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Forest loss and uncertain economic gains
from industrial and garimpo mining in
Brazilian municipalities

Sebastian Luckeneder 1 , Victor Maus 1,2, Juliana Siqueira-Gay 3,
Tamás Krisztin 4 & Michael Kuhn 5,6

Environmental and social risks in mining regions often juxtapose promises of
local economic growth. Brazil, a major global mineral supplier and conserva-
tion leader, has pursued resource-led development despite mining’s threat to
its forests. Yet, the efficacy of this development strategy is uncertain. In this
study, we examine mining’s contribution to deforestation and regional eco-
nomic growth in Brazil. For garimpo mining concessions – originally small-
scale and less rigorously regulated forms of informal mining – we identify
substantial associations with elevated deforestation rates, highlighting the
environmental risks of insufficient oversight. The economic benefits ofmining
are limited. Particularly for industrial mining, they are tied to fluctuations in
global mineral prices. These findings challenge the perception that mining
inherently drives sustained regional economic development. As global
demand for minerals rises – particularly to support the energy transition –

strategic mining investments must be revised to prioritise sustained local
progress, nature conservation and community well-being.

Global mining activities cover more than 100,000 km2 of land1,2,
leading to substantial environmental and social impacts both directly
at the mine sites and in their surrounding areas3–5. Yet, minerals and
fossil fuels are indispensable for various aspects of human society,
such as housing, energy, transport, and communication infrastructure.
This creates a tension between domestic economic opportunities and
the associated social and environmental risks6–8. Consequently, there
are fundamental uncertainties regarding the compatibility of mining
with sustainable development9,10.

Brazil is not only among the world’s leading suppliers of iron,
gold, copper, and bauxite but also an important hub for tropical forest
conservation. Among the various adverse consequences associated
with mining11–16, mining-induced deforestation is especially pro-
nounced in Brazil17. Forest loss is caused directly at themine sites, such

as at the actual extent of open-pits and forest clearing for on-site
mining facilities, waste rock dumps and tailings ponds, but also
indirectly due to transport, storage, processing and energy infra-
structure build-up outside designated mining areas, as well as popu-
lation pull effects and related urban and agricultural expansion3.
Alarmingly, the country’s mining territory expanded from 187 thou-
sand ha in 2005 to 351 thousand ha in 202018 (Fig. 1), posing threats to
areas vital for forest conservation and biodiversity17,19,20. This is of
particular concern due to the resultant loss of natural habitats and
destruction of carbon sinks, which could undermine efforts to meet
global climate targets21.

While there is broad consensus about the environmental and
social risks of mining in Brazil, opinions diverge regarding the poten-
tial economic advantages that mining could bring22,23. Historically,
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Brazil’s extractive sector and institutions have portrayed both indus-
trial and informalmining as pivotal to the economicdevelopmentof its
resource-rich peripheral territories22, often in forested remote regions.
Some studies support this view, showing thatmining can spur regional
economic development through job creation, local procurement, and
associated local spillovers24–26. However, this perspective is countered
by researchon the resourcecurse thesis, whichhighlights thepotential
negative economic consequences of resource wealth. Studies suggest
that in contexts of weak governance and institutional quality, an
abundance of natural resources may hinder the development of key
sectors such as manufacturing, education, and health – sectors which
are vital for sustained growth27–31. Notably, for Brazil, empirical evi-
dence remains inconclusive as to whether mining catalyses sustained
local economic development.

This study investigates the contribution of mining to deforesta-
tion and regional economic growth in Brazil at the municipality level.
The growing recognition of mining’s localised environmental and
socioeconomic consequences is underscored by recent research, such
as Lo et al. (2024), which analysed the effects of nickel mining in
Indonesia on forest cover and well-being32. Moreover, the present
study differentiates between industrial and artisanal and small-scale
mining, known as garimpos (Fig. 1d), both provided for in Brazilian
legislation (Supplementary Notes A). By doing so, it offers a focused
analysis that contrasts with broader assessments of macroeconomic
mining impacts on national indicators28,33. A regional focus is war-
ranted to understand the extent to which economic activities, such as
mining, benefit the local economies that constitute the concrete living
environmentof thepopulation.Moreover, it iswarranted as ameans to
understand the spatial distribution of the gains and losses from such
activities. We employed panel-structure Bayesian spatial econometric
models, regressing 5-year average annual Gross Domestic Product
(GDP) growth rates on a set of determinants of economic growth,
augmented with land cover information andmine locations. The same
setup was replicated to assess the effects of mining on forest loss.
Besides its advantage of explicitly accounting for and evaluating the
spatial spillovers that are central to this work, our spatial econometric
approach offered a robust statistical framework that considered var-
ious national and local drivers of regional GDP and forest loss. All
models relied on a consistent set of georeferenced data, sourced from
remotely sensed land cover data products18, Brazil’s socioeconomic

statistics34–36 and biophysical records37,38, spanning 5262municipalities
from 2005 to 2020. To address the risk of bias from unobserved het-
erogeneity influencing where mining occurs in the first place, we
applied a statistical matching algorithm, tentatively pruning the raw
data to approximate a quasi-random distribution of treatment
(mining) and control groups across the sample. Our findings indicate
substantial associations between garimpo mining and increased
deforestation, while for industrial mining, we do not observe a strong
connection to forest cover dynamics. Regarding regional economic
outcomes, the potential for positive effects appear more pronounced
for industrial mining. However, neither garimpo nor industrial mining
prompts a reliable or lasting increase in local GDP, with industrial
mining even linked to negative effects in some years.

Results
GDP trends in mining regions
The Brazilian economy is widely influenced by mineral extraction.
Throughout the study period, the economic growth of all Brazilian
municipalities showed a strong correlation with global metals and
minerals prices. However, our focus diverged from this overarching
relationship betweenmining and the country’s economicperformance
as we explored regional disparities observed betweenmining and non-
mining municipalities. Descriptive statistics suggest nuanced dynam-
ics between these two categories, as mining municipalities tend to
have outperformed non-mining municipalities during periods of
ascending commodity prices and vice versa (Fig. 2). Differences were
notable in 2004 and 2010, when increases in metals and minerals
prices coincidedwith 4.0percentagepoints (pp) and3.1 pphigherGDP
growth rates, respectively, in mining as compared to non-mining
municipalities, and in 2015 and 2016, when mining municipalities fell
back by 2.6 pp and 2.8 pp, respectively, suggesting greater vulner-
ability to the recessionary pressures within these areas. Nevertheless,
these observations necessitated further scrutiny within a controlled
modelling framework, isolating the effects of mining at the munici-
pality level by accounting for national macroeconomic trends and
potential overarching and regional confounding factors.

Figure 3 presents estimates of the relative effect of mining,
expressed as the differences in GDP growth (in pp) between mining
and non-mining regions. These estimates are based on matched sam-
ples of mining (treated) and non-mining (control) municipalities,

Fig. 1 | Mining areabymunicipality and aggregated totals in Brazil, 2005-2020.
Map of total area classified as mining18 per municipality in 2020 (in ha), with the
Legal Amazon and Minas Gerais outlined in red (a); average annual change in
mining areawithinmunicipalities between 2005 and 2020 (in%) (b);mining area by

region (2005–2020, in 1000 ha) (c); and mining area by mining regulation type
(2005–2020, in 1000 ha) (d). Basemaps are from the Brazilian Institute of Geo-
graphy and Statistics, made available under a CC-BY 4.0 license81, accessed via the
geobr R package75.
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derived from an econometric framework that accounts for several
observed drivers of economic growth. The analysis further considers
broader, unobserved economic factors – such as national policy
schemes andworldmarket commodity prices – thatmay have affected
municipalities regardless of their mining exposure (see Methods for
details). We used the presence of industrial and garimpominingwithin
amunicipality as themining indicator to facilitate the interpretation of
results. Each panel shows mean effect estimates surrounded by 95%
certainty intervals (CI) for the respective years or multi-year periods
(pooled effects for pre-2010 and post-2010 time frames) in two col-
ours. The darker colour represents direct effect within mining muni-
cipalities and the lighter colour indicates the magnitude of spillover
effects of mining across municipality borders. All effects indicate
estimated average differences as compared to non-mining, non-

neighbouring municipalities, keeping all other municipality char-
acteristics in the model constant.

The findings in Fig. 3a suggest that the local economic effects of
Brazilian industrial mining varied over time, with notable differences
between the periods before and after 2010. Prior to 2010, munici-
palities with industrial mining showed an average direct boost in GDP
growth rates relative to non-mining lying between 1.6 pp and 2.1 pp
(95% CI), alongside positive spillover effects of 1.3 to 2.5 pp (95% CI) in
neighbouring municipalities (Fig. 3a, right panel). This spillover indi-
cates that municipalities near those with industrial mines experienced
additional economic growth of approximately 1.9 pp relative to
municipalities without nearby mining activity. Since 2010, however,
spillover effects have reversed, with municipalities near industrial
mining experiencing an average GDP growth rate 0.5 percentage
points (95% CI: −1.1 to −0.03) lower than that of municipalities without
nearby mining activity. During the same period, the direct effect of
industrial mining on GDP growth became statistically inconclusive,
with estimates ranging between −0.1 pp and 0.3 pp (95% CI).

An analysis of yearly effect estimates (Fig. 3a, left panel) reveals
that industrial mining consistently showed positive direct stimulus and
spillover effects before 2010, aligning with the pooled estimates. The
years since 2010 showed more variable results, with estimates ranging
from positive to negative values in several years. Average yearly effects
were generally lower than before 2010, often centred around negative
values. This shift is particularly evident in the sharp decline observed
after 2009: direct effects dropped from 1.5 pp (95% CI: 1 to 2.1) and
spillover effects from 2.5 pp (95% CI: 1.4 to 3.5), to −0.8 pp in 2011 (95%
CI: −1.4 to −0.3) and −1.2 pp in 2013 (95%CI: −2.3 to −0.04), respectively.
Following this downturn, direct effects gradually recovered, returning
to statistically significant positive values in 2014 and 2015. Spillover
effects, however, remained statistically insignificant in the later years.

Effect of industrial mining on GDP per capita growth
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Effect of garimpo mining on GDP per capita growth
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Fig. 3 | Regional GDP effect estimates. Relative effects of binary industrial (a) and
garimpo (b) mining indicator on 5-year average annual GDP per capita growth,
compared to control municipalities. Left panels show yearly estimates, right panels
show pooled (pre-2010 and since 2010) estimates. Estimates were obtained from

20,000Markov chainMonte Carlo iterations, with the first 10,000 being discarded
as burn-in. Points denote posterior means, error bars show 95% posterior credible
intervals.

Fig. 2 | Mining, commodity prices and the GDP. Global prices of metals and
minerals82 and median annual growth rates of GDP per capita in real Brazilian
Real34,35,83 for mining and non-mining municipalities.
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In contrast to industrial mining, garimpomining exhibitedweaker
and less conclusive associations with GDP growth. For the pooled
period before 2010, positive associations were observed for both
direct (0.6 pp, 95% CI: 0.3 to 0.9) and spillover effects (1.8 pp, 95% CI:
1.2 to 2.6), though these were smaller than those linked to industrial
mining (Fig. 3b, right panel). Annual direct effects were generally close
to zero, with certainty intervals spanning both positive and negative
values in all observed years, except for 2009, when a positive direct
effect was identified (0.7 pp, 95% CI: 0.04 to 1.4). Unlike industrial
mining, no positive associations were found for the most recent years
of the sample. Spillover effect estimates were positive from 2007 to
2009 but disappeared thereafter. The full set of regression outputs,
including all predictors, is available in the Supplementary Information.

Mining and forest loss patterns
Figure 4 shows thatBrazilianminingmunicipalities experiencedhigher
forest loss rates than non-mining municipalities in the pre-matching
data. Again, the figure merely suggests a positive link between mining
and increased forest loss rates, however, without considering any
hidden, potentially correlated deforestation drivers. We therefore
followed the statistical approach introduced above, ensuring control
over both observable and latent factors that could confound the
relationship between mining and forest loss.

In contrast toGDPgrowth, where stronger effects were associated
with industrial mining, forest loss was more closely linked to garimpo
mining, particularly in the earlier years of the observation period
(Fig. 5). Before 2010, municipalities with garimpo operations experi-
enced, on average, 0.04 ha (95% CI: 0.03 to 0.06) more forest loss per
km2 compared to control regions. Spillover effects were more pro-
nounced, with municipalities neighbouring garimpo areas losing an
additional0.29 ha (95%CI: 0.22 to0.36) per km2 of forest cover relative
to those without nearby mining activity (Fig. 5b, right panel). In
absolute terms, estimates suggest an average annual forest loss of 369
ha (95% CI: 311 to 426) directly within garimpo municipalities and an
additional 1565 ha (95% CI: 1397 to 1725) per year due to spillover
effects in surrounding municipalities (Fig. 5d, right panel).

Post-2010 data, as shown in the right panels of Fig. 5b, d, reveal
weaker and less consistent associations between garimpo mining and
forest loss. The relative forest loss estimate linked to garimpo opera-
tions diminished during this period. However, annual spillover effect
estimates also suggest a re-emergence of an indirect effect in more
recent years (Fig. 5b, left panel). Absolute forest loss effects also
declined after 2010, with garimpo mining linked to an estimated
annual loss of 84 ha (95% CI: 33 to 135) and a spillover effect of 301 ha
(95% CI: 156 to 449) compared to non-mining controls (Fig. 5d).

In certain years, as well as in the pooled post-2010 estimates,
municipalities with industrial mining activity appeared to have a pro-
tective effect on neighbouring forest cover, both in absolute and
relative terms (Fig. 5a, c). However, this observed effect is not

supported by an alternative model specification that replaces binary
mining indicators with ha of mining area (Fig. S5). Instead, the alter-
native model suggests that the forest loss spillovers from industrial
mining are similar to those associated with garimpo mining. Within
municipalities directly hosting industrial mines, the evidence remains
inconclusive, suggesting that industrial mining may not have a con-
sistent effect on forest loss at the municipal scale.

Discussion
Our results suggest that fluctuations in global commodity prices not
only contributed to economic stagnation and crisis in Brazil but also
reshaped the observed relationship between mining and regional
economic output, at times even reversing it. Before 2010, a favourable
global economic environment, marked by high commodity prices and
strongmaterial demand, was associated with higher economic growth
in mining municipalities and their neighbouring regions compared to
similar non-mining areas. During this period, mining revenues and
associated multiplier effects remained notably local. These findings
contrast the negative relationship that is typically found in cross-
country comparisons28, instead indicating a positive association
between mining and local GDP. This effect appears to transcend
municipal borders, likely mediated by mechanisms such as labour
market dynamics10. The observed positive spillovers point to the
existence of diffused backward linkages, including the movement of
commuting workers and the emergence of “mining clusters”. Such
clusters exhibit endogenous growth, fostering industrial diversifica-
tion and strengthening the regional economy through agglomeration
effects25.

However, the expansion of the extractive sector can undermine
other, potentially more sustainable economic activities, such as small-
scale agriculture or manufacturing, while increasing dependence on
mining26. Our results demonstrate that this dependence makes regio-
nal economies vulnerable to fluctuations in global commodity prices.
When prices decline, the same backward linkages that once under-
pinned growth become pathways for economic contraction, affecting
not only mining municipalities but also neighbouring regions. Over
time, this volatility can undermine broader development efforts and
reinforce economic instability.

Compared to industrial mining, garimpos showed weaker asso-
ciations with economic growth, and we found no periods where effect
estimates turned negative. One possible explanation lies in their fre-
quently informal or illegal nature, which allows profits to evade official
record-keeping or be transferred out of the region. At the same time,
garimpo mining provides a livelihood for an estimated 200,000 peo-
ple in the Brazilian Amazon39, many of whom have limited economic
opportunities. While GDP-based analyses may understate the local
economic significance of garimpos, their broader socioeconomic role
remains insufficiently understood. Future research should explore
alternative,moregranularmeasures of regionalwell-being toprovide a
more comprehensive assessment of garimpos’ contributions to
regional economies.

Stricter oversight of garimpo activities presents a promising
opportunity to curb forest loss. Our findings reveal that the defor-
estation potential of mining strongly depends on the type of mining
activities and the (in the Brazilian case dual) legal framework they are
embedded in. This relationship is shaped, in part, by distinct geo-
graphical patterns: garimpos are overwhelmingly concentrated in the
Brazilian Amazon, whereas industrial mining is more prevalent in
regions such as Minas Gerais (see Supplementary Notes A). However,
regulatory disparities also play a crucial role. Less stringent legal
requirements – such as the absence of restrictions on mining techni-
ques – opened the floodgates to adopting environmentally hazardous
practices for holders of garimpo concessions. Over time, garimpos
increasingly adopted methods and machinery of large-scale industrial
exploration, deviating strongly from the original intent of the

Fig. 4 | Mining and forest loss.Median annual forest loss rates (ha forest loss per
km2municipality area, zero forest lossmunicipalities excluded) formining andnon-
mining municipalities18.
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Effect of industrial mining on forest loss (ha/km2)
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Effect of industrial mining on forest loss (thousand ha)
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Effect of garimpo mining on forest loss (thousand ha)
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Fig. 5 | Regional forest loss effect estimates. Relative effects of binary industrial
(a) and garimpo (b) mining indicator on forest loss in ha per km2 of municipality
area, compared to control municipalities. Relative effects of binary industrial (c)
and garimpo (d) mining indicator on forest loss in thousand ha, compared to
control municipalities. Left panels show yearly estimates, right panels show pooled

(pre-2010 and since 2010) estimates. Estimateswere obtained from20,000Markov
chain Monte Carlo iterations, with the first 10,000 being discarded as burn-in.
Points denote posterior means, error bars show 95% posterior credible intervals.
Forest loss was defined as negative changes in natural forest formation based on
ref. 18.
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Garimpeira Mining Permission40,41. This trend provides a strong
explanation for the higher rates of forest loss observed in garimpo
regions compared to control areas. The pronounced spillover effects
further suggest that garimpomining is embeddedwithin broader land-
use transformations that contribute to deforestation. Rather than
occurring in isolation, garimpos may accelerate existing processes
such as logging, agriculture, and the expansion of infrastructure into
previously undisturbed areas, reinforcing cycles of land degradation
and resource exploitation. Thesefindings highlight the urgent need for
effective and enforceable policies to close regulatory loopholes,
uphold environmental standards, and support improvements in the
environmental performance of garimpos42,43. Formalising garimpos
couldplay a key role in this effort, enabling better traceability ofmined
materials and ensuring compliance with environmental safeguards,
such as mercury-free gold processing44.

Finding a balancebetween forest loss and economicdevelopment
is a central endeavour in making extractive economies and related
supply chains more sustainable. Yet, our results revealed a more
complex situation than a simple trade-off between the two spheres.
While improved environmental responsibility must be achieved,
especially in the poorly regulated informal sector, there is generally no
guarantee for mining-induced economic development. While mining
may benefit municipalities and their neighbours during boom phases,
local mining economies can also experience bust phases associated
with economic setbacks. This raises the question of which policies can
mitigate negative economic impacts while retaining the positive eco-
nomic stimulus during boom periods. Creating resilience to down-
turns is essential to guarantee the economic stability of mining
operations. Long-termstrategic planning by local authorities is needed
in this regard, including far-sighted approaches to effectively use,
allocate and invest mining rents for the benefit of local communities.
Furthermore, these strategies should focus on diversifying local
economies and reducing their reliance on the mining sector, thereby
fostering economic resilience in the face of future uncertainties.
Socioeconomic benefits could be strengthened through a fairer dis-
tribution of mining revenues – rather than the largest shares accruing
to mining companies – and improved efficiency and transparency in
the allocation of financial transfers to subnational and local
governments45.Moreover, long-termplanning is needed to address the
socioeconomic prospects of communities in mined-out areas.

Revenues from taxes and royalties are considered contributing
factors to the socioeconomic development of mining regions. The
Brazilian CFEM (Financial Compensation for the Mineral Exploration)
tax, for example, generates income forminingmunicipalities based on
the volume and value of extracted material10. Moreover, local pro-
curement and employment effects are frequently argued by the
mining industry to foster regional economic development46. We
showed that these economicdynamics strongly correlatewith external
factors such as world market prices. Municipalities may depend
strongly on incomes and jobs from the mining industry, causing a
reversal of the above-stated effects due to recoiling mining activities,
job losses, diminished tax revenues, and a sluggish reorientation of
local economic structures in times of falling market prices.

Our findings raise concerns about the alignment of mining with
several of the United Nations’ Sustainable Development Goals (SDGs).
While the expansion of the mining sector is anticipated to provide
essential resources for the global energy transition47 with positive
effects mainly on SDGs 7 (affordable and clean energy) and 13 (climate
action), the regions tasked with this supply must cope with the mul-
tifaceted social and environmental challenges posed bymining. These
challenges have been expected to be offset by the inherently inclusive
and sustainable economic growth outlined in SDG 848. Yet, our results
indicate that relying on mining to realise this particular SDG may be
misguided.

To conclude, our findings support the concerns raised earlier that
the continued expansion of the extractive sector can increase defor-
estation and related pressures on Brazilian forests, particularly the
Amazon, while deepening local economic dependence on
mining15,16,49,50. This dependence heightens vulnerability to external
shocks, such as fluctuations in mineral prices, and raises questions
about the long-term stability and sustainability of regional develop-
ment. The study thus contributes to a better-informed political debate
by delivering much-needed quantitative evidence with relevance not
only for Brazil but for resource-rich economies globally.

Methods
Econometric framework
The workflow is outlined in detail in Fig. S10 of the Supplementary
Information. To evaluate the economic and environmental outcomes
associated with the Brazilian mining sector, we employed a robust
econometric framework widely applied to study the socioeconomic
implications of resource extraction33. This methodology has also been
utilised to explore key drivers of economic growth51,52 and
deforestation53,54. We applied a matching procedure to improve the
balance between mining and non-mining municipalities, reducing
statistical bias and mitigating model dependence55. By combining this
balanced dataset with a comprehensive set of covariates in our
regression design, we controlled for confounding factors – both
observable and unobservable – that influencemining presence and its
associated outcomes.

In light of the potential effects of mining activities on neigh-
bouring areas, we aimed to account for the spatial spread of impacts
across geographical locations. Combining well with the spatial nature
of the mining data at hand, this study employed a spatial econometric
approach. Spatial models explicitly consider the non-randomness of
observations across space, thus addressing the bias and misleading
inference that may result from spatial dependence56. Several applied
contributions found strong evidence that socioeconomic and envir-
onmental observations were subject to spatial dependence at the
regional level, including economic growth51,57–59 and deforestation54,60.

We employed panel-structure spatial models, accounting for
spatial correlations and, at the same time, offering extended possibi-
lities to consider time- or region-specific idiosyncratic effects61.
Incorporating time-specific fixed effects, for example, accounts for
factors influencing the dependent variables in specific years of the
sample. The models can thereby consider trends affecting munici-
palities regardless of their exposure to mining, such as national (e.g.,
macroeconomic conditions, environmental and economic policies)
and global (e.g., commodity price fluctuations) factors. We estimated
the models using Bayesian methods following the standard Markov
Chain Monte Carlo (MCMC) estimation framework as proposed for
spatial econometrics62. The exact estimation procedure is presented in
Supplementary Notes C. As a measure of uncertainty, we report 95%
Bayesian credible intervals.

Economic growth. The underlying principle is to regress growth rates
of countries or regions on income (usually GDP) at the initial period of
a certain growth window as well as on a number of further determi-
nants of growth. Typically, these include information on population
growth, human capital stock and sectoral structure such as gross value
added or employment across economic sectors51,58.

Following the literature on economic growth and spatial
spillover52,58, and in line with the framework demonstrated for the
Brazilian case59, we employed a panel-structure spatial Durbin model
(SDM) of the form:

yt =ρWyt +Xtβ +WXtθ+ ξ t + ϵt , ϵt � Nð0,ΩÞ,Ω= σ2In, ð1Þ
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where yt denotes an n × 1 vector of regional economic growth rates at
time t. As advocated in earlier literature63, we used five-year periods as
growth windows to smooth over short-term business cycle influences
and calculated the respective average annual growth rates
yt = ½lnðYt + 5Þ � lnðYtÞ�=5 � 100, with Yt denoting per capita GDP at
time t (results were robust against variations in growth windows, see
Fig. S7). Xt is an n × k matrix of k exogenous municipality
characteristics in the initial period. These include prominent determi-
nants of economic growth such as initial income, population density,
education and indicators for industrial structure, but also information
onmining activities, landuse and landuse change.Weused interaction
termsbetweenbinarymining indicators and yearly dummyvariables in
order to obtain year-specific effects of the presence of industrial and
garimpomining. Additionally, in order to obtain pooled effects for the
time before and after 2010, respectively, we ran another model
interacting the binary mining indicators with dummy variables of the
respective period. We selected 2010 as the separation point based on
our yearly coefficient results, which revealed significant pattern shifts,
including a marked change in industrial mining’s GDP estimates and
the conclusion of a period with particularly high absolute forest loss
estimates for garimpos. The error term ϵt was assumed to follow a
multivariate Normal distribution with zero mean and a diagonal
variance-covariance matrix Ω with constant variance σ2. W is an n × n,
non-negative, row-standardised spatial weights matrix. Its elements
impose a structure of spatial dependence upon observational units,
setting wii = 0 and wij > 0 if regions i and j are defined as neighbours
(i, j = 1,…, n). The exact specification ofW is presented and illustrated
in Supplementary Notes B and Fig. S4. Characteristically for an SDM,
the regression equation includes the spatially-lagged dependent
variable Wyt as well as the spatially-lagged regional characteristics
WXt as explanatory variables. The k × 1 vectors of the unknown
parameters β and θ correspond to Xt and WXt respectively, and ρ
(where the sufficient stability condition ∣ρ∣ < 1 is satisfied for row-
standardised W62) is a scalar, measuring the magnitude of spatial
autocorrelation. If ρ = 0, we obtain a growth regression model with
spatial lags in X (SLX), where regional growth rates are independent,
but WX is still considered. The model collapses into a classical linear
model in the case where both ρ = 0 and θ = 0. Finally, the model
considers a time-specific constant ξt, capturing year-specific con-
founding factors such as commodity price dynamics and domestic
business cycles.

Forest loss. This model type was designed to assess the effects of
mining on forest loss, where again we used municipalities as obser-
vation units. Forest loss is expected to be subject to considerable
spatial spillover53,54,60, which is why we employed an SDM of the form

~yt = λW~yt + ~Xtδ +W~Xtγ + νt +μt , μt � Nð0, ~ΩÞ, ~Ω= ~σ2In, ð2Þ

where the dependent variable ~yt denotes a vector of cleared land
within each municipality. In the n × ~k matrix ~Xt we considered eco-
nomic growth directly as a control variable insteadof including the full
set of growth determinants. Other control variables remained the
same as in the growth specification, because most determinants of
economic growth overlap with indicators used for explaining forest
loss53. Mining again entered themodel in the formof interaction terms
between binary mining indicators and year and period dummy vari-
ables, respectively. Similar to the growth model, νt denotes a time-
specific constant and we again assumed a normally distributed error
termμtwith constant variance ~σ2. The k × 1 vectorsδ and γ correspond
to ~Xt and W~Xt respectively and λ is the spatial coefficient. The spatial
weights matrix W and the properties of the spatial model remain the
same as in Equation (1).

Direct and spillover impacts. Assuming independence of observa-
tions, the estimation coefficients of conventional (non-spatial) linear
models can be typically interpreted as marginal changes in the
dependent variable due to shifts in one of the explanatory variables. In
this regard, spatial models require additional steps because we expli-
citly impose dependence among observations, implying that the par-
tial derivatives of the dependent variable in region iwith respect to an
explanatory variable in region j are potentially non-zero and therefore
cause feedback effects. Calculating average direct, indirect (i.e., spil-
lover) and total impactswasproposed as a solution to this issue62: First,
transforming Equation (1) (without loss of generality, the same deri-
vation holds for Equation (2)) to

yt = ðIn � ρWÞ�1ðXtβ+WXtθ+ ξ t + ϵtÞ, ð3Þ

we derive n2 partial derivatives of a particular explanatory variable k as

∂yi
∂xjk

= SkðWÞij = ðIn � ρWÞ�1ðInβk +WθkÞij , ð4Þ

where infinite feedback effects are captured through the spatial mul-
tiplier ðIn � ρWÞ�1. The impact matrix is then summarised by calcu-
lating the average total effect as the average over all entries in Sk(W)ij,
the average direct effect as the averagewhen only considering itsmain
diagonal, and the average indirect effect as the difference between the
two. An interpretation of average direct effects is then given by the
average response of the dependent to the independent variables over
the sampleof observations andhence similar to regression coefficients
from classical linear models. The average spillover can be interpreted
as the cumulative average responseof a region’s dependent variable to
a marginal change in an explanatory characteristic across all other
regions.

Data
We compiled a balanced panel dataset covering 5262 Brazilian muni-
cipalities over the period 2005–2020. Calculating five-year average
growth rates, this resulted in 57,882 observations prior to matching.
Data were sourced from multiple databases and, where necessary,
aggregated to the municipality level. Municipalities, the smallest
administrative divisions in Brazil, occasionally undergo boundary
changes due to splitting or merging, resulting in a variable total count
over time. In order to keep a balanced panel with a constant number of
spatial observations, we followed previous research59 and only con-
sidered municipalities with unchanged geographical extent over the
sample period. Table S1 provides an overview of the variables used in
this analysis.

Dependent variables. The dependent variable in the growth models
was the five-year average annual growth rate of GDP per capita, which
was computed fromyearly per capitaGDP inBRLat current purchasing
power parities as reported by the Brazilian Institute forGeography and
Statistics, IBGE34,35. In the last year of the panel, 2015, this measure
therefore comprises economic growth between 2015 and 2020. We
selected five-year growth windows as a suitable measure for mid-term
economic effects63. We were aware that other studies emphasise
poverty and distributional effects of mining45,64. However, we needed
to resort to GDP growth in our study because alternative socio-
economic indicators that would allow for a broader understanding of
human well-being are difficult to obtain for this level of geographical
detail, especially for a yearlypanel. GDPper capita, therefore, served as
a key indicator for economic development, despite its limitations, such
as only covering market transactions and not describing income
distribution.
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The municipalities included in the analysis varied in size, ranging
from 3.57 km2 to 159,533 km2 (mean = 1541 km2, sd = 5683 km2). For the
forest lossmodels, we used twomeasures of the dependent variable to
capture the reduction in natural forest formation: (a) annual relative
change, expressed in ha per km2, and (b) annual change in absolute ha.
The data was calculated frommunicipality-level land cover statistics as
provided by the MapBiomas project18. In contrast to the five-year
windows used in the economic growth specification, forest cover
changes were examined annually. This decision reflected the
assumption that deforestation is typically driven by immediate events,
withnomeaningful recovery periods,making adjustments for business
cycles unnecessary.

Mining indicators. The essential municipality characteristic for this
studywas the presenceofmining activities.Mining entered themodels
as binary indicators for the presence of industrial and garimpomining
within a municipality in a certain year. Detailed yearly geospatial data
on Brazilian land area covered byminingwas taken fromMapBiomas18.
We transformed their continuous metric (ha per municipality) to a
binary variable for simpler interpretation of effects. In the Supple-
mentary Information, we show that alternative model specifications,
which incorporate the mining area in ha, do not alter our main con-
clusions (Figs. S5 and S6).

Instead of land cover information about mining, the CFEM tax
would have been another indicator for active mining activities. How-
ever, we refrained from using the CFEM as an explanatory variable, as
the tax income directly enters municipality GDP, i.e., the dependent
variable, creating identification issues in the econometric model.

Covariates and potential confounding factors. We accounted for a
broad set of covariates in the designmatrices X and ~X to better isolate
the effect of mining on GDP and forest cover by controlling for con-
founding factors that could simultaneously influence these outcomes
and the presence of mining. By addressing such confounding vari-
ables, we sought to reduce bias and strengthen the robustness of our
findings. The selected covariates reflect key local environmental,
economic, and sociodemographic conditions, which are further
detailed in the text. A comprehensive list of these covariates, along
with the rationale for their inclusion, is provided in Tables S2 and S3.

We considered land use change dynamics as control variables in
all models. Using satellite data on the conversion of land, e.g., from
natural forest formation to pasture or from grassland to agriculture, is
an efficient approach for observing economic activity and environ-
mental transformation at the same time. Such patterns act as useful
proxies for underlying factors, including fertile soils, residential
development, or conservation, which may confound our analysis by
simultaneously influencing mine development (e.g., fertile soils may
attract land uses that competewithmining) and the outcome variables
of our interest. Our data was obtained from MapBiomas18, providing
yearly land transition information from 30 m resolution satellite ima-
ges aggregated to the level of Brazilianmunicipalities. We utilised land
cover classifications at the second sub-categorical level and con-
sidered forest formation and forest plantation for the case of forest,
grassland as non-forest natural formation, and agriculture and pasture
for farming. Other categories such as wetlands, non-vegetated areas
and bodies of water were omitted since they had minor relevance for
our analysis. In order to be consistent with the five-year GDP growth
horizon, we computed the average change in ha over five years. Land
use change from any category to forest formation was not considered
as a covariate, because it marks a transformation that is only viable
over a longer time horizon.

Initial land cover was considered as a proxy for the land cover
conditions at the beginning of either awindowofGDPgrowth or a one-
year forest loss period.We againused data fromMapBiomas18. In order
to reflect the variation in municipality area, this variable entered the

models as shares of natural forest, forest plantation, grassland, agri-
culture and pasture relative to the total municipality area.

The remaining covariates were motivated by economic growth
theory (see the respective literature below), and by following a meta-
analysis for the case of the forest loss models53. While some of these
variables are not obvious confounders – i.e., they may influence the
dependent variables without affecting mining expansion, or they may
only exert an indirect influence via other channels – their inclusion is
expected to improve the precision of effect estimates by accounting
for additional variation in the outcomes. We considered initial income
in terms of per capita GDP in the initial year of a growth window as a
proxy for physical capital, which is a major determinant of economic
growth in the neoclassical growth framework65. A negative relationship
between the initial stock of physical capital and economic growth,
which is explained by diminishing returns to capital accumulation, is a
well-established stylised fact in the empirical literature known as the
convergence hypothesis. In addition, a number of studies show that
the convergence hypothesis holds for direct impacts in spatial
econometric growth frameworks,while spillover effects from theflows
of capital, goods, knowledge, and people between regions are shown
to be positive, implying that relatively poorer regions benefit from
having highly capitalised neighbours57.

Endogenous growth theoryhighlights the roleof humancapital as
a key driver of innovation processes such as technological change66,67.
However, whether indirect effects are positive or negative is uncertain
because positive economic effects from knowledge spillover and brain
drain channels may counteract each other. The role of the labour
market in shaping mining activity is similarly ambiguous and likely
context-dependent. Higher levels of human capital may attract
industrial mining by reducing training costs and increasing pro-
ductivity, while simultaneously discouraging informal or artisanal
mining, as more educated populations are likely to pursue alternative
livelihoods. We proxied human capital using the FIRJAN education
index36, an index for Brazilian municipalities on a scale from 0 (worst)
to 1 (best), measuring both schooling coverage and quality. The edu-
cation index was only available from 2005, constraining our sample to
this starting year.

Population growth was another component taken from the
neoclassical growth framework. Following this theory, a positive
impact of population growth would hold for absolute income growth
at the national scale, but not for the growth of per capita income due
to capital dilution. Therefore, unless higher output exceeds popula-
tion growth, we would expect a negative effect. For subnational
entities, this relationship is unclear, because one part of the popu-
lation dynamics is migration patterns, which may vary across scale
levels59. We obtained population counts per municipality from the
IBGE and computed population growth again at five-year average
rates. Population counts for 2007 and 2010 were interpolated due to
missing data.

In line with numerous other studies, we used population density
as a proxy for agglomeration externalities59. Population agglomeration
effects have been considered in the economic geography literature.
Denser populated (i.e., urban) regions are associated with positive
effects on productivity growth, because they show higher rates of
technological progress68. However, this relationship may not hold for
relatively poor districts in countries where strong urbanisation is dri-
ven by extensive population growth without substantially affecting
labour productivity.

We followed previous research58 and included the gross value
added (GVA) in the agriculture, industry and service sectors as control
variables in order to proxy the industrial structure of municipalities.
These variables help account for heterogeneities in economic growth
and forest cover dynamics, as well as underlying processes such as
land competition and local material demand, which may either facil-
itate or constrain the development of mining activities.
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The forest loss regressions followed a similar structure as the
growth regression, with small adjustments. Instead of initial income,
population growth and density, human capital and the sectoral mix
variables, we directly used the five-year average annual economic
growth rates as a proxy for economic activity. The empirical literature
is inconclusive regarding the direction of the effect that income may
have on forest cover53, yet this proxy subsumes a set of deforestation
drivers that are related to any other anthropogenic activity besides the
mining and other land use change effects. Forest cover change
accounts were only included in the GDP growth models, as they
effectively define the dependent variables in the forest loss models.

Precipitation and elevation were included as final control vari-
ables for economic growth and forest loss. These biophysical char-
acteristics capture key spatial constraints that may influence GDP
growth and forest cover, as well as factors relevant tomining presence
or expansion, such as accessibility, land development potential, and
susceptibility to wildfires or erosion. The data was compiled using the
dplyr69, tidyr70, readxl71, stringi72, sf73, raster74, geobr75,
exactextractr76 and elevatr77 R78 packages.

While we have carefully accounted for a comprehensive set of
covariates, it is important to acknowledge that residual confounding
may still persist. Unobserved or complex factors, which are difficult to
capture in the model, could influence the relationships between
mining, GDP, and forest cover. Nevertheless, the inclusion of time-
fixed effects and the longitudinal panel design that tracks outcomes
over time, helps mitigate the potential for such unobserved
heterogeneity61. Moreover, the large sample size and temporal cover-
age of the data add confidence in the reliability of our estimates.

Statistical matching. To mitigate confounding and improve the
robustness of our estimates, we employed coarsened exact matching
(CEM), which approximates randomisation by grouping treated and
control units based on similar characteristics55. CEM offers several
advantages over other matching techniques, including its ability to
handle high-dimensional covariates without relying on strong para-
metric assumptions. It also provides a better balance between the
treated and control groups compared to othermethods. Thematching
was implemented in R using the cem package79.

We applied a one-to-many matching approach using variables
population density, natural forest cover, precipitation, elevation and
municipality area to account for factors influencing the development
of mining while preserving a sufficiently large sample. Matching was
conducted separately for industrial and garimpo mining munici-
palities. As a result, the number of industrial mining observations was
reduced from 4430 to 3923, while garimpo mining observations
decreased from 2753 to 2356. The matched control groups comprised
42,646 and 35,156 observations for industrial and garimpo mining,
respectively (Table S4). After further refinement to ensure a balanced
panel, the final samples consisted of 33,836 and 23,727 observations
for industrial and garimpo mining, respectively, as reported in the
regression outputs in Tables S5–S16.

While thematching procedure enhancedbalancebetween treated
and control groups by excluding cases poorly suited for comparison,
some differences remained – most notably in forest cover, where
certain mining municipalities exhibited higher initial levels. This resi-
dual imbalance is addressed in the econometric models by incorpor-
ating initial forest cover as a covariate. The remaining imbalance is
partly due to the necessity of retaining spatial information. Unlike
studies that apply one-to-one matching32, we chose a broader
approach to preserve neighbouring municipalities and the overall
spatial structure. Our matching strategy also follows recommenda-
tions for CEM80, prioritising improved balance while maintaining a
sufficiently large sample. Despite these limitations, the matching
procedure enhanced the comparability between groups, reducing bias
and strengthening the reliability of our findings, as shown in Fig. S11.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The compiled dataset used in this study, along with all materials
required to reproduce the results, has been deposited on Zenodo and
is available at https://doi.org/10.5281/zenodo.10009935. A detailed
overview of the variables and their original sources is provided in
Table S1 of the Supplementary Information. Step-by-step instructions
for accessing and working with the data are available at https://github.
com/SLuckeneder/mining-Brazil.

Code availability
All code used in the analysis is available at https://doi.org/10.5281/
zenodo.10009935.
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