined forecasts
are preferable over univariate forecasts in many practical contexts (see, for example, Wong
et al. (2007), G. Li et al. (2019), J. Wu et al. (2020)).

To the best of our knowledge, this is the first study that attempts to assess the EEMD
method in the context of tourism. As indicated by the different degrees of seasonal R2

in Table 1, this study assesses the method using time series data with varying degrees
of seasonality.

Table 1. Summary statistics of monthly growth in arrivals.

Category Mean SD Seasonal R2

Asia Tourist 1.178 23.2 0.479
Asia Business 0.311 15.7 0.732
Asia Others 0.559 35.4 0.924
North America Tourist 0.575 26.5 0.855
North America Business −0.027 19.9 0.811
North America Others 0.0003 54.1 0.960
Europe Tourist 0.641 33.0 0.811
Europe Business 0.115 30.3 0.896
Europe Others 0.200 42.9 0.946
Total 0.835 13.8 0.577

The seasonal R2 in the last column was computed by regressing the first difference
in the data against 12 monthly dummies. This paper makes several contributions to the
tourism demand forecasting literature. Firstly, given the rapidly improving status of Japan
as a key tourist destination, we extend knowledge about forecasting tourist arrivals in Japan
which has been under-researched. Secondly, we are the first paper to propose a combination
forecast for Japanese tourism demand. Thirdly, we introduce a new combination forecast by
exploiting EEMD which is a powerful nonparametric method to decompose the time series
of interest first and subsequently generate forecasts for decomposed components using
SVM, ARIMA, and NN models to develop the forecast combination. This, in particular,
is a timely and important innovation as forecast combinations are expected to further
develop and play an increasingly significant role in the forecasting of tourism demand
in future (Song et al., 2019, p. 356). Fourthly, this study provides forecasts for Japanese
tourism demand at an aggregated and disaggregated level based on the purpose of travel
(tourism, business, and other), which can be useful for stakeholders for the creation of
better tailored policies for Japanese tourism. Finally, we hope this attempt sparks more
interest by academics and practitioners to consider developing varied forecasting models
to further improve the accuracy of Japanese tourism demand forecasts.

The remainder of this paper is organized such that Section 2 presents a concise litera-
ture review, Section 3 provides a brief description and methodology underlying EEMD,
SVM, NN, and ARIMA models and presents a summary of the data, and Section 4 provides
the forecast evaluation results. Section 5 concludes the study with results discussed.
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2. Literature Review
We begin by presenting a concise review of the developments in forecast combination

models in the context of tourism demand forecasting. Thereafter, we review the application
of decomposition models for tourism demand forecasting. As reviewing all efforts at
forecasting tourism demand is beyond the mandate of this paper, we refer those interested
in a curated review of the tourism demand forecasting literature to Song et al. (2019) and
Jiao and Chen (2019).

2.1. Forecasting Combination in Tourism Demand Forecasting

There is a growing importance of combination forecasting models in tourism. Recent
evidence from the M4 competition indicated that forecast combinations can be very suc-
cessful (Atiya, 2020). Nevertheless, in the context of tourism demand forecasting, the use of
combination forecasts date back to the pioneering work by Fritz et al. (1984) who showed
that forecast combination can result in smaller forecasting errors and overall accuracy
improvements. Yet, in comparison to other disciplines, this is a short history (Gunter et al.,
2020). A combination forecast can be defined as the following:

“An approach that generates a set of forecasts for the same demand variable by using
different methods, and then combines these forecasts into one final, summarised forecast.”
(Song et al., 2019, p. 354)

Song et al. (2019) identify several forecast combination methods in the context of
the tourism demand literature. These include average-based methods using Pythagorean
(arithmetic, geometric or harmonic) means; forecasting error-based methods; regression-
based methods; and hierarchical methods, each with its own advantages and disadvantages.

A total of 17 of the key papers published on forecasting tourism demand with com-
bination forecasts from 1984 to 2018 have been reviewed by Song et al. (2019). Therefore,
instead of replicating the findings from these studies, we focus on reviewing tourism
demand research with combination forecasts published since 2019.

G. Li et al. (2019) explored the potential of combining interval forecasts by combining
different density forecasts from eight individual time series or econometric models in the
context of Hong Kong’s inbound tourism demand. They find that combination forecasts
are effective for producing accurate interval forecasts.

Sun et al. (2021) proposed a combination forecast based on time-varying jackknife
model averaging with an application to Hong Kong tourist arrivals and showed that
their proposed model outperforms the single model and three other combination methods
in most cases. Liu et al. (2021) used simple average forecast combination to generate
four combined models that included the combination of four time series models, three
AI models, three hybrid Seasonal and Trend decomposition using Loess models and AI
models, and the combination of all of the above ten models. They found the forecast
combination with four time series models outperforming all other models used in this
study. Kourentzes et al. (2021) showed that a forecast combination which combined a
univariate model (exponential smoothing) with cross-sectional hierarchical forecasting
techniques could outperform multivariate models when forecasting visitor arrivals from
Africa pre-COVID.

Bekiroglu et al. (2022) proposed a dynamic ensemble algorithm for forecast combina-
tion and evaluated its performance via an application into tourist arrival forecasting. The
algorithm runs a sparsification process to merge a subset of methodology space (which
involved various univariate and multivariate forecasting algorithm) to avoid overfitting
while improving out-of-sample accuracy.

Closely associated with forecast combinations is the development of hybrid forecasting
models. To this end, classification techniques have been combined with various forecasting
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methods to develop hybrid models. For example, Genetic Algorithms (GA) are used
to select the parameters in SVM within GA-Support Vector Regression models (Song
et al., 2019). Those interested in classification forecasts in the context of tourism demand
forecasting are referred to Pai et al. (2006) and Xu et al. (2016).

2.2. Decomposition Models in Tourism Demand Forecasting

Decomposition techniques such as filtering, spectral analysis, and EMD have been
common applications for solving tourism demand problems (Bosupeng, 2019).

C. F. Chen et al. (2012) adopted an EEMD method and forecasted inbound inter-
national tourism demand to Taiwan. They found combined EEMD models superior in
forecasting tourist arrivals to Taiwan relative to back-propagation NN alone. Lai et al. (2013)
used a hybrid model that combined EMD and Support Vector Regression for forecasting
tourist arrivals. Kummong and Supratid (2016) built a hybrid model combining discrete
wavelet decomposition and a nonlinear autoregressive NN model with exogenous input
for forecasting Thailand tourism and found it outperformed other related NN forecasts.

Silva et al. (2017) forecasted European tourism demand using nine models which
included Singular Spectrum Analysis (SSA) and showed that the filtering technique of SSA
was, on average, the best across all horizons. Yahya et al. (2017) used a hybrid modified
EMD and NN model for tourism forecasting and showed that it outperforms NN and other
EMD-NN models. G. Zhang et al. (2017) focused on improving the forecasting accuracy of
daily occupancy for hotels by combining EEMD with ARIMA. They found this combination
forecast produced more accurate results than ARIMA in the short run.

Silva et al. (2019) introduced a hybrid NN forecasting model for European tourist
arrivals which incorporated decomposition with Singular Spectrum Analysis and showed
that decomposition has the capability of significantly improving NN forecasts.

More recently, X. Li and Law (2020) used ensemble EMD for decomposing Google
Trends and then applied several forecasting models to show that they could provide
superior tourism demand forecasts. Xie et al. (2020) also employed the EMD method,
incorporating adaptive noise, and showed that this model is effective for tourism forecasting
at different horizons, based on both point and interval forecast comparisons.

Y. Zhang et al. (2021) proposed a deep learning method based on artificial intelligence
for modeling tourism data which combines decomposition with deep learning. Tang et al.
(2020) proposed a novel bivariate EMD approach, using data obtained by a search engine,
for predicting tourist visits. An application into forecasting the tourist volume for an island
province in Chian, Hainan, shows that this approach is significantly more accurate, and
robust than several popular forecasting techniques.

Overall, the literature review has highlighted several gaps in academic research.
First, none of the recent research in forecasting tourist arrivals sought to evaluate how
developments in forecasting methodology and models (either univariate or multivariate)
could impact forecasts for Japanese inbound tourism. Second, we did not uncover any
studies that have evaluated the effectiveness of EEMD in relation to decomposing Japanese
inbound tourism demand. Third, there exists no research that has sought to determine the
impact of forecast combinations on the accuracy of Japanese tourism demand forecasts.

3. Methodology and Material
3.1. EEMD

EMD (Huang et al., 1998) is a relatively new nonparametric method that is not re-
stricted by the assumptions of linearity or stationarity. The EMD technique decomposes
time series into IMFs and a residual. In this section, we describe concisely the EMD
algorithm as explained by Yeh et al. (2010a, 2010b) and applied by Fang et al. (2020).
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Accordingly, EMD is a nonparametric, adaptive method that is suitable for effectively
capturing both non-stationarity and non-linearity behavior in time series data. In brief, the
EMD technique deals with decomposing a time series into IMF with different frequencies
and amplitudes. Z. Wu and Huang (2009) built on the limitations of the EMD technique
and developed the improved EEMD approach which avoids the aliasing produced via
EMD by adding a series of pure noise to the data set.

EEMD not only retains the adaptive nature of EMD but also introduces white noise to
effectively avoid the problem of mode mixing, ensuring that the decomposed Intrinsic Mode
Functions (IMFs) uniquely represent different time scales. In the context of forecasting, the
limitations of EMD relative to EEMD are significant (Fang et al., 2020). EMD often suffers
from mode mixing, where oscillations of different scales are not effectively separated,
leading to misleading interpretations. This issue is mitigated in EEMD by adding white
noise to the data, which helps to separate different scales more effectively and reduces
the chance of mode mixing. Additionally, EMD is sensitive to noise, which can distort the
decomposition process, whereas EEMD’s ensemble approach with added noise makes it
more robust and reliable. EMD also struggles with end effects, where the decomposition
near the boundaries of the data can be inaccurate. EEMD addresses this by averaging
the results of multiple decompositions with different noise realizations, providing a more
stable and accurate representation near the boundaries. Furthermore, EEMD is relatively
simple compared to other combination methods, maintaining high prediction efficiency
while ensuring a certain level of accuracy. These improvements make EEMD a superior
choice for decomposing non-stationary and non-linear time series data, as demonstrated
in the study by (Fang et al., 2020). The entire process can be summarized as the following
procedure.

1. Generate a new time series, by adding the original time series to a normally distributed
white noise time series, ϵn(t):

yn(t) = y(t) + ϵn(t) (1)

2. For the time series generated in (1), obtain the values of maximum and minimum.
3. Employ an interpolation method and join the maximums to obtain the upper envelop

and join all the minimum to generate the lower envelope.
4. Compute the average of the upper and lower envelopes

m1(t) =
[ymax(t) + ymin(t)]

2
. (2)

5. Obtain the mean deleted data, by subtracting the average computed in (2) from (1),
the original time-series with added noise.

h′1(t) = y(t)− m1(t) (3)

6. If the IMF conditions are satisfied for h′1(t), then repeat step one to step four until
to achieve a monotonic function for the remainder. This procedure decomposes the
original series into a remainder and a set of n independent IMFs, as shown below.

y(t) = ∑n
j=1 h′i(t) + r′(t) (4)

7. Simulate a random time series of noise, and repeat step 2 to step 6, k-times.
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8. Finally, compute the means of the (k-times repeated) decomposed IMFs obtained in
the previous steps.

hi(t) =
∑k

j=1 h′i,j (t)

k
(5)

r(t) =
∑k

j=1 r′j (t)

k
(6)

The described EEMD technique is advantageous as the added random noise cancels
in the end, and results in significantly reducing the likelihood of mode mixing. The
decomposed series is finally denoted as the following:

y(t) = ∑n
j=1 hi(t) + r(t) (7)

where r(t), in the above equation, is called the remainder and the n time series of hi(t)
represent the final IMFs. The following conditions must be met by IMFs:

(1) Throughout the entire time scale, the difference between the number of maxima,
minima, and zero crossings of the IMF should not be greater than 1.

(2) At any given time, the mean value of the upper envelope and the lower envelope
must be zero.

The remainder and the n independent IMFs obtained via EEMD preserves the main
features of non-linearity and non-stationarity in the original data while avoiding the
modal aliasing.

3.2. Support Vector Machine (SVM)

In contrast, SVM has the advantage of dealing with nonlinear regression estimation
problems in many fields. It applies minimized structural risk principles to minimize an
upper bound of generalization error (Pai et al., 2006). SVM belongs to the class of supervised
machine learning algorithms that have proven successful at dealing with various practical
problems, such as non-linear regression, non-linear time series, and pattern classification
(Vapnik, 1998). SVM works by using a pre-selected kernel function to map the data into a
multi-dimensional feature space. Next, this multi-dimensional space is used to construct
the optimal classification plane which maximizes the distance between the hyperplane. As
a technique that can be used for linear and non-linear forecasting, the SVM algorithm is
as follows:

f (y) = wTy + c

where w is the weight coefficient and c is called the offset term. The Lagrangian function
is then used to obtain the weights and the offset parameter in order to find the optimized
solution for the following non-linear regression:

f (y) =
n

∑
j=1

(bi − b∗i )k(yiy) + c

where b∗i , b
∗
i and c are the optimum parameters and k(yiy) is the non-linear kernel function.

3.3. Neural Networks (NN)

NN models are structured to include input, hidden, and output layers, which are
connected by some weights. The NN algorithm adjusts the weights according to a learning
method that minimizes a cost function to obtain the best fit to the data. Below, we provide
a concise description of the NN estimation procedure.
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1. The inputs into hidden layer neuron j are combined, using a weighted linear combina-
tion, to obtain the input signal Sjj:

Sj =
m

∑
j=1

wi,jyi + dj

where dj is the threshold for the jth node and wi,j indicates the weight for jth neuron.
2. Compute the output value yj from the hidden neuron node j, using a non-linear

activation function:
yj = g

(
Sj
)

3. To start with, the weights, wi,j, take random values, and are then updated until mini-
mizing a cost function such as Mean Square Errors (MSE), using the observed data.

3.4. Selection of Parameters

In this study, we utilized the radial basis kernel function in SVM. Grid search (Grid-
search), GA, and Particle Swarm Optimization (PSO) are employed in parameter optimiza-
tion. The dimension of input vector is chosen from one to five, and then optimal parameters
are obtained through the cross-intersection experiment by comparing the MSE.

For the NN model fitting, the training time was no more than 5000, the learning
efficiency was set to 0.01, and the precision in training the network was chosen as 0.001.
The Tansig and ‘logsig’ functions were selected as the activation function, and ‘trainlm’ and
‘traingd’ were chosen as the training functions. The number of nodes for each hidden layer
varies from two to twelve. The activation function and the number of nodes are chosen
by comparing Mean Square Prediction Errors (MSPE). To find the optimum number of
parameters in ARIMA models, BIC criterion is used in this study.

The data employed in this paper were taken from Japan National Tourism Organiza-
tion (JNTO). Our sample, in all cases, start from January 1996 to December 2018. We take
the first 17 years (204 months) as in-sample, and make the remaining 6 years (72 months)
as out-of-sample. It is common practice in the forecasting literature to split time series such
that approximately 3/4th of the observations are used for model training with 1/4th of the
observations set aside for out-of-sample forecasting. In terms of out-of-sample forecasts,
we consider four horizons which cover 1 month ahead (very short term), 3 months ahead
(short-term), 6 months ahead (medium-term), and 12 months ahead (long-term) ahead
forecasts. This is, again, in line with accepted practices within the forecasting literature
(see, Heravi et al. (2004); Hassani et al. (2009); Hassani et al. (2015); and Silva et al. (2019)
where the authors set aside 25% of observations for forecasting assessment and used h = 1,
3, 6, and 12 months ahead to forecast).

Figure 1 shows the total tourist arrivals in Japan, and disaggregated by three regions
and purpose of travel (in log). As can be observed from these graphs, tourist arrival in
Japan generally increases over the sample period. However, seasonality is the dominant
pattern in these data, especially for Other and Business arrivals data. Periods of substantial
expansion are evident in the tourist arrivals, with the short periods of sharp contraction
during 2011/2012 due to the Japan earthquake and subsequent tsunami.

The summary statistics for the monthly percentage change of the tourist arrivals are
also given in Table 1. Overall, arrivals in Japan have experienced a substantial growth of
0.84% per month over this period. In particular, tourist arrivals show an average increase of
1.2%, 0.58%, and 0.64% for Asia, North America, and Europe. Business and Other arrivals
from Asia also show monthly growth averages of 0.31% and 0.56%, whereas stagnation or
decline applies for North America and Europe. The sample standard deviations indicate
substantially higher volatility for the Other arrivals. The third column in Table 1 reports



Tour. Hosp. 2025, 6, 79 9 of 19

the seasonal R2. This computed in a regression of the monthly changes of the arrival data
against twelve-monthly dummy variables. Except for Tourist and Business arrivals from
Asia, seasonality accounts for over 80% of the variations in these times series. Indeed, all
the Other arrival time series have an R2 of more than 90%. A substantially different feature
of seasonality from tourist arrivals from Asia reflects differences in distances and traditions
in North America and Europe compared with Asia.
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Figure 1. Tourist arrivals in Japan disaggregated by three regions, purpose of travel, and the total
(in log).

Applying the EEMD method, the data for arrivals were decomposed into 7 IMFs and
a remainder. A representative graph of the Total is presented in Appendix A, while other
decomposition results are available upon request from the authors. It can be seen that the
data for arrivals are decomposed form high frequency to low frequency components and a
remainder. The remainder is the lowest frequency component and displays the long-term
trend in the arrivals. The monotonous increasing trend of the remainder indicates that the
condition to terminate the IMFs decomposition is satisfied and no further decomposition
is required.

4. Forecast Evaluation
Our main concern is the investigation of the forecast performance of the forecast com-

bination method. It begins by employing the method of EEMD to decompose the arrivals
time series from high to low frequencies at the first stage. In the second stage, ARIMA, NN,
and SVM forecasting models were used to forecast each decomposed component separately
and then combined them to obtain the combination forecast. The NN, SVM, and ARIMA
models were fitted to the observations set aside for training purposes. Out-of-sample
forecasts from the three models were then calculated and, subsequently, the combination
forecasts were obtained for the remaining test data.

To assess and compare the forecasting performance of these models, the out-of-sample
MSEs were computed, and the modified Diebold–Mariano test (Harvey et al., 1997) was
applied on the out of sample forecast errors to test for the significant difference between the
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errors produced by the forecast combination method and the benchmark models. We also
reported a summary table of Relative Root Mean Squared Errors (RRMSE) shown below.

RRMSE =

 ∑276
t=205(ŷt+k − yt+k )

2

∑276
t=205

(∼
y t+k − yt+k

)2


0.5

where
∼
y t+k represents the k = 1, 3, 6, or 12 step ahead forecasts computed by the single

model, NN, SVM, or ARIMA. ŷt+k represents the k = 1, 3, 6, or 12 step ahead forecast
obtained by the forecast combination method which exploits EEMD. The RRMSE has been
used in several forecasting studies such as Silva et al. (2019), Hassani et al. (2009), and Silva
et al. (2017) and references therein.

Forecasting Results

In this study, the forecast results by the SVM, NN, and ARIMA models, for the
combined high IMFs and combined low IMF components decomposed by the EEMD
method, were subsequently used to obtain the final combination forecast. To investigate the
forecasting performance of the combination method, the SVM, ARIMA, and NN models
were then selected as the benchmark models for assessment. Table 2 presents the out-of-
sample Mean Square Error (MSE) for 1, 3, 6, and 12-month forecasts of nine time series,
categorized by continent and travel purpose. The EEMD model optimally combines
forecasts of decomposed high- and low-frequency IMFs using different methods. The
modified Diebold–Mariano test assesses the significance of differences between forecast
errors of the benchmark EEMD model and other models.

We begin by analyzing the results for tourist arrivals from Asia. First and foremost,
we notice that the NN model is the worst contender (in a majority of the instances) in
comparison to the competing models across all horizons. Secondly, the combination forecast
from the EEMD model outperforms all competing models across all horizons based on
the MSE criterion. However, a closer look at the results shows that in the very short run
(1-month ahead) and very long run (12-months ahead), there is no evidence of statistically
significant differences between forecasts from the combination model and competing
forecasts in terms of forecasting Asians arriving for tourism purposes. This indicates the
findings on these horizons could be chance occurrences. The findings also show evidence
for statistically significant differences in forecasts between the combination forecast and
competing models at h = 1, 3, and 6 steps-ahead for arrivals relating to business and
other purposes. In the very long run, the results are comparatively less convincing from a
statistical significance perspective, but evidence indicates that the combination forecasts
are significantly better than ARIMA forecasts for arrivals into Japan for business and other
purposes at this horizon.

In the case of Europe, the performance of the forecast combination model at generating
forecasts for tourist arrivals into Japan is significantly better than the competing models
in the very short run. However, as the horizon increases, there is a considerable drop in
statistically significant outcomes even though the forecast combination model continues to
produce the lowest MSE in comparison to the competing models. Interestingly, the forecast
combination model outperforms ARIMA significantly across all cases except for arrivals
for tourism purposes at h = 12 months-ahead.
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Table 2. Out-of-sample MSE for Asia, Europe and North America, and Total based on the purpose of travel.

Region Models
1 3 6 12

Tourist Business Others Tourist Business Others Tourist Business Others Tourist Business Others

Asia

EEMD 0.039 0.008 0.008 0.041 0.007 0.008 0.044 0.010 0.011 0.049 0.01 0.011

SVM 0.014 0.018 ** 0.052 ** 0.017 0.028 ** 0.068 ** 0.026 0.028 ** 0.073 * 0.057 0.034 0.074

NN 0.022 0.018 ** 0.050 ** 0.215 ** 0.035 ** 0.071 ** 0.179 * 0.036 * 0.101 * 0.179 0.034 0.336

ARIMA 0.013 0.160 ** 0.033 ** 0.013 0.016 ** 0.033 ** 0.013 0.016 ** 0.033 ** 0.017 0.017 * 0.033 *

Europe

EEMD 0.020 0.010 0.027 0.020 0.011 0.028 0.020 0.014 0.030 0.021 0.010 0.032

SVM 0.072 ** 0.012 * 0.028 ** 0.094 ** 0.014 0.029 0.115 * 0.027 0.032 0.134 0.021 0.030

NN 0.043 ** 0.016 ** 0.030 ** 0.084 ** 0.054 0.038 * 0.086 * 0.077 0.091 0.109 0.030 0.045

ARIMA 0.049 ** 0.031 ** 0.049 * 0.053 ** 0.050 ** 0.054 ** 0.058 ** 0.046 ** 0.051 * 0.044 0.038 * 0.052 **

North
America

EEMD 0.012 0.007 0.019 0.014 0.007 0.032 0.015 0.008 0.035 0.019 0.007 0.039

SVM 0.044 ** 0.011 ** 0.011 0.0686 ** 0.014 ** 0.010 * 0.102 * 0.015 * 0.011 0.074 0.019 * 0.012

NN 0.034 ** 0.018 ** 0.022 0.112 ** 0.023 ** 0.037 0.037 * 0.019 ** 0.052 0.101 0.021 * 0.044

ARIMA 0.026 ** 0.020 ** 0.036 ** 0.029 ** 0.020 ** 0.040 0.029 ** 0.020 ** 0.041 0.030 0.020 * 0.041

Total

EEMD 0.008 0.008 0.009 0.014

SVM 0.023 ** 0.060 ** 0.075 * 0.096

NN 0.027 ** 0.131 ** 0.211 * 0.131

ARIMA 0.010 ** 0.010 ** 0.010 0.013
*: significant at 5% level, **: significant at 1% level.
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In terms of arrivals from North America, at horizons of 1, 3, and 6 months-ahead the
combination forecasts are significantly better than the competing forecasts for tourism and
business purpose arrivals into Japan. Interestingly, there is only one statistically significant
case whereby the combination forecast is significantly better than a competing forecast
when it comes to arrivals into Japan for other purposes. Nevertheless, based on the MSE it
is evident that combination forecasts continue to outperform the other models in terms of
reporting the lowest MSE across all cases at each forecasting horizon.

Table 2 also presents the out-of-sample MSE for 1, 3, 6, and 12-month forecasts of
total inbound tourist arrivals to Japan. The EEMD model optimally combines forecasts
of decomposed high- and low-frequency IMFs using different methods. At h = 1 and
h = 3 steps-ahead, there are statistically significant differences between the combination
forecasts and competing forecasts based on the modified Diebold–Mariano test. However,
interestingly, in the very long run (at h = 12 steps-ahead) we do not find any evidence of
statistically significant differences between the combination forecasts and others for the
Total. Even at h = 6 steps-ahead, the combination forecasts do not outperform the ARIMA
forecasts significantly. This indicates that there is more confidence in the capabilities of the
combination forecasting model at generating more accurate forecasts for the Total at h =
1 or h = 3 steps-ahead as opposed to h = 12, or h = 6 steps-ahead (except in comparison
to SVM and NN forecasts), as it is evident from Table 1 that data for the Total have the
smallest volatility and show a linear long-term trend. Therefore, a linear model such as
ARIMA can capture this pattern well and produce good long-term forecasts for this time
series data.

Overall, as can be seen from Table 2, the forecast errors obtained by SVM and ARIMA
models, in most cases, produced better results than the NN model. The prediction errors
of the combined forecasting model are lower than that of the NN, SVM, and ARIMA
models and proved to be statistically significantly better. The forecasting results suggest the
superiority of the combined forecasting model when the forecast combination technique
was used to decompose the original data. Table 3 displays the RRMSE, which is the ratio of
the RMSE of the optimized EEMD combination forecast to the RMSE of individual Support
Vector Machine, Neural Network, and ARIMA forecasts. The last column of Table 3 presents
the average RRMSE for 1, 3, 6, and 12 steps ahead forecasts. The score indicates how many
times out of 10 the EEMD model achieves a lower RMSE for each forecast horizon/method.
The results show that, in terms of the average RRMSE, the improvement in the combined
model compared with SVM, NN, and ARIMA can be of orders of 28%, 46%, and 19%,
respectively. The second summary statistic in Table 3 is a score of the number of times
out of 10 that the combination forecast yields lower MSE at the given horizon/method. In
terms of different methods, the results show that the combination forecast outperforms
SVM in 32 cases, NN for 39 cases, and ARIMA for 35 out of 40 times.

In terms of different horizons, the combination forecast outperformed other models by
25% for the one-month ahead forecasts. The dominance of the optimal forecasting model,
applying the EMD technique, increases in longer term forecasts. The improvements are in
the order of around 33% for the horizons of 3, 6, and 12 months ahead. The results also
indicate that EEMD outperformed the other three methods in 24 cases out of 30 for one step
ahead forecasts, and in 27 cases out of 30 for longer term forecasts. In addition, we report
the Mean of Errors as a measure of Bias in Table 4, and the out of sample Mean Absolute
Errors (MAE) were computed and are available from the authors upon request.
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Table 3. Out-of-Sample relative RMSE.

1 3 6 12 Overall

EEMD/SVM RRMSE 0.794 0.723 0.695 0.664 0.72

Score 8 8 8 8 32/40

EEMD/NN RRMSE 0.714 0.471 0.463 0.500 0.54

Score 9 10 10 10 39/40

EEMD/ARIMA RRMSE 0.746 0.793 0.847 0.872 0.81

Score 9 9 9 8 35/40

Overall RRMSE 0.75 0.66 0.67 0.67 0.69

Score 26/30 27/30 27/30 26/30 106/120

Table 4. Out-of-sample Mean Errors.

1 3 6 12

EEMD −0.0312 −0.3457 −0.464 −0.7981

SVM 1.5236 2.1589 3.1556 3.16722

NN 0.9648 4.9988 5.0601 3.4588

ARIMA 0.1535 0.0366 −0.0915 −0.3533

Overall, the results indicate that the combination forecast outperformed the other three
methods by 31% (based on the RRMSE). Compared with SVM, NN, and ARIMA, in 88% of
cases (106/120) the combination forecast also produced a lower MSE. We also tested for the
statistical significance of equality of the post-sample forecasting errors between the EEMD
and the benchmark models at the horizons of 1, 3, 6, and 12 months ahead. The results
indicate that in 62.5% (75/120) of cases, the forecast combination model is significantly
better than the other methods at either 1% or 5% levels. Similarly, the results for out-of-
sample Mean Absolute Errors (available from the authors upon request) for the 1, 3, 6, and
12 months ahead forecasts of the nine-time series, disaggregated based on the purpose
of travel and the Total, show that, overall, the combination forecasts outperformed other
models in 90% of cases, again confirming the superiority of the combination forecasting
model applying the EEMD technique. Table 4 shows the mean of the out-of-sample forecast
errors for EEMD, SVM, NN, and ARIMA. This serves as a measure of forecast bias in
addition to the RMSE reported. Regarding the bias, the results in this table indicate that,
in general, both ARIMA and combination forecasting models have produced much better
forecasts than SVM and NN models at all horizons.

5. Discussions and Conclusions
Japan continues to progress into an important global tourist destination. Historically,

research into improving the accuracy of tourism demand forecasts in Japan have been
sparse, but given its growing importance, we find it pertinent to consider a forecast evalua-
tion for Japanese tourism demand, to inform stakeholders on the suitability of a selection
of forecasting methodologies. In this study, three components of arrivals, Tourist, Business,
and Others, in Japan from Asia, North America, and Europe were considered. These time
series data were decomposed by utilizing the EEMD approach. The combination models of
SVM, NN, and ARIMA models were then used to predict the arrivals for ten time series,
nine disaggregated time series, and the monthly Total arrivals to Japan.
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We found that SVM and ARIMA models had produced much better forecasts than
the non-linear NN models. The NN model demonstrated the worst performance in terms
of forecasting Japanese tourism demand in majority of the cases considered here. When
comparing the combined forecasting model with the benchmarks, the results proved the
superiority of the combination forecasts over using only the single model for forecasting
the tourism demand in Japan.

The results showed that the MSE of EEMD were smaller than other approaches
in 88% of cases. In fact, on average, in terms of RRMSE, the combined models using
EEMD outperformed SVM, NN, and ARIMA by 28%, 46%, and 19%. In terms of different
horizons, EEMD outperformed other models by 25% for the one-month ahead forecasts.
The dominance of the combined forecasts increases, for longer term horizons, and the
gains are in the order of around 33% for the 3, 6, and 12 months ahead forecasts. Overall,
the results indicated that EEMD outperformed the other three methods by 31% in terms
RRMSE and in 106 out of 120 cases considered, using the three methods and for four
different forecast horizons. Overall, this study shows that the forecast performance of
the forecast combination model, using EEMD decomposition, is much better than the
benchmark models and thus more suitable for predicting the tourism data.

Given that our conclusions support the superiority of the EEMD based forecast combi-
nation approach, we find it pertinent to discuss why this model is worthy of consideration
in tourism forecasting contexts. Firstly, the IMFs partially reveal the characteristics of
the data, with its remainder presenting the internal trend. The second advantage of the
decomposition method by EEMD is its ability to deal with nonlinearity and nonstationarity
without changing the original features of the data. This means that the forecasts obtained by
the combination method can be directly compared with the original data. EMD is affected
by modal aliasing. To overcome this problem, the EEMD approach was developed which
avoids the aliasing produced via EMD by adding a series of pure noise to the original data.
Another important feature of the EEMD method is that the added noise can effectively be
cancelled, resulting in improvements in forecast accuracy (Fang et al., 2020). In addition,
the superiority of the forecast combination employing EEMD decomposition becomes more
pronounced as more individual models are included. Finally, EEMD-based forecast combi-
nation methods have been widely adopted as solutions to forecasting problems in different
fields, thereby further confirming its value within our application (see, for example, Z.
Zhang and Hong (2019) and Ali et al. (2020)).

Our findings can be of importance to the Japanese government and stakeholders like
Japanese Tourism Research & Consulting Co. within the tourism industry. For example,
the Japan National Tourism Organisation and Japanese Tourism Research & Consulting Co.
can benefit by using this approach as a means of enhancing the tourism demand forecasting
accuracy of its existing approaches. The ability to generate more accurate forecasts will
directly feed into more efficient resource allocations and also aid in better planning and
decision making within the tourism industry.
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This paper opens up several avenues for future research. First, recent advancements
in Japan’s status on the global tourism front confirms that there is a growing need for
more applications in forecasting Japanese tourism demand. As such, researchers should
consider developing more comparative studies evaluating forecasting accuracy across
a broad range of forecasting models. Secondly, there is scope to evaluate more varied
forecast combinations in the context of Japanese tourism demand. Researchers should not
only consider comparing more varied univariate models with the forecast combinations
suggested here, but also compare the performance of other forecast combinations against
the results reported here. Thirdly, the application of more complex, yet potentially more
accurate, multivariate forecasts should be considered as a viable option for generating fur-
ther accuracy improvements in Japanese tourism demand forecasts. Fourthly, researchers
can consider several other decomposition techniques such as wavelet transform, singular
spectrum analysis, or independent component analysis in relation to EEMD to determine
the most optimal decomposition for Japanese tourism demand. Furthermore, as COVID-19
has driven the e-commerce and digital initiatives across all business sectors, multivariate
models could also consider search index data as a leading indicator for predicting global
demand for Japan as a tourist destination. Finally, the forecasting performance of EEMD
in disruptive data, such as during the COVID-19 pandemic, is an interesting topic we are
currently investigating.
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