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Despite habitat loss and degradation are the primary drivers of biodiversity loss, dif-
ferent conclusions have been drawn about the importance of land-use or land-cover 
(LULC) change for biodiversity. Differences may be due to the difficulty of framing 
a coherent model design to assess LULC effects. Recommendations have previously 
been identified for the design of statistical models and failing to follow them can risk 
misidentification of drivers, misinterpretation of predictions, overconfidence, high 
uncertainty, and incorrect management recommendations. We review modelling prac-
tices in statistical models assessing biodiversity responses to LULC, and investigated 
relationships between modelling practices and citations by scientific articles and policy 
documents. We benchmarked practices across model approaches, political extents, and 
objectives. From 346 model applications, we found that more than half of the model 
applications have justified ecologically-relevant predictors, have used 1 km² or lower 
LULC spatial resolution, have used fine LULC thematic resolutions, performed vali-
dation or communicated uncertainty. However, we found that the model approach 
and political extent were strong determinants of the misuse of modelling recommen-
dations. Top–down models followed less frequently three recommendations out of six, 
compared to other model approaches. Global studies used coarser LULC thematic and 
spatial resolution than studies at other extents, and thus potentially underestimated 
the relationships between LULC and biodiversity. Global studies were however more 
frequently cited by both scientific studies and policy documents. Modelling recom-
mendations are not universally applied, especially because of methodological tradeoff, 
technical difficulties in their applications and data requirements. However, the mul-
tiples risks associated with the misuse of modelling recommendations, particularly in 
large-scale modelling exercises, raise concerns on model interpretation and policy sup-
port from science, regarding the impacts of LULC on biodiversity.
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Introduction

Habitat loss and degradation through land-use and land-
cover (LULC) change are considered the primary drivers of 
species extinction, with 62% of species assessed in the IUCN 
Red List threatened by LULC, more than any other threat 
(Díaz et al. 2019). Past and ongoing losses of natural habitat 
extent and integrity are also the primary causes of decline 
in other biodiversity metrics (Jaureguiberry  et  al. 2022), 
such as local species richness, abundance (Newbold  et  al. 
2015, Chaudhary and Mooers 2018, Jung  et  al. 2019, 
Schipper et al. 2020), community intactness (Newbold et al. 
2016), and several facets such as functional traits, genetic 
diversity, ecosystem structure and function, and community 
composition (IPBES 2018). Given these significant impacts 
on biodiversity locally and globally, LULC remains a core 
focus of conservation science and practice.

While observational evidence has demonstrated LULC 
change to be a key driver of biodiversity change, ecological 
modelling studies have drawn differing conclusions about 
its relative importance, with some studies giving it rela-
tively lower importance than others (Davison et al. 2021, Di 
Cecco and Hurlbert 2022). One explanation for this is the 
difficulty of assessing LULC effects across different spatial 
extents. At small spatial scale, studies often rely on accurate 
ecological understanding and local data to quantify relation-
ships between drivers and biodiversity responses (Ferrier and 
Guisan 2006). These studies are often motivated by scientific 
and practical questions of local relevance (Spake et al. 2022) 
rather than macro-ecological patterns and international poli-
cies (Lyet et al. 2013). Studies that investigate global biodi-
versity status and trends typically rely on comparatively large 
datasets, often combining data collected for different pur-
poses, such as expert-based information, local studies, mod-
elled data, structured surveys and opportunistic observations 
from citizen science (Alkemade et al. 2009, Newbold et al. 
2015, Chaudhary and Mooers 2018, Jung et al. 2019). Thus, 
the scope and intention of global studies requires making 
some assumptions about influencing and confounding fac-
tors to generalise relationships between biodiversity and envi-
ronmental predictors.

Ecological models can be categorised into three classes 
based on the modelling assumptions and the biodiversity 
measurement they use: top–down, bottom–up or sideways 
models (Pollock  et  al. 2020). Top–down models work at 
a multi-species level to investigate processes structuring 
communities in macroecological frameworks, to produce 
community-level metrics such as alpha, beta and gamma 
diversity, e.g. using species–area relationships or generalised 
dissimilarity models (Ferrier et al. 2007, Gaston et al. 2007, 
Chaudhary and Mooers 2018), mean biodiversity abun-
dance and biodiversity intactness, e.g. using dose–response 
relationships (Newbold  et  al. 2015, Schipper  et  al. 2020). 
Conversely, bottom–up models are species-based and mainly 
rely on assumptions about the ecological niche of a species, 
for example in metapopulation or species distribution mod-
els (SDMs) (Phillips and Dudik 2008, Bernal-Escobar et al. 

2015). While top–down models often lose species-level infor-
mation, bottom–up models typically neglect community 
processes (Guisan and Rahbek 2011). Combining these two 
approaches in what have been defined as ‘sideways models’ 
(Pollock  et  al. 2020) might improve model reliability (but 
see Dormann  et  al. 2018, Zurell  et  al. 2018) by dealing 
with both species-specific and macroecological constraints 
(Pollock  et  al. 2020), for example, using joint species dis-
tribution models or spatially-explicit species assemblage 
modelling (SESAM) (Guisan and Rahbek 2011, Harris et al. 
2018, Zurell et al. 2020a). All these approaches are applied 
for explaining, mapping (predictions at same spatial or tem-
poral scales between inputs and outputs) and transferring 
(predictions at different spatial or temporal scales between 
inputs and outputs) the impacts of LULC on biodiversity 
(Zurell et al. 2020b). However, as every model relies on dif-
ferent algorithms and assumptions, users must be careful to 
follow recommendations to avoid uninformative or erro-
neous conclusions (Araújo et al. 2019, Zurell  et al. 2020b, 
Urban et al. 2022).

Recommendations for statistical modelling approaches 
have been identified in multiple review and methodological 
papers. We summarised in Fig. 1 six of the most important 
recommendations relevant for statistical models assessing 
biodiversity responses to LULC data (Araújo  et  al. 2019, 
Zurell et al. 2020b, Jansen et al. 2022, Urban et al. 2022). 
Failing to follow those recommendations can risk misiden-
tification of drivers from spurious relationships, misinterpre-
tation of predictions, overconfidence in model results, and 
high uncertainty (Araújo  et  al. 2019, Zurell  et  al. 2020b, 
Jansen  et  al. 2022, Urban  et  al. 2022). Thus, it can result 
in erroneous assessment of the relative importance of LULC 
impacts on biodiversity and incorrect management recom-
mendations (Zurell et al. 2022).

To avoid identifying spurious relationships and unreliable 
or overfitted predictions (Urban et al. 2016, Petitpierre et al. 
2017, Velazco et al. 2020), ecological models must incorpo-
rate 1) ecologically-relevant knowledge when selecting envi-
ronmental predictors (Fourcade et al. 2018), and should 2) 
explicitly consider species dispersal and habitat connectivity 
(e.g. filtering predictions with dispersal distance, consider-
ing colonization pathways) when transferring predictions to 
avoid commission errors (D’Amen et al. 2017, Zurell et al. 
2018, Briscoe et al. 2019, Velazco et al. 2020; Fig. 1).

Since LULC impacts on biodiversity are scale-dependent 
(Bailey et al. 2007, Di Cecco and Hurlbert 2022, Roilo et al. 
2022; Supporting information), both the 3) thematic and 4) 
spatial resolutions of LULC data should be fine enough to cap-
ture the effect of LULC at the scale at which the focal species 
interacts with LULC (Hartley and Kunin 2003, Liang et al. 
2013, Remm 2016, Ohashi et al. 2019, Graham et al. 2019; 
Fig. 1). Because the LULC resolution might affect the esti-
mation of LULC effect size, similar LULC resolutions would 
be needed to provide comparable results of LULC effects on 
biodiversity (Graham et al. 2019).

Model predictions should be 5) validated to estimate 
model precision and reliability (Araújo  et  al. 2005, Jung 
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Figure 1. Conceptual table with key design elements of statistical models that include land-use and land-cover (LULC), the risks of failing 
to follow these modelling recommendations, and key references for their importance.

2022; Fig. 1). Using independent data for model validation 
is among the best practices (Araújo et al. 2005), yet remains 
rarely conducted. Alternatively, cross-validation approaches 
are commonly used, and can explicitly account for depen-
dence structures, for instance through spatial cross-validation 
(Robert et al. 2017, Lee‐Yaw et al. 2021).

Lastly, 6) uncertainty is inherent to modelling frame-
works – in input data, model design, estimation and predic-
tion (Pearson et al. 2006, Planque et al. 2011, Rocchini et al. 
2011; Fig. 1). Quantifying and communicating this uncer-
tainty is necessary to interpret prediction confidence and data 
deficiency (Mouquet et al. 2015, Clare et al. 2024). Properly 
communicating model uncertainties facilitates scientific 
progress as it helps targeting further data collection and tech-
nical advancements in data analyses; it also enables more 
effective conservation policies to be designed, for example by 

decreasing the risk of misidentifying conservation priorities 
(Jansen et al. 2022).

Recently, several reviews investigate the extent to which 
modelling recommendations are followed for specific 
modelling approaches, such as SDMs (Araújo  et  al. 2019, 
Velazco et al. 2020, Lee-Yaw et al. 2021), mechanistic models, 
metapopulation models, species-area relationship or dissimi-
larity models (Urban et al. 2022, Zurell et al. 2022). Recent 
reviews identified taxonomic, geographic and predictor vari-
able biases in studies that modelled biodiversity responses to 
LULC (Davison et al. 2021, Dullinger et al. 2021). However, 
despite widespread applications of statistical models using 
LULC data, the extent to which modelling recommendations 
are followed has not yet been systematically studied.

Here, we benchmarked modelling practices in statisti-
cal models using LULC on biodiversity data, regarding 
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predictor selection, species dispersal and habitat connectivity, 
thematic and spatial resolution of LULC data, uncertainty 
and model validation (Fig. 1). Considering that modelling 
approaches have drawn differing conclusions about LULC 
relative importance on biodiversity, we question whether 
modelling approaches also differ in the use of modelling rec-
ommendations and in their influence of science and policy. 
We contrast modelling practices across model approaches 
(top–down, bottom–up, sideways), political extent (sub-
national, national, multi-national, global; and spatial extent) 
and objectives (explaining, mapping, transferring), and assess 
potential impacts on informing scientific knowledge and 
conservation policies using the number of citations in sci-
entific literature and policy documents. Overall, this review 
provides a benchmark for how LULC impacts on biodiversity 
have been modelled to date and highlights potential risks for 
model interpretation and policy design.

Methods

Data collection
We conducted a systematic review of statistical models that 
made use of LULC data following a PRISMA protocol 

(Moher et al. 2009; Supporting information), to document 
modelling practices (Fig. 1). We defined statistical models 
as model that establishes links between ecological data and 
external drivers (see below for a definition of model types 
and search terms). We performed a search query of titles and 
keywords on Scopus (www.scopus.com) from international 
scientific journals in English. The query has been done on 1 
June 2021, without restriction on the publication year. We 
expected to capture a consistent pattern of modelling practices 
and citations by scientific or policy papers from the scientific 
papers returned by the query. We queried model names com-
monly used in applied biodiversity conservation and statisti-
cal modelling approaches (Pollock et al. 2020), such as single 
SDM, ensemble SDM, species area relationship, dissimilarity 
and occupancy models (Supporting information). Dynamic 
models, such as agent-based or metapopulation models, were 
included in the query, but not retain in the analysis because 
of a lack of representativity (Supporting information). We 
focused on taxonomic terrestrial biodiversity and on stud-
ies that used LULC data in a spatially-explicit framework. 
The search query returned a total of 7532 published studies 
(Fig. 2, Supporting information).

We first shortlisted the studies by screening the abstracts to 
select studies that fulfilled the following criteria: 1) made use 

Figure 2. Flowchart of the review process from the scientific articles returned by the query to the data collection on model applications.
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of a spatially-explicit modelling framework; 2) focussed on 
terrestrial biodiversity at the species, community or popula-
tion level (e.g. species occurrence, abundance, richness); and 
3) used a LULC layer as an independent variable in the model.

The abstract screening was performed on CADIMA 
(www.cadima.info), which allows easy study allocation to 
several reviewers (Kohl et al. 2018). Studies were selected if 
the reviewer judged all criteria as fulfilled or uncertain. This 
abstract screening retained a total of 2312 published studies. 
Full-text screening was then performed on the studies passing 
the abstract screening, using the same criteria. This full text 
screening identified 985 studies relevant to our review. Inter-
reviewer reliability of the selection process was assessed by five 
reviewers evaluating 100 abstracts and 50 full-texts: reliability 
was moderate for abstract screening (Fleiss Kappa = 0.51, p < 
0.001) and substantial for full text (Fleiss Kappa = 0.62, p < 
0.001). Among the diversity of SDMs applications, bottom–
up models were very abundant. Thus, to decrease the data 
collection time, we restricted data collection of bottom–up 
SDM (‘bSDM’ hereafter for simplicity, Table 1) on a sub-
selection of model applications. To do so, we first classified all 
SDM applications as sideways (e.g. joint-SDM) or bottom–
up (e.g. single-SDM, ensemble-SDM). Second, among the 
835 studies identified as using bSDM applications, we ran-
domly selected 225 studies (about 30%) for data collection 
(Fig. 2). We conducted a sensitivity analysis to ensure the 
representativity of the sub-sampling (Supporting informa-
tion). Thus, data collection was finally done on 333 studies, 
documenting 346 model applications relevant to our review 
(13 studies applied more than one model).

Data collection aimed at documenting the model approach, 
political and spatial extent, model objective, modelling prac-
tices, and number of citations in scientific articles and pol-
icy documents (Table 1). Model approaches were defined 
as top–down, bottom–up or sideways, after Pollock  et  al. 
(2020). Bottom–up models were separated in two categories,  
bottom–up not SDM for which we included all applications 
in our analyses and bSDM for which only 30% of the model 
applications where reviewed in full and analyses. This split was 
necessary to avoid biasing the conclusions about bottom–up 

models due to an imbalanced representations of a specific 
model class. Political extent was defined at administrative 
units, being sub-national, national, multi-national or global 
and spatial extent was numerically documented by collecting 
study’s surface areas (log(km²)). The objective of the model 
was defined as what the model had been used for: explaining, 
mapping, transferring (Zurell et al. 2020b; Table 1).

We documented modelling practices with a binary 
approach (yes/no) as follows: 1) environmental predictors are 
selected using ecological justification (hereafter, ‘ecological 
knowledge’), 2) transferring future biodiversity changes are 
done while accounting for either species dispersal or habitat 
connectivity (hereafter, ‘dispersal/connectivity’), 3) LULC 
data use thematic resolution that distinguished major LULC 
classes (Bailey et al. 2007, Liang et al. 2013), i.e. being equal 
to or larger than Level 2 (nine categories) of the Sentinel-2 
Global Land Cover classification (Di-Gregorio 2005) (here-
after, ‘thematic resolution’), 4) LULC data use a spatial reso-
lution lower equal to 1 km² (hereafter, ‘spatial resolution’; 
Supporting information), 5) model predictions are validated 
by using independent data, spatial cross-validation or cross-
validation (hereafter, ‘validation’), and 6) uncertainty quanti-
fied for either algorithms, scenarios or parameters (hereafter, 
‘uncertainty’).

To our knowledge, universal threshold values of fine LULC 
spatial and thematic resolutions do not, and should not, exist 
and can be species-specific or context dependant. The appro-
priate spatial resolution is specific to the species and landscape 
under study. The thresholds we used for LULC spatial (1 km²) 
and thematic (nine categories) are based on a general assump-
tion that such resolution is small enough to capture a reason-
able amount of spatial variability in the biodiversity variables 
(see also the Supporting information for sensitivity analysis 
on spatial resolution). We do not consider these thresholds 
as appropriate in all cases and will depend in particular on 
the extent of the study area. Also, other modelling practices 
can affect the estimations of LULC effects on biodiversity, but 
were not reviewed in our study, such as error propagation, 
biotic interactions, interaction between predictors, auto-cor-
relation structures and study designs (De Palma et al. 2018).

Table 1. Model characteristics collected between model applications.

Characteristics Categories Description

Modelling approach Top–down Macroecological models such as species-area relationship, generalized 
dissimilarity model and dose response model

Bottom–up SDM (bSDM) Species-specific models such as single SDM, stacked SDM and ensemble SDM
Bottom–up not SDM Species-specific models such as occupancy and N-mixture models
Sideways Combination of top–down and bottom–up approaches such as Spatially explicit 

species assemblage modelling (SESAM), joint SDM and hybrid SDM coupled 
with assembly rule

Political extent Global All continents, except Antarctica
Multi-national More than one country
National The entirety of one country
Sub-national Any extent smaller than national

Objective Explaining Assess relationships between species distributions and environmental predictors
Mapping Same spatial or temporal scales between inputs and outputs
Transferring Different spatial or temporal scales between inputs and outputs
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Finally, for each study we collected information on the 
citations in scientific articles and public policy documents. 
We recorded the number of citations within scientific arti-
cles returned by Scopus (www.scopus.com) (out of the 346 
reviewed model applications, 86% of the model applications 
have been cited more than once, see also the Supporting 
information). Because studies are rarely cited several times 
by policy documents, we instead recorded the presence 
or absence of a citation in policy documents returned by 
Altmetric (www.altmetric.com) or PlumX (www.plumanalyt-
ics.com) (note that Altmetric or Plum Analytic reports were 
not available for 84 model applications).

Statistical analyses and visualisation
We performed three distinctive analyses to investigate prev-
alence of modelling practices across modelling approaches, 
extents and objectives (Table 1). First, we used a Sankey 
diagram to explore how the choice of modelling approach 
(top–down, bSDM, bottom–up not SDM, sideways) was 
linked to the political extent (sub-national to global) and 
the model objectives (explaining, mapping, transferring). 
Second, we assessed differences in the use of modelling prac-
tices (Fig. 1). We used generalised linear models (binomial 
error distribution) to investigate differences in the use of 
each practice between model approaches, political extents 
and objectives. To do so, we fitted one model per model-
ling practice (coded as use = 1; non-use = 0) and variable of 
interest (model approaches, political extent, spatial extent 
and objectives).

Finally, we evaluated which studies were the most cited in 
scientific articles and policy documents. We used generalised 
additive models to compare the number of citations by scien-
tific articles (Poisson error distribution) and the presence of 
citations by policy documents (binomial error distribution) 
between model approaches, political extents, spatial extent 
and objectives. Publication year was included as a smooth 
fixed effect (i.e. basis penalty smoothing; Wood 2015) to 
ensure a fair comparison between models. The spatial extent 
was considered with a smooth effect to account for non-
linear relationships between study extents and citations. We 
conducted a sensitivity analysis to ensure that pseudo-repli-
cation caused by several model applications within one study 
did not affect our results. For this, we ran the models for 100 
iterations using one model application per article, randomly 
selecting one model application per article each time, and 
checked the consistency of the effects.

All analyses were conducted in R ver. 4.1.2 (www.r-
project.org), using R packages ‘stats’ (ver. 4.4.0) and ‘mgcv’ 
(Wood 2015), checking model residuals with ‘DHARMa’ 
(Hartig 2020), and with visualisation done using ‘ggplot2’ 
(Wickham 2011) and ‘ggalluvial’ (Brunson and Read 2018).

Results

From the 346 statistical model applications using LULC data, 
bSDM were the most abundant (n = 229), even if only 30% 

of this model applications have been reviewed (Methods). 
Bottom–up not SDM approaches were found in 38 model 
applications, while the remaining models have used top–
down (n = 62) and sideways (n = 17) approaches (Fig. 3). 
Modelling approaches strongly differed between the politi-
cal extents. Top–down approaches were mostly applied at 
global extent for explaining or transferring, or at sub-national 
extent for mapping or transferring (Fig. 3a). Conversely, both 
bottom–up not SDM and bSDM approaches were used in 
majority at sub-national extent, for explaining, mapping or 
transferring (Fig. 3a–b). They have been used less frequently 
at national and multinational extents for mapping and trans-
ferring biodiversity, and not often at global scale. Sideways 
approaches were rarely used, but applications were mostly 
done at sub-national and national extents for explaining, 
mapping or transferring biodiversity (Fig. 3a).

We presented the overall statistics for the model applica-
tions with full data collection (bottom–up not SDM, side-
ways and top–down) followed by the statistics based on the 
subsampled bSDM applications. Going through the mod-
elling practices among all the reviewed model applications, 
ecological knowledge was used in 49 and 69% of the models 
to select the environmental predictors. Dispersal/connectiv-
ity was considered in 23 and 39% of the models transfer-
ring future biodiversity changes. LULC spatial resolution was 
lower or equal to 1 km² in 45 and 66% of the models. LULC 
thematic resolution was lower or equal to the Level 2 of the 
Sentinel-2 Global Land Cover classification in 54 and 59% 
of the models. Model validation was performed in 39 and 
78% of the models. In addition, in case of validation, model 
predictions were mostly validated by cross-validation, and 
rarely validated against independent data or by using spatial 
cross-validation (Table 2). Uncertainty was communicated to 
some degree in 67 and 54% of the models. The number of 
citations by scientific articles was on average 63 and 19 (8 and 
3 citations per year on average), ranging from 0 to 1302 and 
0 to 157, with only 19 and 13% of the models having been 
cited by a policy document.

Modelling practices differed among model approaches 
and extents (Fig. 4; see the Supporting information for full 
statistics). We found that studies using top–down approaches 
followed fewer modelling recommendations than the others 
(Fig. 4a). Top–down modelling studies used ecological knowl-
edge in less than 20% of their applications, and LULC spatial 
resolution was above 1 km² in less than 40% of their applica-
tions. In contrast, bSDM model applications more frequently 
included ecological knowledge (β ± SE = 2.01 ± 0.34, p < 
0.001), fine LULC spatial resolution (β = 1.19 ± 0.30, p < 
0.001) and model validation (β = 2.48 ± 0.34, p < 0.001) 
than top–down model applications. Similarly, bottom–up 
not SDM model applications more frequently included eco-
logical knowledge (β = 2.13 ± 0.47, p < 0.001) than top–
down model applications. Predictions have been validated in 
only 23% of studies top–down approaches (n = 62), while it 
has been done for 100% of the sideways approaches, both 
by cross-validation and spatial cross-validation (n = 17; Table 
2). The probability to use dispersal/connectivity information, 
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fine LULC thematic or to present uncertainty were not sig-
nificantly different between model approaches (Fig. 4a).

We observed a clear gradient of modelling practices accord-
ing to the political (Fig. 4b–c) and spatial extents (Fig. 5a–b). 
For all model approaches without bSDM, compared to sub-
national studies, global studies were less likely to use ecologi-
cal knowledge (β = −2.30 ± 0.56, p < 0.001), fine LULC 
thematic (β = −1.39 ± 0.48, p = 0.019) and fine LULC 
spatial resolution (β = −1.32 ± 0.50, p = 0.043; Fig. 4b). 

A similar pattern was observed for bSDM model applica-
tions, where global compared to sub-national studies were 
less likely to use ecological knowledge (β = −2.19 ± 0.84, 
p = 0.045) and fine LULC spatial resolution (β = −3.15 ± 
1.09, p = 0.020; Fig. 4c). Uncertainty was equally communi-
cated between different extents and used in around 50–80% 
of model applications (p > 0.05; Supporting information). 
Considering all modelling approaches without bSDM, the 
spatial extent (log(km²)) was negatively correlated to the use 

Figure 3. Sankey diagram of the model approach, political extent and objective for (a) top–down, sideways and bottom–up not SDM, and 
(b), bottom–up SDM (bSDM) model applications. Colours correspond to the political extent of the model applications (dark blue, global; 
grey, multi-national; orange, national; green, sub-national).
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of ecological knowledge (β = −0.21 ± 0.05, p < 0.001), and 
thematic resolution (β = −0.09 ± 0.04, p = 0.032; Fig. 5a). 
Considering only bSDM model applications, the spatial 
extent was negatively correlated to the use of ecological 
knowledge (β = −0.13 ± 0.04, p = 0.002) and LULC spatial 
resolution (β = −0.15 ± 0.04, p < 0.001; Fig. 5b). The other 
modelling practices were not significantly related to the spa-
tial extent (Fig. 5a–b).

Modelling practices were fairly similar between model 
objectives (Fig. 4d–e, Supporting information), suggesting 
that conversely to model approach or extent, the objective 
of the model was not a strong determinant of modelling 
practices. The only two significant differences were; uncer-
tainty was more reported in model used for explaining than 
mapping (β = 1.36 ± 0.52, p = 0.033, modelling approaches 
without bSDM) and ecological knowledge was more frequent 
in model used for mapping than models used for transferring 
(β = 0.90 ± 0.31, p = 0.010, bSDM).

Across all model approaches, both the citation in scientific 
articles and the probability to be cited by policy document 
increased non-linearly with the political extent (Fig. 5c–f; see 
the Supporting information for full statistics). Global mod-
els, and models designed to transfer biodiversity, were cited 
by scientific articles and policy documents significantly more 
often than other model applications within bSDM model 
application or all other approaches (Fig. 6c–e; p < 0.001). 
Top–down approaches were cited on average five times more 
by scientific articles than either approaches of bottom–up 
approaches (p < 0.001). However, citation by policy docu-
ments did not differ between type of model approaches 
except for sideways models, which were never cited (Fig. 6, 
Supporting information). Models applied for explaining were 
cited less often by scientific articles than models used for 
transferring both for all model approaches without bSDM 
(Fig. 6g; β = 1.00 ± 0.03, p < 0.001) and for bSDM (Fig. 6i; 

β = 0.15 ± 0.05, p = 0.002). Citation in policy documents 
was more common for transferring than explaining biodiver-
sity changes in all model approaches without bSDM (Fig. 6h; 
β = 4.90 ± 2.02, p = 0.02). These results were robust to the 
potential pseudo-replication effect when some studies applied 
more than one model (Supporting information).

Discussion

In this study, we benchmarked modelling practices in statis-
tical models using land-use or land-cover (LULC) on bio-
diversity data to investigate whether the most influential 
model applications for science and policy followed modelling 
recommendations (Fig. 1). We found that large-scale stud-
ies tended to use coarser LULC data and ignore modelling 
recommendations more often than sub-national studies, but 
received the most attention from scientific studies and policy 
documents. Sideways models, hybrids between bottom–up 
and top–down approaches, tend to adopt modelling recom-
mendations more often, but are still under-used in modelling 
studies and subsequently overlooked by policy documents.

Controlling for publication age, global studies received 
large numbers of citations both in scientific articles and pol-
icy documents (Fig. 6), despite the majority having meth-
odological inadequacies regarding ecological knowledge and 
validation of the predictions (Fig. 5) according to modelling 
recommendations presented Fig. 1. Both thematic and spatial 
LULC resolution were often above the thresholds used in our 
study. This does not mean that thematic and spatial LULC 
resolutions in global studies were inadequate to capture the 
effect of LULC. However, it suggests that the relationships 
between biodiversity variables and LULC might be captured 
differently at global compare to other political extent. While 
LULC is one of the leading drivers of past and current declines 

Table 2. Percentage of model applications for which predictions were validated by using cross-validation, spatial cross-validation, indepen-
dent data or were not validated. 

Models
Model  
applications

Cross- 
validation (%)

Spatial cross- 
validation (%)

Independent  
data (%)

Not  
validated (%)

All Bottom–up not SDM 26.3 0.0 10.5 63.2
All bSDM 65.5 1.3 10.9 22.3
All Sideways 76.5 23.5 0.0   0.0
All Top–down 19.4 0.0 3.2 77.4
without bSDM Explaining 29.4 5.9 0.0 64.7
without bSDM Mapping 31.8 2.3 9.1 56.8
without bSDM Transferring 28.2 2.6 5.1 64.1
bSDM Explaining 70.8 8.3 0.0 20.9
bSDM Mapping 53.7 0.9 18.5 26.9
bSDM Transferring 77.3 0.0 5.2 17.5
without bSDM Global 20.0 0.0 6.7 73.3
without bSDM Multi-national 25.0 0.0 8.3 66.7
without bSDM National 40.0 20.0 6.7 33.3
without bSDM Sub-national 33.3 1.7 3.3 61.7
bSDM Global 62.5 12.5 12.5 12.5
bSDM Multi-national 66.7 0.0 8.3 25.0
bSDM National 71.4 0.0 11.9 16.7
bSDM Sub-national 63.6 1.4 11.2 23.8
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in biodiversity, some model projections suggest that the rela-
tive role of LULC in driving biodiversity change is diminish-
ing over the 21st century (Bellard et al. 2012). However, is 
it possible that improper LULC thematic and spatial resolu-
tions of earlier modelling studies have diminished the effect-
size of LULC and have impacted this conclusion. We caution 
that using inadequate resolutions might lead to spurious 

results underestimating the effect of LULC on biodiversity 
(Di Cecco and Hurlbert 2022, Roilo et al. 2022).

Between 20 and 50% of the model applications used 
for transferring future biodiversity changes did not use 
species dispersal or habitat connectivity (Fig. 5). This risks 
transferring species distributions in potentially unreachable 
areas (Cabral  et  al. 2017), and so potentially misallocating 

Figure 4. Barplots representing the percentage (± SE) of model applications using the modelling practices per (a) model approach, (b) 
political extent for models excluding bottom–up SDM, (c) only bottom–up SDM, (d) objective for models excluding bottom–up SDM 
and (e) objective only for bottom–up SDM, among 346 reviewed model applications. Significant differences are notified by different letters 
between barplots, with asterisks corresponding to the p-value: p < 0.05*, p < 0.01**, p < 0.001*** (see the Supporting information for full 
statistics).
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Page 10 of 16

Figure 5. Model predictions (± 95% CI) of the relationship between the spatial extent of the reviewed studies; for top–down, sideway and 
bottom–up not SDM model applications (a) the use of modelling practices, (c) the number of citations in scientific articles and (d) the 
probability of citation by policy document; for bSDM model applications (b) the use of modelling practices, (e) the number of citations in 
scientific articles and (f ) the probability of citation by policy document. Significant differences are notified by asterisks corresponding to the 
p-value (p < 0.05*, p < 0.001***).
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conservation efforts and funding. This issue is prevalent in 
top–down approaches (Cabral  et  al. 2017). For instance, 
the species–area relationship (SAR) is a common top–down 
approach suffering important limitations when coming to 
dispersal and connectivity (Fattorini  et  al. 2021), in which 
the dependence between species richness and area is modu-
lated by a unique constant value accounting for dispersal abil-
ities and habitat connectivity. Methodological improvements 
have been proposed, such as the countryside SAR (Martins 
and Pereira 2017) and the triphasic SAR (Chisholm  et  al. 
2018), integrating to the analytical calculation either the rela-
tionships between species and habitats or clearing patterns of 
habitat fragmentation related to species dispersal and specia-
tion rate, respectively. Producing a diverging cluster of SAR 
from a range of plausible dispersal and scale dependent values 

can also be valuable for risk assessment and decision mak-
ing (Hovestadt and Poethke 2005, Drakare et al. 2006). In  
bottom–up models, although single or ensemble SDMs are 
often not flexible enough to account for species dispersal 
or habitat connectivity, one option would be to couple the 
SDM with a separate dispersal model (Visconti et al. 2016, 
Zurell et al. 2016, Seaborn et al. 2020), or constrain SDM pre-
dictions based on species’ maximal dispersal capacities (Engler 
and Guissan 2009), geographic barriers (Lessmann  et  al. 
2016) or to implement cost distance filters (Gherghel et al. 
2020) (reviewed by Zurell 2017, Velazco et al. 2020).

Statistical models aim at explaining, mapping or transfer-
ring biodiversity patterns, yet we found that most modelling 
approaches have not systematically considered prior ecologi-
cal knowledge (e.g. key parameters or known relationships 

Figure 6. Barplots representing the citations (± SE) in scientific articles (predicted number of citations) and policy documents (predicted 
probability to be cited) per (a, b) model approach, (c, d) extent for top–down, sideways and bottom–up not SDM, (e, f ) extent for  
bottom–up SDM, (g, h) objective for top–down, sideways and bottom–up not SDM and (i, j) extent for bottom–up SDM (bSDM). 
Predictions are controlled by the year of publication (methods). Significant differences are notified by different letters between barplots 
inside a facet, with asterisks corresponding to the p-value: p < 0.05*, p < 0.01**, p < 0.001*** (see the Supporting information for details).
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between covariates and biodiversity measures), particularly 
in top–down and global models (Fig. 5). Macroecological 
frameworks addressing multi-species changes in occurrence 
or distribution face the difficulty of choosing predictors that 
are relevant to all modelled species, often ignoring species-
specific relevance and trusting in the estimating algorithm to 
determine correct links. Similarly, models using species rich-
ness or beta diversity as input and outputs (Biber et al. 2020), 
can hardly consider individual species requirements, habitat 
preferences or affinities.

However, sideways models can return species rich-
ness or beta diversity as macroecological outputs based on 
species-specific settings (Pollock  et  al. 2020). For example, 
joint-SDMs such as the hierarchical modelling of species 
communities framework described in Ovaskainen  et  al. 
(2017) can be used in a spatially-explicit design to model 
spatio-temporal changes of multiple species distributions, 
considering functional traits and phylogeny to assess species 
co-occurrence patterns. Hybrid models like SESAM (Guisan 
and Rahbek 2011) can provide unified frameworks using a 
top–down approach to constrain bottom–up outputs con-
sidering biological processes like species dispersal or habitat 
connectivity. However, sideways approaches have their own 
limitations, sometimes resulting in lower performance than 
other approaches (Zurell  et  al. 2018). For instance, joint-
SDMs may assume a correlative nature of species interaction 
patterns from residual correlation matrix, with the risk of 
assessing abiotic and not biotic interactions (Poggiato et al. 
2021). Thus, these models might not be modelling species 
interactions because of the unintended impacts of shared 
unmeasured environmental variation. Further develop-
ments and investigations and would be needed (Pollock et al. 
2020). In our study, sideways approaches were rarely used, 
but their methodological flexibility to incorporate model-
ling recommendations mean that they represent a potential 
improvement to both bottom–up and top–down approaches 
and should be considered more often to model biodiversity 
response to LULC.

Independent data have been rarely used to validate model 
predictions (Table 2), despite being the gold standard in 
model validation (Newbold  et  al. 2010, Jung  et  al. 2017, 
Jung 2022). Model performance can be wrongly assessed, 
i.e., having an artificially low predictive error, when data used 
for calibration and validation share dependence structures 
(Roberts et al. 2017, Lee‐Yaw et al. 2021). The number and 
diversity of ecological datasets have increased globally (e.g. 
thousands of records available from the GBIF), making it 
substantially easier to obtain systematically independent data 
than previously (Araújo et al. 2005). This is particularly the 
case for taxa like birds, mammals, plants and charismatic 
insect groups. For example, bird occurrences in Europe 
are documented over the Pan-European Common Bird 
Monitoring Scheme, eBird, iNaturalist, Euro Bird Portal, 
Important Bird Areas, EU Birds Directive Article 12 reports, 
and several national to continental atlases. Ongoing initia-
tives to improve the visibility and the accessibility of ecologi-
cal data (e.g. GEO BON, GBIF), including systematic open 

access of data used in publications, should facilitate future 
progress to validate predictions with independent data.

While our review highlights important concerns on 
global and top–down models using LULC, global perspec-
tives are nonetheless necessary, especially to develop inter-
national conservation policy and regularly raise awareness 
of biodiversity issues (Jetz  et  al. 2019, Santini  et  al. 2021, 
Chaplin-Kramer  et  al. 2022). Macroecological studies are 
often criticised for their lack of applicability at local scale, 
but they still contribute significantly to a better understand-
ing of the ecological processes unreachable by local studies 
(Santini et al. 2021).

Considering the speed of the technical progresses in mod-
elling (Sillero  et  al. 2023), and the absence of evidence for 
increased uptake of modelling recommendations over time 
(Araújo  et  al. 2019), embedding recommendations within 
ecological research might also necessitate knowledge transfer 
and capacity building to researchers. As shown in this review, 
modelling practices minimizing the risks of overconfidence, 
overprediction, effect size inaccuracy or high uncertainty can 
be used in all reviewed categories of model approaches, politi-
cal extent, and objectives (Fig. 4). Thus, the lack of systematic 
use of modelling recommendations might depend more on 
the study design and methodological choices than in the feasi-
bility of following recommendations in a given study, irrespec-
tive of their aims, thematic, geographic and taxonomic scope. 
User-friendly methodological frameworks can promote the 
use of modelling recommendations (Zurell et al. 2022) such 
as the successful development of Maxent (Phillips and Dudik 
2008, Elith et al. 2011) and BIOMOD (Thuiller et al. 2003, 
2009) to cross-validate predictions as standard and to return 
model uncertainties from an ensemble of algorithms, respec-
tively. Further software development should be designed to 
improve the use of modelling recommendations (e.g. from no 
validation toward cross-validation, spatial block cross-valida-
tion and independent validation) and simplify their adoption 
to software users. For example, methodological developments 
can include options to consider species dispersal and habi-
tat connectivity when forecasting species distribution change 
(Urban et al. 2022, Jung 2023). In addition to user-friendly 
implementations of modelling recommendations in stan-
dard methodological workflows, capacity building is needed 
to transfer modelling knowledge to ecologists. University 
teaching, workshops and online training offer several ways to 
improve awareness on statistical modelling.

Improving the availability and the use of LULC data at 
high spatial and thematic resolution is required, but it can be 
challenged by practical issues. For instance, getting LULC 
data at fine thematic and spatial resolution might require 
funding or collaborations with data owners. Downscaling 
LULC data risks inflation of thematic uncertainty and 
requires attention to LULC quality prior to biodiversity 
model conception. In addition, running models and cross-
validating predictions at very fine spatial resolution at global 
extent can be computationally intensive, requiring access to 
a high-performance-computer or limiting model complex-
ity. Global multi-species models ideally require ecological 
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knowledge for thousands of species across their entire dis-
tribution range implying that extra competences from nat-
uralists or integration of data from broad-scale databases 
such as the habitat and ecology information collected by the 
IUCN are necessary (Santini et al. 2021, www.iucnredlist.
org). Collaborations between statisticians, LULC model-
ers, ecologists and naturalists can help overcome model-
ling challenges to improve both biodiversity model quality 
and transfer to conservation policies (Leclère et al. 2020). 
Similarly, there is also a need to further advance statistical 
models to being able to integrate better ecological knowl-
edge on species biology and testing their use across scales 
(Urban et al. 2022).

We urge ecological modelers to better integrate local eco-
logical knowledge and fine LULC data resolution to mini-
mize ontological differences between empirical observations 
and model predictions and improve the quality of statistical 
model for scientific and practical applications.
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