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Global land cover maps are key inputs into the biodiversity metrics used by the private sector to align 
their performance with conservation goals and targets. These maps utilize classification systems 
depicting combinations of ‘natural’ (vegetation, water bodies) and ‘anthropogenic’ (agriculture and 
built-up land) cover types, but often miss intensive pressures on biodiversity, such as mining. Here, 
we reveal that more than half (56–77%) the global land area disturbed by mining is classified by land 
cover maps as ‘natural’, suggesting metrics based on these maps likely overestimate the current state 
of biodiversity and underestimate opportunities to improve it. The proportion of mining land classified 
as natural varies by continent (e.g. 46% in Europe; 69% in Australia), further biasing initial screening 
efforts to identify where to mitigate negative impacts of mining. Improving the spatial and temporal 
resolution of land cover maps and better integrating cumulative impact mapping into biodiversity 
metrics, rather than relying on land cover maps which are not designed to capture land use pressures, 
is necessary. Current biodiversity metrics that utilise global land cover maps must be supplemented 
and validated with local data on ecosystem extent and condition, as well as species abundance and 
extinction risk, through targeted field studies, particularly in regions with large mining sectors and 
significant biodiversity value.

Achieving global goals for nature requires reducing land use pressures—the leading cause of biodiversity decline 
across the terrestrial biosphere1,2. Engagement by the public and private sectors is essential for meaningful progress 
towards these goals for nature3, and several initiatives are emerging to support such action. For example, the 196 
signatory nations to the Kunming-Montreal Global Biodiversity Framework have committed to, by 2030, protect 
30% of land areas from further loss and degradation, restore 30% of all currently degraded ecosystems, and 
reduce loss of highly intact ecosystems to zero4. Similarly, companies and financial institutions are committing 
to mitigate biodiversity losses caused by their direct operations and value chains5,6 by prioritizing conservation 
actions to locations where nature-related risks and opportunities are largest7. If implemented comprehensively 
– across nations and sectors – these public and private actions should yield significant conservation benefits8; 
however, informing actions and monitoring progress towards these goals requires a suite of global data, indicators 
and metrics for which limitations and uncertainties are not yet well understood9,10.

Here, we focus on revealing one major limitation to the input data for widely used biodiversity metrics and 
suggest improvements needed to support their use in decisions to screen for and prioritize global-scale investment 
in conservation actions. These decisions include, for example, strategies by global conservation organizations 
wanting to identify, protect and retain areas of significant biodiversity value (e.g.11), or by companies with 
global assets or supply chains aiming to reduce their footprint on biodiversity12. In both contexts, primary field 
data is ultimately needed to validate decisions on where and how to develop and implement mitigation and 
conservation actions. However, the first step – screening for good candidate sites – typically involves the use 
of global biodiversity indicators and metrics13. Hundreds of these metrics exist9, many of which are computed 
from secondary data and often include at least one land cover map as a proxy for land use pressures on the state 
of biodiversity (Table 1).
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Table 1. Selection of global biodiversity metrics reliant on analyzed land cover datasets, either as direct inputs 
(shown in dark green) or as inputs used to develop their direct inputs (shown in light green).
Refs.20,23,34–39

Following guidance from the Taskforce on Nature-Related Financial Disclosures, we include metrics that 
either measure the extent or condition of ecosystems, including pressures as a proxy for condition, and species 
abundance or extinction risk (TNFD, 2023a).
Note, some metrics are reliant on land cover maps from earlier years (#) and/or are of coarser (+) or finer (−) 
spatial resolutions than the land cover products here.
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Global land cover maps, made through remote sensing of the physical Earth surface, including various 
combinations of vegetation types, soils, exposed rocks, water bodies as well as anthropogenic cover types, 
such as croplands and built up land, are far from perfect14. Land cover classification systems are necessarily 
simple depictions of reality and do not easily translate to land use classes and the pressures these classes have on 
biodiversity15. This is particularly true for intensive land uses16, such as mining, which is a land use likely spread 
across many classes in global land cover products. This is because mines are small, difficult to systematically 
detect from satellite imagery17, include a range of land cover classes, and shift through these classes throughout 
the mine life.

In some cases, mining land use – i.e. defined here as land cleared, disturbed and converted through mining 
activities, including mine pits, tailings facilities, and supporting infrastructure – may be classified by global 
products as a land cover class with similar properties and pressures on biodiversity, such as built up or barren 
land. However, mines may be classified as a natural land cover class too, either because distinguishing mining 
land from the surrounding land cover class is not possible due to spectral properties of remotely sensed imagery 
or due to insufficient spatial resolutions to represent mines, which are irregularly shaped and have high variability 
in their spatial extent18. Indeed, mining land expansion happens at different spatial and temporal resolutions to 
those of other anthropogenic land cover classes that do feature in classification systems, like agriculture19.

Using land cover maps to indicate mining pressures on biodiversity may have significant implications for 
computing biodiversity metrics20,21, influencing and bias decisions on where and how to mitigate land use 
pressures on biodiversity. If mining land intersects with an anthropogenic land cover class with similarly large 
pressures to biodiversity (e.g. urban environments), the absolute and relative errors in computed biodiversity 
metrics may be insignificant. But, if mining land intersects with a land cover class containing natural vegetation 
conditions and inferred to contain similar biodiversity (in terms of composition, structure and function) to 
sites without human pressure, current metrics may greatly overestimate biodiversity and thus underestimate 
opportunities to improve it. The extent of these limitations is currently unknown but are likely evident in metrics 
being developed for broadscale use by the private sector, such as the Science Based Targets Network22,23.

The consequences for biodiversity conservation could also be significant, given that mining often occurs 
in  biodiverse areas24,25 and can completely remove it for long periods of time26. The significance of these 
limitations is likely to increase as demand for mined materials grows in response to multiple drivers27, including 
delivery of global sustainable development goals28, while corporate commitments to mitigate  impacts are also 
emerging29. However, the consequences of assuming land cover products can estimate mining pressures on 
biodiversity may also differ regionally, given that mining threats to biodiversity differ depending on where and 
how mining occurs and what land cover classes are dominant in the surrounding landscape.

Therefore, the goal of this study was to reveal potential limitations of using global land cover datasets in 
assessing mining pressures to biodiversity, focusing on those that could be used by global mining companies 
and organizations dependent on mined commodities to screen opportunities to mitigate impacts and improve 
biodiversity in areas affected by mining. We answered three questions:

 1. How do global land cover maps used to compute widely-used biodiversity metrics classify land used for 
mining?

 2. Does the proportion of mining land classified as a natural land cover class differ among (a) land cover prod-
ucts, (b) mining land products, and (c) geographical regions?

 3. Which factors explain why mining land is classified as a natural land cover class, and what proportion 
of these areas could be addressed by either using more recent and higher resolution land cover maps, or 
through alternative methods to mapping pressures to biodiversity?

Methods
We use two recently published global maps of mining land use, which we refer to as Maus et al.17 and Tang and 
Werner30 polygons. These datasets vary in their approach to mapping mining land and thus their global extent 
and distributions differ30. Notably, Maus et al. polygons use a more inclusive definition of mining land use, 
as mapped polygons sometimes include unaffected land that occurs in between mining infrastructure, when 
compared to Tang & Werner polygons, which depict individual components of mines (e.g., waste rock dumps, 
mining pits) and exclude land between. In combination, these datasets identify 120,000 km2 of mining land 
cover, with some overlap and gaps between the two (Tang & Werner: 65,588 km2; Maus et al.: 101,524 km2). A 
comprehensive analysis of geospatial differences and similarities between these two products is provided by30.

We used these mining polygons separately to clip four global land cover products used to compute a range of 
biodiversity metrics (Table 1). These land cover products included one produced by the European Space Agency 
(ESA, 2020; 300 m31), one by the Copernicus Land Monitoring Services (CGLS 2019; 100 m32) and two by the 
U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA)33, of which one 
was derived using the International Geosphere-Biosphere Program classification scheme (IGBP, 2022, 500 m) 
and one using the University of Maryland classification scheme (UMD, 2022, 500 m). Preserving the original 
spatial resolution and classification scheme of each product and using the most recent year available (see Table 
S1), we summarized the area and proportion of land cover classes within investigated mining polygons.

We used ArcGIS Pro’s “Tabulate Area” tool to ensure all pixels overlaid by the mining polygons were 
included in our analysis. This approach accounted for partial pixel contributions, addressing potential bias from 
undercounting pixels that did not have their centers within the polygons. To address potential over/under-
counting, we implemented an area-weighting correction by calculating the proportion of each pixel intersecting 
the mining polygon and adjusting the area calculated accordingly. This method minimized bias by capturing 
both the additional area from pixels extending beyond the polygon boundaries and the gaps where polygons were 
not fully covered by entire pixels. We present the differences between raw and weighted areas in Supplementary 
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Information 2, which shows the weighting reduced the total area but did not affect the proportion of polygons 
classified as a natural land cover class.

We also reclassified their original land cover classes into three broader classes (natural, anthropogenic, and 
water; see Fig. 1) to test the hypothesis that mining was more often classified as anthropogenic land cover classes 
than natural cover classes. We compared the area and proportion of land within mining polygons classified as 
natural vs. anthropogenic among mining datasets (Maus et al. and Tang & Werner), land cover products (ESA, 
UMD, IGBP, CGLS), and continents. We repeated these analyses by excluding mining polygons that were smaller 
than two-pixel sizes of the land cover datasets to test the sensitivity of our results to differences in their spatial 
characteristics. Figure S5 shows the distribution of mining polygons among size classes.

To determine the factors potentially explaining why mining polygons were classified as natural, we visually 
inspected the mining polygon product that yielded the lowest proportion of natural land cover (i.e., Tang & 
Werner polygons). For each land cover dataset, we randomly sampled 650 points from the natural land cover 
classes within mining polygons. We stratified sample points geographically, by the number of mining polygons 
per continent, and limited points to one per mining polygon. We visually inspected each sampled error point, 
using high resolution Sentinel (2017) and Google Earth (2020) imagery, to determine one of four possible 
explanations for natural land occurring within mining polygons: (1) temporal mismatches, (2) insufficient 
spatial resolution, (3) land cover classification errors, and (4) natural land occurring within mining polygons. 
Further detail on visual inspection is found in the caption of Table S2.

Results
More than half of the area of land within mining polygons was classified as natural (56–77%; 36,652–77,905 km2) 
and only 22–40% was classified as an anthropogenic cover class, although results varied among combinations 
of datasets (Fig. 1, Fig S1). A greater proportion of Tang and Werner polygons was classified as anthropogenic 
(27–40%) than Maus et al. polygons (22–34%), although Maus et al. polygons identified a greater absolute area 
of anthropogenic land within polygons globally (Fig.  1, Fig S1). We found a greater proportion of land was 
classified as anthropogenic when using the ESA land cover product (34–40%, Fig. 1) compared to UMD, IGBP 
and CGLS (22–29%, Fig S1). For Tang & Werner polygons, we also found that when land was classified as 
natural, ESA (2020) most often detected shrubland dominated classes, whereas UMD (2022) and IBGP (2022) 
most often detected grassland classes (Fig. 1, Fig S1). Excluding small polygons (i.e., less than 2 pixels of the land 
cover maps analysed) only reduced the proportion of mining polygons that were classified as natural for the Tang 
& Werner – UMD (2022) combination, which declined from 72.0 to 71.9% (Fig S2).

The proportion of land within mining polygons classified as natural varied geographically. Using Tang & 
Werner polygons and ESA (the combination with the least amount of natural land within mining), the proportion 
of natural land ranged from 46% in Europe to 69% in Australia (Fig. 2A). The ESA land cover product had the 
lowest proportion of natural land in all regions (Fig. 2A), except for South America, where the proportion of 
natural land cover was lower for UMD, IBGP and CGLS land cover products (Fig S3). Globally, half of the 
mining land classified as natural occurred within Asia, due to the relatively large extent of mining polygons 
occurring within this continent (Fig. 2A). We found natural land within mining polygons included a range 

Fig. 1. Land cover within mining polygons (Maus et al. left; Tang & Werner right), as classified by ESA 2020 
land cover product. Detailed land cover classes are those originally classified by the land cover product; 
broader classes were classified for use in this study (i.e., Anthropogenic, Natural and Water). Fig S1A–C show 
equivalent graphs for other land cover products (UMD, IGBP, CGLS). Fig S2 shows the sensitivity of the 
analysis to removing small mining polygons.
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of original cover classes, with tree dominated classes the largest class in most regions except for Australia and 
Africa, where the largest class is shrublands (Fig. 2B).

We found evidence of all four factors explaining why mining land was classified as natural (Fig. 3, Table 
S2, Fig S4). However, by far the dominant factor (> 80% for all land cover products) was due to land cover 
classification systems being unable to distinguish mines within natural land cover classes (Fig S1). For Tang & 
Werner and ESA, 5% of our samples were due to mining polygons including some natural land cover classes, 2% 
were due to there being no mine visible in the validation data, and 0.8% were due to temporal mismatches, where 
the mine was younger than the land cover product. We found 11% of mines classified as natural classes were 
due to spatial mismatches between datasets (when the mine was smaller than one pixel) and the use of higher 
resolution land cover product (CGLS at 100 m resolution) reduced this value to 3%. The greater proportion of 
natural land within mining polygons found in South America were due to spatial mismatches (i.e., 22% where 

Fig. 2. Percent of land within mining polygons classified as natural land cover (Tang & Werner data). (A) (top) 
shows the relationship between misclassification errors (y axis) and the total land area of mining polygons (x 
axis) per continent for ESA, IBGP, UMD and CGLS land cover products. (B) (bottom) shows misclassification 
errors distribution among ESA land cover classes. Fig S3A shows the equivalent graph for Maus et al. data. Fig 
S3B shows the equivalent set of graphs when using all other combinations of mining polygons and land cover 
products.
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mines were smaller than the ESA product; Fig. 3). Spatial mismatches were also more frequent globally when 
using UMD (17%) and IGBP (24%) land cover products (Fig S4).

Discussion
Global land cover maps are used as inputs to the indicators and metrics informing major risks and opportunities 
for biodiversity conservation, including those recommended by the Monitoring Framework for the Kunming-
Montreal Global Biodiversity Framework40 and the Taskforce on Nature-Related Financial Disclosures41. 
However, our results reveal a major source of bias in assuming that land cover can be used as a proxy for mining 
land use pressures on biodiversity. We found that more than half of global mining land use is currently classified 
as a natural land cover class, suggesting the biodiversity within these regions is under pressure26. Here, we 
explain how and why these results translate to biases in biodiversity metrics, describe the decisions they are likely 
to influence, and list key improvements needed to map global mining land use pressures to inform biodiversity 
mitigation and conservation action in mineral-rich regions. While primary field data must inform and validate 
any on-ground conservation actions, comprehensive field data is scarce for much of the planet42 and practical 

Fig. 3. Factors explaining natural land within mining polygons (Tang & Werner mining polygons; ESA land 
cover product). Five factors included: 1. temporal mismatches in mining and land cover datasets; 2: insufficient 
spatial resolution to detect mining land cover; 3: land cover classification unable to distinguish mines from 
natural land; and 4: mining polygons contained some natural land. Counts of errors were obtained by visual 
inspection of higher resolution imager at 650 random points, which were spatially stratified by continents 
depending on their land area of mining polygons (Africa: 90; Asia 225; Australia 77; Europe: 81; North 
America: 97; South America: 80). Equivalent graphs for other land cover products (UMD, IGBP and CGLS) are 
shown in Fig S4.
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solutions are needed now to ensure the robust use of global land cover datasets, which were never intended to be 
used as proxies for land use pressures to biodiversity.

Anthropogenic and natural land cover within mining polygons
At least 120,000 km2 of the terrestrial land surface area is classified as used for mining by the two major mining 
land use products43, much of which occurs in biodiverse areas of conservation significance24,44,45. To date, global 
land cover maps have understandably not included an explicit cover class that would capture mining activities, 
given that mining is a land use, not a land cover type. Given the diversity of land cover types that constitute 
“mining” – e.g. mining pits, waste rock dumps, processing and supporting infrastructure, and mined land 
rehabilitation and closure sites46 – it is unsurprising to detect a range of anthropogenic cover classes within 
these polygons (Fig. 1; Fig S1). These included urban and built-up or bare land, while these broad classes do 
correspond to prior knowledge of land cover possibilities within mining sites, there are instances in which these 
classes may not accurately capture mining land use pressures to biodiversity. Such might be the case for bare 
land (i.e. the dominant individual class found within mining polygons for ESA), which in a mining context, can 
also cause large changes in topography (i.e. deep mine voids; mountaintop removal) that are structurally and 
functionally distinct from relatively flat bare land used as haul-truck roads47.

Similarly, natural land cover classes found within mining polygons spanned many vegetation classes depicted 
by land cover maps (Fig. 1; Fig S1). Some mining polygons did contain natural or ‘natural looking’ vegetation 
(Fig. 3) and this explanation may be true if sites include rehabilitation of mined land or patches of remnant 
vegetation. The biodiversity of these sites, however, likely remains under pressure due to mining operations, 
including dust, noise, tailings and the risks of contamination or mine waste spills26,48. Our evaluation of natural 
land cover within mining polygons suggested that most natural land within mining polygons was caused by 
an omission in global land cover classifications or an inability to distinguish mined areas and infrastructure 
from natural cover classes, particularly systems dominated by shrublands, grasslands and mixed and mosaic 
vegetation classes. This is likely due to their similar spectral characteristics to mined land and contribute to the 
relatively lower overall accuracy of these classes (49% user accuracy for grasslands; <40% for mixed and mosaic 
vegetation classes; ESA).

Implications for using biodiversity metrics for conservation action
Land cover classes that contain vegetation is likely of better ecological condition than anthropogenic classes 
and, as a result, classifying mining as natural systematically overestimates the biodiversity that land contains20,34. 
Similarly, metrics that overestimate biodiversity also underestimate opportunities to improve it, either through 
conservation or mitigation actions. While the global significance of these errors on total estimates of biodiversity 
may be relatively small, since mining occupies less than 1% of terrestrial land17, they could have pronounced 
effects on some biodiversity features that co-occur with mineral resources26, such as those ecosystems classified 
as natural but significantly degraded by mining in Brazil’s endangered Rupestrian grasslands or Madagascar’s 
littoral forests49,50 (Fig S5). Further, given that mining has been linked to land with disproportionately high levels 
of species richness, endemism, or conservation significance25,44,51, global overestimates in biodiversity condition 
caused by omitting mining from land cover products may be larger than indicated by the extent of natural land 
within mining land area alone.

Errors in biodiversity metrics yield different risks depending on how and by whom they are used. For 
example, a global mining company may use metrics to screen their portfolio, identify assets occurring in 
locations with significant biodiversity value and thus risks to it, and prioritize target setting, impact mitigation, 
and conservation action at these high risk  sites. Our results suggest that biodiversity is likely overestimated 
at many of these sites, potentially leading to a waste of resources in following up with local studies where 
biodiversity risks are low. Some regions had larger proportions of mining land classified as natural (Fig. 2A), 
which may further incorrectly bias prioritization towards assets in countries with either more mining land 
classified as natural (e.g. Asia; Fig. 2A) or larger proportions classified as natural (e.g. Australia and Oceania; 
Fig. 2A). A more problematic scenario may occur when metrics are used to assess average global mining impacts 
to biodiversity for use by companies with minerals in their supply chains. This is done through the application of 
life cycle assessment tools and is necessary when the location of assets causing impacts are unknown52. Not only 
are there potentially impacts in the underlying data used for averaging, but the values are highly dependent on 
which sites they are taken from. Much more transparency is needed around both mineral supply chains and the 
methods used to calculate average biodiversity risks.

Opportunities to address the resultant bias in biodiversity metrics
Several options exist to overcome, or at least better understand, the bias that exists in using land cover products 
to infer mining land use pressures. For producers and users of existing biodiversity metrics, we recommend 
understanding the limitations of their land cover products when mining is of relevance to the decision context, 
selecting those most capable of detecting it as an anthropogenic class. For example, we found ESA more often 
classified mining polygons as anthropogenic (Fig. 1), on all continents except South America, where UMD and 
IGBP were better when using Tang and Werner polygons (Fig. 2A). Relying on land cover products with higher 
spatial resolution might also help. However, biases often caused by spatial mismatches – the second highest 
category (Fig. 3) – may be an underestimate given the decision rules used in global land cover products that only 
detect land cover changes at a 1 km resolution (ESA, 2020). This was particularly true in Asia, South America, 
and Africa, possibly related to artisanal small-scale mining being a prevalent driver of mining and such polygons 
were smaller (global geometric mean: 0.12 km230).

Steps can also be taken to compute new global datasets that combine mining land use with global land 
cover products, and to recalculate biodiversity metrics where relevant. Land cover products could make use 
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of mining polygons as training data to integrate a mining class into global classification schemes. This could 
help address many mining areas not currently included by manual mapping efforts made to date43, including 
many non-metal commodities, such as sand and construction materials25. Opportunities also exist to model 
land cover footprints using information on historic mine land use and production data46. However, an easy first 
step would involve combining existing land cover and mining products, carefully choosing the mining polygons 
best suited to the decision context. For example, Tang & Werner polygons would more accurately capture direct 
mining land use pressures on biodiversity, which may be valuable in calibrating pressure-state for computing 
biodiversity metrics. Whereas Maus et al. polygons provide a more conservative picture of where pressures 
may exist and thus be more suitable for screening, as was originally proposed as per the Science Based Targets 
Network method for mapping Natural Lands23.

Another way to improve derived biodiversity metrics is to utilize cumulative impact mapping methodologies, 
which combine satellite derived land cover data with curated ‘bottom-up’ products of anthropogenic influence, 
including human population density, built infrastructure and roads53. These products have been created to 
overcome issues that land cover classifications ignore many forms of industrial influences that are hard to 
derive from satellite images54. Beyond mapping the amount of human industrial influence on the planet55, these 
methodologies are increasingly used to highlight biodiversity risk56,57 but are rarely used in global biodiversity 
metrics (but see58). A future research priority would be test the utility of these cumulative impact mapping 
products in contemporary biodiversity metrics and to see if they are better at capturing mining (when compared 
to land cover products). A second research priority is to establish ways to ensure mining data is imbedded within 
cumulative impact assessments (a current limitation to many global industrial influence maps, e.g.59), including 
ways to score the varying pressures mining have on landscapes60.

Future research and data needs
Our research highlights the need of more targeted ecological field studies, particularly in regions with large 
mining sectors and significant biodiversity value but where there is desperate shortage of ecological data. Doing 
this upfront should be seen as a strategic investment by governments and industry in areas with significant 
mineral resource potential. Ensuring local data collection and information disclosures to a global repository 
would build knowledge and capacity to address mining pressures to biodiversity. This could include much 
needed improvements of mining into existing platforms, such as the IUCN’s Red List of Threatened Species61. 
However, this knowledge must also capture other mining pressures, that are not captured by land cover products 
or may not fall within the responsibility of mining companies. This includes mining as an indirect driver of land 
use pressures on biodiversity, for example due to regional infrastructure requirements60,62 and non-land based 
pressures on biodiversity, such as water withdrawals and pollution18. This will require land cover maps to be 
integrated with other geographical information pre- and post- screening for biodiversity risks and conservation 
opportunities.

While this research is being generated, we believe companies and other decision making bodies (including 
national governments and the finance sector) assessing impacts of mining on biodiversity, or opportunities to 
improve it, within direct operations or supply chains, should be aware that the state of nature – for biodiversity, 
as indicated in this study, but potentially also for other environmental factors modelled using land cover data, 
such as carbon storage and water quality – provided by global metrics is likely overestimated, and additional 
effort is required for validation.

Data availability
The datasets analysed during the current study are publicly available and accessible via the following links: 
https://zenodo.org/records/3938963,  m a p s . e l i e . u c l . a c . b e / C C I / v i e w e r / d o w n l o a d / E S A C C I - L C - P h 2 - P U G v 2 _ 
2 . 0 . p d f , https://doi.org/10.5067/MODIS/MCD12Q1.061, https://doi.org/10.1038/s41597-022-01547-4, https://
doi.org/10.1038/s43247-023-00805-6.

Received: 9 November 2024; Accepted: 9 May 2025

References
 1. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366 (6471), 

3100. https://doi.org/10.1126/science.aax3100 (2019).
 2. IPBES. Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policymakers.  h t t p s : / / w w w . i p b e s . n e t / g l o b a 

l - a s s e s s m e n t     (2019).
 3. Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth. 4 (1), 

75–87. https://doi.org/10.1016/j.oneear.2020.12.011 (2021).
 4. CBD. The Kunming-Montréal Global Biodiversity Framework (2022).
 5. Business for Nature. Business Action on Climate and Nature Case Studies.  h t t p s :  / / w w w .  b u s i n e  s s f o r n  a t u r e  . o r g / b  u s i n e s  s - a c t i  o n - o n - c 

l i m a t e - a n d - n a t u r e (2021).
 6. Business for Nature. More than 130 Businesses and Financial Institutions Call for Renewed Policy Ambition to Implement the 

Biodiversity Plan and Halt and Reverse Nature Loss this Decade..  h t t p s :  / / w w w .  b u s i n e  s s f o r n  a t u r e  . o r g / b  u s i n e s  s - s t a t  e m e n t (2024).
 7. TNFD. Guidance on the Identification and Assessment of Nature-Related Issues: The LEAP Approach.  h t t p s :  / / t n f d  . g l o b a  l / w p - c  o n t e n  

t / u p l o  a d s / 2 0  2 3 / 0 8 /  G u i d a  n c e _ o n  _ t h e _ i  d e n t i fi   c a t i  o n _ a n d  _ a s s e s  s m e n t _  o f _ n a  t u r e - r  e l a t e d  _ I s s u e  s _ Th  e  _ T N F D _  L E A P _ a  p p r o a c  h _ V 
1 . 1 _ O c t o b e r 2 0 2 3 . p d f ? v = 1 6 9 8 4 0 3 1 1 6 (2023).

 8. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585 (7826), 551.  h t t p s : / / d o i . o r g / 
1 0 . 1 0 3 8 / s 4 1 5 8 6 - 0 2 0 - 2 7 0 5 - y     (2020).

 9. Burgess, A. et al. Global metrics for terrestrial biodiversity. EcoEvorxiv 1, 1 (2024).
 10. McKenzie, E. J., Jones, M., Seega, N., Siikamäki, J. & Vijay, V. Science and technical priorities for private sector action to address 

biodiversity loss. Philos. Trans. R Soc. B. 380, 20230208. https://doi.org/10.1098/rstb.2023.0208 (2025).

Scientific Reports |        (2025) 15:22421 8| https://doi.org/10.1038/s41598-025-01959-3

www.nature.com/scientificreports/

https://zenodo.org/records/3938963
https://doi.org/10.5067/MODIS/MCD12Q1.061
https://doi.org/10.1038/s41597-022-01547-4
https://doi.org/10.1038/s43247-023-00805-6
https://doi.org/10.1038/s43247-023-00805-6
https://doi.org/10.1126/science.aax3100
https://www.ipbes.net/global-assessment
https://www.ipbes.net/global-assessment
https://doi.org/10.1016/j.oneear.2020.12.011
https://www.businessfornature.org/business-action-on-climate-and-nature
https://www.businessfornature.org/business-action-on-climate-and-nature
https://www.businessfornature.org/business-statement
https://tnfd.global/wp-content/uploads/2023/08/Guidance_on_the_identification_and_assessment_of_nature-related_Issues_The_TNFD_LEAP_approach_V1.1_October2023.pdf?v=1698403116
https://tnfd.global/wp-content/uploads/2023/08/Guidance_on_the_identification_and_assessment_of_nature-related_Issues_The_TNFD_LEAP_approach_V1.1_October2023.pdf?v=1698403116
https://tnfd.global/wp-content/uploads/2023/08/Guidance_on_the_identification_and_assessment_of_nature-related_Issues_The_TNFD_LEAP_approach_V1.1_October2023.pdf?v=1698403116
https://doi.org/10.1038/s41586-020-2705-y
https://doi.org/10.1038/s41586-020-2705-y
https://doi.org/10.1098/rstb.2023.0208
http://www.nature.com/scientificreports


 11. Robinson, J. G. et al. Scaling up area-based conservation to implement the global biodiversity framework’s 30x30 target: The role 
of Nature’s Strongholds. PLoS Biol. 22 (5), 613. https://doi.org/10.1371/journal.pbio.3002613 (2024).

 12. TNFD. Recommendations of the Taskforce on Nature-Related Financial Disclosures.  h t t p s :  / / t n f d  . g l o b a  l / w p - c  o n t e n  t / u p l o  a d s / 2 0  2 3 / 0 
8 /  R e c o m  m e n d a t  i o n s _ o  f _ t h e _  T a s k f  o r c e _ o  n _ N a t u  r e - r e l  a t e d _  F i n a n c  i a l _ D i  s c l o s u  r e s _ S  e p t e m b  e r _ 2 0 2  3 . p d f ?  v = 1 6 9 5 1 1 8 6 6 1 (2023).

 13. Hawkins, F. et al. Bottom-up global biodiversity metrics needed for businesses to assess and manage their impact. Conserv. Biol. 38 
(2), e14183. https://doi.org/10.1111/cobi.14183 (2024).

 14. Watson, J. E. M., Ellis, E. C., Pillay, R., Williams, B. A. & Venter, O. Mapping industrial influences on Earth’s ecology. Annu. Rev. 
Environ. Resour. 48, 289–317.  h t t p s :  / / d o i .  o r g / 1 0  . 1 1 4 6 /  a n n u r  e v - e n v  i r o n - 1  1 2 4 2 0 -  0 1 3 6 4 0 (2023).

 15. Lambin, E. F., Geist, H. & Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 
28, 205–241.  h t t p s :  / / d o i .  o r g / 1 0  . 1 1 4 6 /  a n n u r  e v . e n e  r g y . 2 8  . 0 5 0 3 0  2 . 1 0 5 4 5 9 (2003).

 16. Sonter, L. J., Barretta, D. J., Moran, C. J. & Soares-Filho, B. S. A land system science meta-analysis suggests we underestimate 
intensive land uses in land use change dynamics. J. Land. Use Sci. 10 (2), 191–204. https://doi.org/10.1080/1747423x.2013.871356 
(2015).

 17. Maus, V. et al. An update on global mining land use. Sci. Data. 9 (1), 4. https://doi.org/10.1038/s41597-022-01547-4 (2022).
 18. Werner, T. T., Bebbington, A. & Gregory, G. Assessing impacts of mining: recent contributions from GIS and remote sensing. 

Extractive Industries Soc. 6 (3), 993–1012. https://doi.org/10.1016/j.exis.2019.06.011 (2019).
 19. Sonter, L. J., Moran, C. J., Barrett, D. J. & Soares, B. S. Processes of land use change in mining regions. J. Clean. Prod. 84, 494–501. 

https://doi.org/10.1016/j.jclepro.2014.03.084 (2014).
 20. Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 26 (2), 760–771.  h t t p s : / / d o i 

. o r g / 1 0 . 1 1 1 1 / g c b . 1 4 8 4 8     (2020).
 21. Stevenson, S. L. et al. Corroboration and contradictions in global biodiversity indicators. Biol. Conserv. 290, 110451.  h t t p s : / / d o i . o r 

g / 1 0 . 1 0 1 6 / j . b i o c o n . 2 0 2 4 . 1 1 0 4 5 1     (2024).
 22. AFI. Operational Guidance on Applying the Definitions Related to Deforestation, Conversion, and Protection of Ecosystems.  h t t p s :  / / 

a c c o  u n t a b i  l i t y - f  r a m e w  o r k . o r  g / fi  l e  a d m i n /  u p l o a  d s / a fi   / D o c u m  e n t s / O  p e r a t  i o n a l _  G u i d a n  c e / O G _  A p p l y i n g _ D e fi  n i t i o n s - 2 0 2 0 - 5 . p d f 
(2019).

 23. Mazur, E. et al. SBTN Natural Lands Map.  h t t p s :  / / s c i e  n c e b a s  e d t a r g  e t s n e  t w o r k .  o r g / w p  - c o n t e  n t / u p  l o a d s /  2 0 2 3 / 0  5 / T e c h  n i c a l  - G u i d a  
n c e - 2 0  2 3 - S t e  p 3 - L a  n d - v 0 .  3 - N a t u  r a l - L a  n d s - M a p . p d f (2023).

 24. Luckeneder, S., Giljum, S., Schaffartzik, A., Maus, V. & Tost, M. Surge in global metal mining threatens vulnerable ecosystems. 
Global Environ. Change-Human Policy Dimensions. 69, 303. https://doi.org/10.1016/j.gloenvcha.2021.102303 (2021).

 25. Torres, A. et al. Unearthing the global impact of mining construction minerals on biodiversity. BioRxiv.  h t t p s : / / d o i . o r g / 1 0 . 1 1 0 1 / 2 
0 2 2 . 0 3 . 2 3 . 4 8 5 2 7 2     (2022).

 26. Sonter, L. J., Ali, S. H. & Watson, J. E. M. Mining and biodiversity: key issues and research needs in conservation science. Proc. R. 
Soc. B Biol. Sci. 285 (1892), 26. https://doi.org/10.1098/rspb.2018.1926 (2018).

 27. IEA. Global Critical Minerals Outlook 2024.  h t t p s :  / / w w w .  i e a . o r  g / r e p o  r t s / g  l o b a l -  c r i t i c  a l - m i n  e r a l s - o u t l o o k - 2 0 2 4 (2024).
 28. Franks, D. M., Keenan, J. & Hailu, D. Mineral security essential to achieving the sustainable development goals. Nat. Sustain. 6 (1), 

21–27. https://doi.org/10.1038/s41893-022-00967-9 (2023).
 29. ICMM. Nature Position Statement.  h t t p s :  / / w w w .  i c m m . c  o m / w e b  s i t e /  p u b l i c  a t i o n s  / p d f s /  m i n i n  g - p r i n  c i p l e s  / p o s i t  i o n - s  t a t e m e  n t s _ n a  t 

u r e . p  d f ? c b = 7 1 3 2 7 (2024).
 30. Tang, L. & Werner, T. T. Global mining footprint mapped from high-resolution satellite imagery. Commun. Earth Environ. 4 (1), 

134. https://doi.org/10.1038/s43247-023-00805-6 (2023).
 31. ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep..  m a p s . e l i e . u c l . a c . b e / C C I / v i e w e r / d o w n l o a d / E S A C C I - L C - P h 2 - P U G 

v 2 _ 2 . 0 . p d f (2020).
 32. Buchhorn, S. et al. Copernicus Global Land Service: Land Cover 100m: Version 3. Globe 2015–2019: Product User Manual; Zenodo, 

Geneve, Switzerland. https://doi.org/10.5281/zenodo.3938963 (2020).
 33. Friedl, M. & Sulla-Menashe, D. MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061..  h t t p s : / / d o i . o r g / 1 0 . 5 

0 6 7 / M O D I S / M C D 1 2 Q 1 . 0 6 1     (2022).
 34. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520 (7545), 45.  h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / n a t u r e 

1 4 3 2 4     (2015).
 35. Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5 (6), 836.  h t t p s : / / d o i . o r 

g / 1 0 . 1 0 3 8 / s 4 1 5 5 9 - 0 2 1 - 0 1 4 3 2 - 0     (2021).
 36. Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. 

Nat. Commun. 11 (1). https://doi.org/10.1038/s41467-020-19493-3 (2020).
 37. Lumbierres, M. et al. Area of habitat maps for the world’s terrestrial birds and mammals. Sci. Data. 9 (1), 1.  h t t p s : / / d o i . o r g / 1 0 . 1 0 3 

8 / s 4 1 5 9 7 - 0 2 2 - 0 1 8 3 8 - w     (2022).
 38. Van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: simulating land system change with a global-scale 

land change model. Glob. Change Biol. 19 (12), 3648–3667. https://doi.org/10.1111/gcb.12331 (2013).
 39. Goldewijk, K. K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-

use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20 (1), 73–86. https://doi.org/10.1111/j.1466-8238.2010.00587.x (2011).
 40. CBD. Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework.  h t t p s :  / / w w w .  c b d . i n  t / d o c /  d e c i s  i o n s / c  o p - 1 5 

/  c o p - 1 5  - d e c - 0 5 - e n . p d f (2022).
 41. TNFD. Additional Sector Guidance: Metals and Mining.  h t t p s :   /  / t n f  d . g l o b a  l /  w p  - c o n t e   n t / u p  l o  a d s /  2  0 2  4  / 0 6 / A d  d i t i  o  n a l - S  e  c t o r -  G u i  d a 

n c e -  M e t a  l s - a n d  - m i n i n g . p d f (2024).
 42. García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its 

use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 118.  h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . b i o c o n 
. 2 0 2 3 . 1 1 0 1 1 8     (2023).

 43. Maus, V. & Werner, T. T. Impacts for half of the world’s mining areas are undocumented. Nature 625, 26–29.  h t t p s : / / d o i . o r g / 1 0 . 1 0 
3 8 / d 4 1 5 8 6 - 0 2 3 - 0 4 0 9 0 - 3     (2024).

 44. Harfoot, M. B. J. et al. Present and future biodiversity risks from fossil fuel exploitation. Conserv. Lett. 11 (4), 48.  h t t p s : / / d o i . o r g / 1 
0 . 1 1 1 1 / c o n l . 1 2 4 4 8     (2018).

 45. Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution 
and implications for conservation. J. Environ. Manage. 180, 409–420. https://doi.org/10.1016/j.jenvman.2016.05.040 (2016).

 46. Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change-
Hum. Policy Dimens. 60, 7. https://doi.org/10.1016/j.gloenvcha.2019.102007 (2020).

 47. Palmer, M. A. et al. Mountaintop mining consequences. Science 327 (5962), 148–149. https://doi.org/10.1126/science.1180543 
(2010).

 48. Aska, B., Franks, D. M., Stringer, M. & Sonter, L. J. Biodiversity conservation threatened by global mining wastes. Nat. Sustain. 7 
(1), 1. https://doi.org/10.1038/s41893-023-01251-0 (2024).

 49. Consiglio, T. et al. Deforestation and plant diversity of Madagascar’s Littoral forests. Conserv. Biol. 20 (6), 1799–1803.  h t t p s : / / d o i . o 
r g / 1 0 . 1 1 1 1 / j . 1 5 2 3 - 1 7 3 9 . 2 0 0 6 . 0 0 5 6 2 . x     (2006).

 50. Jacobi, C. M., Carmo, de Campos, I. C. & F. F., & Soaring extinction threats to endemic plants in Brazilian metal-rich regions. 
Ambio 40 (5), 540–543. https://doi.org/10.1007/s13280-011-0151-7 (2011).

Scientific Reports |        (2025) 15:22421 9| https://doi.org/10.1038/s41598-025-01959-3

www.nature.com/scientificreports/

https://doi.org/10.1371/journal.pbio.3002613
https://tnfd.global/wp-content/uploads/2023/08/Recommendations_of_the_Taskforce_on_Nature-related_Financial_Disclosures_September_2023.pdf?v=1695118661
https://tnfd.global/wp-content/uploads/2023/08/Recommendations_of_the_Taskforce_on_Nature-related_Financial_Disclosures_September_2023.pdf?v=1695118661
https://doi.org/10.1111/cobi.14183
https://doi.org/10.1146/annurev-environ-112420-013640
https://doi.org/10.1146/annurev.energy.28.050302.105459
https://doi.org/10.1080/1747423x.2013.871356
https://doi.org/10.1038/s41597-022-01547-4
https://doi.org/10.1016/j.exis.2019.06.011
https://doi.org/10.1016/j.jclepro.2014.03.084
https://doi.org/10.1111/gcb.14848
https://doi.org/10.1111/gcb.14848
https://doi.org/10.1016/j.biocon.2024.110451
https://doi.org/10.1016/j.biocon.2024.110451
https://accountability-framework.org/fileadmin/uploads/afi/Documents/Operational_Guidance/OG_Applying_Definitions-2020-5.pdf
https://accountability-framework.org/fileadmin/uploads/afi/Documents/Operational_Guidance/OG_Applying_Definitions-2020-5.pdf
https://sciencebasedtargetsnetwork.org/wp-content/uploads/2023/05/Technical-Guidance-2023-Step3-Land-v0.3-Natural-Lands-Map.pdf
https://sciencebasedtargetsnetwork.org/wp-content/uploads/2023/05/Technical-Guidance-2023-Step3-Land-v0.3-Natural-Lands-Map.pdf
https://doi.org/10.1016/j.gloenvcha.2021.102303
https://doi.org/10.1101/2022.03.23.485272
https://doi.org/10.1101/2022.03.23.485272
https://doi.org/10.1098/rspb.2018.1926
https://www.iea.org/reports/global-critical-minerals-outlook-2024
https://doi.org/10.1038/s41893-022-00967-9
https://www.icmm.com/website/publications/pdfs/mining-principles/position-statements_nature.pdf?cb=71327
https://www.icmm.com/website/publications/pdfs/mining-principles/position-statements_nature.pdf?cb=71327
https://doi.org/10.1038/s43247-023-00805-6
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://doi.org/10.5281/zenodo.3938963
https://doi.org/10.5067/MODIS/MCD12Q1.061
https://doi.org/10.5067/MODIS/MCD12Q1.061
https://doi.org/10.1038/nature14324
https://doi.org/10.1038/nature14324
https://doi.org/10.1038/s41559-021-01432-0
https://doi.org/10.1038/s41559-021-01432-0
https://doi.org/10.1038/s41467-020-19493-3
https://doi.org/10.1038/s41597-022-01838-w
https://doi.org/10.1038/s41597-022-01838-w
https://doi.org/10.1111/gcb.12331
https://doi.org/10.1111/j.1466-8238.2010.00587.x
https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-05-en.pdf
https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-05-en.pdf
https://tnfd.global/wp-content/uploads/2024/06/Additional-Sector-Guidance-Metals-and-mining.pdf
https://tnfd.global/wp-content/uploads/2024/06/Additional-Sector-Guidance-Metals-and-mining.pdf
https://doi.org/10.1016/j.biocon.2023.110118
https://doi.org/10.1016/j.biocon.2023.110118
https://doi.org/10.1038/d41586-023-04090-3
https://doi.org/10.1038/d41586-023-04090-3
https://doi.org/10.1111/conl.12448
https://doi.org/10.1111/conl.12448
https://doi.org/10.1016/j.jenvman.2016.05.040
https://doi.org/10.1016/j.gloenvcha.2019.102007
https://doi.org/10.1126/science.1180543
https://doi.org/10.1038/s41893-023-01251-0
https://doi.org/10.1111/j.1523-1739.2006.00562.x
https://doi.org/10.1111/j.1523-1739.2006.00562.x
https://doi.org/10.1007/s13280-011-0151-7
http://www.nature.com/scientificreports


 51. Lloyd, T. J. et al. Multiple facets of biodiversity are threatened by mining-induced land-use change in the Brazilian Amazon. Divers. 
Distrib. 29 (9), 1190–1204. https://doi.org/10.1111/ddi.13753 (2023).

 52. Bromwich, W. et al. Navigating uncertainty in Lca-based approaches to biodiversity footprinting. OSF Preprints.  h t t p s : / / d o i . o r g / 1 
0 . 3 1 2 1 9 / o s f . i o / t h 8 j 6     (2024).

 53. Watson, J. E. M. & Venter, O. Mapping the continuum of Humanity’s footprint on land. One Earth. 1 (2), 175–180.  h t t p s : / / d o i . o r g 
/ 1 0 . 1 0 1 6 / j . o n e e a r . 2 0 1 9 . 0 9 . 0 0 4     (2019).

 54. Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52 (10), 891–904 (2002).
 55. Riggio, J. et al. Global human influence maps reveal clear opportunities in conserving Earth’s remaining intact terrestrial 

ecosystems. Glob. Change Biol. 26 (8), 4344–4356. https://doi.org/10.1111/gcb.15109 (2020).
 56. Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction 

risk. Nat. Commun. 9. https://doi.org/10.1038/s41467-018-07049-5 (2018).
 57. Tucker, M. A. et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359 (6374), 

466–469. https://doi.org/10.1126/science.aam9712 (2018).
 58. Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl. Acad. Sci. U.S.A. 117 (18), 9906–9911. 

https://doi.org/10.1073/pnas.1918373117 (2020).
 59. Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth. 3 (3), 371–382. 

https://doi.org/10.1016/j.oneear.2020.08.009 (2020).
 60. Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1.  h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 4 

6 7 - 0 1 7 - 0 0 5 5 7 - w     (2017).
 61. Sonter, L. J. et al. Conservation implications and opportunities of mining activities for terrestrial mammal habitat. Conserv. Sci. 

Pract. 4 (12), e12806. https://doi.org/10.1111/csp2.12806 (2022).
 62. Giljum, S. et al. A Pantropical assessment of deforestation caused by industrial mining. Proc. Natl. Acad. Sci. U.S.A. 119 (38), 119. 

https://doi.org/10.1073/pnas.2118273119 (2022).

Acknowledgements
The authors are grateful to Chloe Dawson, Piero Visconti, Sreekar Rachakonda, Tim Werner and Will Stephen 
for suggestions on a previous version of the manuscript.

Author contributions
L.J.S. wrote the main manuscript text and I.N. conducted analyses and prepared all figures. All authors contrib-
uted to conceptualisation of the study and reviewed the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at  h t t p s : / / d o i . o r g / 1 
0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 5 - 0 1 9 5 9 - 3     .  

Correspondence and requests for materials should be addressed to L.J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p : / / c r e a t i v e c o m m o 
n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .  

© The Author(s) 2025 

Scientific Reports |        (2025) 15:22421 10| https://doi.org/10.1038/s41598-025-01959-3

www.nature.com/scientificreports/

https://doi.org/10.1111/ddi.13753
https://doi.org/10.31219/osf.io/th8j6
https://doi.org/10.31219/osf.io/th8j6
https://doi.org/10.1016/j.oneear.2019.09.004
https://doi.org/10.1016/j.oneear.2019.09.004
https://doi.org/10.1111/gcb.15109
https://doi.org/10.1038/s41467-018-07049-5
https://doi.org/10.1126/science.aam9712
https://doi.org/10.1073/pnas.1918373117
https://doi.org/10.1016/j.oneear.2020.08.009
https://doi.org/10.1038/s41467-017-00557-w
https://doi.org/10.1038/s41467-017-00557-w
https://doi.org/10.1111/csp2.12806
https://doi.org/10.1073/pnas.2118273119
https://doi.org/10.1038/s41598-025-01959-3
https://doi.org/10.1038/s41598-025-01959-3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	Global land cover maps do not reveal mining pressures to biodiversity
	Methods
	Results
	Discussion
	Anthropogenic and natural land cover within mining polygons
	Implications for using biodiversity metrics for conservation action
	Opportunities to address the resultant bias in biodiversity metrics
	Future research and data needs

	References


