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Abstract
Electric vehicles (EVs) are a key strategy for mitigating greenhouse gas (GHG) emissions from
personal mobility. Norway’s strong EV supporting policies has led to an explosion of EVs and
reduced direct emissions, but with rural-urban differences and undocumented upstream impacts.
We investigated how the material composition and life cycle GHG emissions of Norwegian vehicles
have evolved between 2000 and 2023 by integrating spatiotemporal vehicle data with a vehicle life
cycle assessment model. The average life cycle GHG emissions per vehicle-km (vkm) of a newly
registered car have significantly decreased (−49% since 2000) thanks to the decrease in use phase
emissions (−89% since 2000). However, component-related emissions have increased (+81% since
2000) due to electrification and a trend towards large vehicles. Changes in the fleet are slow: EVs
constituted 24% of the stock in 2023 and average life cycle GHG emissions per vkm have barely
declined (−8% since 2000). EVs are concentrated in urban and peri-urban areas, while remote
areas have few EVs, illustrating the unequal spatial distribution of electric mobility. Our study
highlights the challenges related to EV penetration and emphasizes the need to expand to
additional indicators beyond direct GHG emissions for a comprehensive understanding of EVs’
role in climate change mitigation.

1. Introduction

In 2019, about 23% of global energy-related dir-
ect CO2 emissions were from transport activities,
with 70% of these coming from road transport [1].
Transport relies heavily on fossil fuels (in 2022,≈95%
of its final energy use came from oil and natural gas
derivatives [2]).With no tailpipe emissions, electrific-
ation of the vehicle fleet is a key option for decarbon-
izing personal mobility in-line with stringent climate
change mitigation scenarios that limit global warm-
ing below 2 ◦C in 2100 [1, 3, 4].

Referred as ‘the [electric vehicles (EVs)] capital of
the world’ with EVs ‘everywhere’ [5], Norway makes
the headlines of newspapers. Already in 2013, it was
called the ‘electric car heaven’ [6] and has been seen
as a pioneer in EVs adoption ever since [7–9]. The
implementation of measures encouraging EV adop-
tion (e.g. exemption from value-added tax, use of
bus lanes, free parking) has led to a 88.9% share of
EVs in the 2024 sales statistics [10, 11]. A milestone
in Norwegian EV history was reached in September
2024, when more EVs were registered than gasoline
cars [12].
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Norway’s high share of EVs presents an oppor-
tunity to study the leading factors for EV adoption,
as well as the benefits and trade-offs. Households
with higher income, wealth, and education [13, 14],
living in urban areas with children [14], or with
greater availability to public charging stations [15]
are more likely to own or adopt an EV. Passenger
cars’ CO2 emissions in Norway decreased because of
the shift to EVs. The advantageous taxation system
facilitated this shift [16], and future EVs’ adoption
might be slowed if the tax exemptions were to be sud-
denly withdrawn, potentially compromising short-
term emission targets [17]. Decreasing territorial
emissions is the immediate concern to achieve the
55% cut of greenhouse gas (GHG) emissions by 2030
compared to 1990 (Norway’s climate target under
the Paris Agreement [18]). However, understanding
the climate mitigation potential and trade-offs of
EVs requires taking a life cycle perspective. Upstream
GHG emissions, which can occur abroad, arise from
the material consumption and battery production
[19, 20] induced by EV penetration, which affects
the environmental performance of driving. However,
material composition and life cycle GHG emissions of
the Norwegian car fleet is still underexplored.

Here we study the historical (2000–2023)
Norwegian car fleet by integrating spatiotemporal
vehicle data based on the Norwegian vehicle register
[21, 22] with vehicle material archetypes [23], and a
vehicle life cycle assessment model (carculator [24–
26]). We quantify the evolution of the material com-
position and life cycle GHG emissions, thereby eval-
uating the role of EVs in reducing passenger vehicles’
GHG emissions in Norway. We present EV penet-
ration rates, average material composition and life
cycle GHG emissions over time, and highlight spatial
differences in vehicle stock distribution among and
within Norwegian municipalities.

2. Methods

2.1. Historical stock of passenger cars
We collected historical stocks of passenger cars from
(1) a high spatial resolution database (Geodata
Online) of individual passenger cars in 2022 with
their powertrain, gross weight, and model year [21],
and (2) microdata.no, an online platform to access
and process Norwegian microdata, including passen-
ger vehicles between 2000 and 2023 [22]. We gen-
erated three datasets based on data extracted from
microdata.no (available on Zenodo [27]): (dataset 1)
number and average curb weight of vehicles grouped
by municipality and powertrain; (dataset 2) num-
ber and average curb weight of vehicles grouped by
size (for material composition in section 2.2), power-
train and first registration year; (dataset 3) number of
vehicles grouped by size (for life cycle GHG emissions

calculations in section 2.3), powertrain, first registra-
tion year and size of municipality. Before 2016, gasol-
ine hybrids were manually adjusted as these were not
properly registered inmicrodata.no. Details about the
data collection and processing are available in SI S1.

2.2. Material composition
We calculated the weighted average curb weight of
vehicles at the national scale using curb weight aver-
ages of the processed passenger vehicles data (dataset
2 frommicrodata.no) and derived the average mater-
ial composition using the material composition of
archetypes of passenger vehicles (formulas detailed in
section S3 in SI S1). These archetypes, developed in
the Circular EconomyModelling for Climate Change
Mitigation (CIRCOMOD)project, represent vehicles’
material composition (14 materials) according to
the powertrain (battery electric, internal combustion
engine (ICE), and plugin hybrid), size (mini, small,
medium, large, extra-large) and cohort (2005, 2010,
2015, 2020, 2025) [23]. We used linear interpolation
to estimate the material composition of vehicles pro-
duced in the years in between.

2.3. Life cycle GHG emissions
We used carculator, a parameterized model estim-
ating a range of midpoint and endpoint environ-
mental impact indicators per vehicle-km (vkm)
of passenger vehicles [24–26]. With carculator,
we calculated life cycle GHG emissions (100 year
global warming potentials emission metrics from
the Intergovernmental Panel on Climate Change
[28]) for a set of archetypical vehicles depending
on powertrain (battery electric, diesel, gasoline, plu-
gin and non-plugin hybrids), size category (mini,
small, lowermedium,medium, large, and large SUV),
and manufacture year (between 2000 and 2023).
We considered a Norwegian electricity mix (largely
based on hydropower [29]) for vehicle operation.
For other parameters, we used the default carcu-
lator values, such as a lifetime of 200 000 km and
an annual mileage of 12 000 km (details provided
in SI S1). Geodata and microdata.no do not distin-
guish between hybrid and plugin hybrid. Therefore,
we adjusted life cycle GHG emissions from carculator
to account for the share of hybrid and plugin hybrid
[30].

We applied the life cycle GHG emissions from car-
culator (formulas detailed in section S3 in SI S1): first,
to the individual vehicles from Geodata for detailed
geospatial analysis, and then, to the stock of vehicles
from microdata.no (dataset 3) to calculate life cycle
GHG emissions for an average vehicle at national and
municipal category scales between 2000 and 2023.
Life cycle stages covered included the manufacture of
the vehicles’ components (glider, powertrain, energy
storage), the vehicles’ maintenance, their use phase
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(energy chain, direct exhaust, direct non exhaust) and
their end-of-life. Life cycle GHG emissions can be
presented: (1) per vkm, where emissions are distrib-
uted across the expected lifetime in kilometers and
can be used to calculate fleet-average emissions; (2)
per estimated yearly emissions such as component-
related emissions (glider, powertrain and battery) of
newly registered vehicles or use-phase related emis-
sions of the fleet.

We used the stochastic mode of carculator (based
on Monte-Carlo analysis) to estimate uncertainties
of GHG emissions: for each archetype in the set of
archetypical vehicles, 100 iterations are performed,
and the 5th and 95th percentiles form lower and
upper bounds of uncertainty ranges.

2.4. Spatial analysis and socio-economic variables
To evaluate vehicle stocks (average curb weight and
average life cycle GHG emissions) and the adoption
of EVs between 2000 and 2023 at the municipal level,
we grouped municipalities into categories: less than
5000, 5000–10 000, 10 000–20 000, 20 000–50 000,
and more than 50 000 inhabitants excluding Oslo,
Bergen and Trondheim, which we looked at individu-
ally. Norwegian municipalities cover a wide range
of population size. In this study, this categorization
enables highlighting urban-rural differences.

Using the most recent refined geospatial data
(2022), we performed a statistical analysis to provide
insights into the drivers of personal mobility decar-
bonization. We measured correlations between sev-
eral variables using the Pearson correlation coef-
ficient, including average income [31], popula-
tion density, and the distance to a large muni-
cipality (estimated based on Geodata Online [32,
33]), defined with a population larger than 50 000
inhabitants.

3. Results

3.1. Norwegian car fleet analysis
Until 2012, most newly registered cars were ICE
vehicles (figure 1(a)). Electric and gasoline hybrid
vehicles adoptions began in 2012 whilst sales of ICE
vehicles were decreasing. Between 2016 and 2021, the
share of gasoline hybrids among newly registered cars
stayed between 24%–30%, but the share of EVs con-
tinued to increase to reach more than 80% in 2023.

The share of heavy cars has been increasing com-
pared to the early 2000s, when most cars were lighter
than 1500 kg (figure 1(b)). Heavy vehicles (>2000 kg)
represented more than one third of newly registered
cars in 2021 and half in 2022 and 2023. This led to an
increase in the average curb weight from 1200 kg in
2000 to about 2000 kg in 2022–2023 (figure 1(c)). On
1st of January in 2023, a weight tax was introduced
[34]. While its effects are not yet clearly notable, the

increasing weight trend stopped between 2022 and
2023.

Heavier vehicles are associated with highermater-
ial requirements, as reflected in the life GHG cycle
emissions (figure 1(d)). Even though average life cycle
GHG emissions per vkm have been decreasing since
2008 (from≈294 gCO2-eq in 2008 to≈144 gCO2-eq
in 2023) due to a decrease in direct exhaust and energy
chain emissions (−89% since 2000), the component-
related emissions have increased by 81% since 2000.
The emissions from EV batteries (resource extraction
and battery production) represented up to 18% of the
life cycle GHG emissions of newly registered cars in
2023.

Despite the increasing use of aluminum for light-
weighting purposes (figure 1(c)), the average curb
weight of cars has increased during the study period
(figure 2(a)). All powertrain types were affected, but
EVs gained the most weight. EVs’ GHG emissions per
vkm have also increased but have stayed well below
those of other powertrains (figure 2(b)). The aver-
age curb weight of newly registered ICE vehicles and
EVs has increased faster than the life cycle GHG emis-
sions per km driven,most likely due to improvements
in car manufacturing and emissions regulations. This
increasing average curb weight reveals an increasing
use of resources.

Figure 3 presents Norwegian car fleet changes
since 2000. While 80% of the newly registered cars
in 2023 were electric, the car fleet changed slowly,
with EVs representing 24% of the fleet in 2023
(figure 3(a)). With the stock shifting towards heav-
ier vehicles (figure 3(b)), the average curb weight
is steadily increasing (figure 3(c)), and the average
life cycle GHG emissions have not changed signi-
ficantly (figure 3(d)). Average life cycle GHG emis-
sions in 2023 are only 8% lower than in 2000.
Although the direct exhaust and energy chain emis-
sions decreased by 21% between 2000 and 2023, the
component-related emissions increased by 37% to
represent nearly one-third of the life cycle GHG emis-
sions in 2023.

3.2. Geospatial analysis
EVs are adopted at different rates in different regions
(figure 4(a)). The rates are highest in Bergen and
Oslo, followed by Trondheim and other municip-
alities with >50 000 inhabitants. Other categor-
ies of municipalities by population are below the
national average. However, there are municipalities
with higher shares of EVs than the large municip-
alities, as demonstrated by the light blue area. For
instance, Askøy, a municipality close to Bergen with
nearly 30 000 inhabitants, had Norway’s largest share
of electric cars in 2023 (45%). Vehicles whose location
is unknown (‘unknownmunicipality’),mostly owned
by companies/organizations, also present a high rate
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Figure 1. Description and characteristics of newly registered cars between 2000 and 2023 in Norway: (a) number of newly
registered cars by powertrain, (b) number of newly registered cars by size (the bottom value of the range is excluded except for the
first range 400–900 kg, the top value of the range is included), (c) average curb weight and material composition for a newly
registered car, (d) average life cycle GHG emissions for a newly registered car. Note: before 2016, we made manual adjustments of
hybrid vehicles as these were not properly registered.

of electrification. These cars represent around 10%
of the fleet and, together with cars located in large
municipalities, contribute to increasing the average
share of electric cars in the country. One quarter of
the vehicle fleet in Norway was electric in 2023, but
the median across all municipalities was 13% (i.e.),
50% of the municipalities still had less than 13% of
EVs in their stock. The lowest EV shares are found in
the North of Norway (Troms, Finnmark, Nordland)
and in Innlandet (figure 4(b)).

Across the categories of municipalities, the aver-
age curb weight of vehicles has been following a
similar increasing trend (figure 4(c)), indicating that
electrification is not necessarily the main driver for
increasing car weights. The few municipalities with
low average curb weight are in the south of the coun-
try (figure 4(d)).

Even though the average curb weight across
municipalities is not significantly affected by the
diverging shares of EVs, the average life cycle GHG
emissions are (figure 4(e)). The national average
peaked around 2010, dipping below the 2000s average
by 2021. However, the average life cycle GHG emis-
sions for a car located in many municipality categor-
ies was still above the 2000 average, and the emissions
started decreasing with some years of delay.

The highest average life cycle GHG emissions in
2022 are in the municipalities with the lowest shares
of EVs (figure 4(f)). The unequal spatial distribu-
tion of EVs is therefore associated with an unequal
decrease in average life cycle GHG emissions.

Bergen, the frontrunner of EV adoption has been
keeping the average curb weight below the national
average. Thus, the average life cycle GHG emissions in
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Figure 2. (a) Average curb weight and (b) average life cycle GHG emissions for a newly registered car per powertrain between
2000 and 2023.

Bergen are well below the national average, and lower
than in Oslo and Trondheim.

Even if these three large municipalities have a
significant share of EVs, the shares vary by district
(figure 5). There is a trend of higher average curb
weight with higher shares of EVs, but this is not the
only factor, as there are some districts with a low
share of EVs and yet a high average curb weight. From
visual inspection, we note that EV shares and aver-
age life cycle GHG emissions are generally somewhat
higher and lower, respectively, in more wealthy dis-
tricts. These two variables, however, do not appear to
be correlated with population density of districts.

There is a strong negative correlation between EV
shares and life cycle GHG emissions (figure 6(a.1)).
In densely populated municipalities, more frequently
located in the southern and coastal parts of the
country (figure 6(b)), the share of EVs is higher
(figure 6(a.7)) and the average life cycle GHG emis-
sions are lower (figure 6(a.8)). Municipalities with
larger shares of EVs are closer to a large municipality
(figure 6(a.4)) and are also associated with a higher
median income (figure 6(a.2)) explaining why wealth
shows moderate negative correlation with life cycle
GHG emissions (figure 6(a.3)).

4. Discussion

4.1. Trends and spatial characterization of EV
adoption
We have shown that EV adoption and associated
life cycle GHG emission reductions are not uni-
formly distributed which points at rural-urban dif-
ferences. EVs penetrated densely populated areas
including cities and their sub-urbs, whilst rural areas
lagged (findings in line with [14, 35]). Many EV-
promoting policies targeted urban areas and their

commuters, such as toll exemption for EVs [36].
While exemptions are being replaced by discounts,
the effect is still noticeable. Among the top five muni-
cipalities with the highest shares of EVs are Askøy,
Bærum and Malvik, located close to Bergen, Oslo
and Trondheim, respectively. In these municipalities,
commuters benefited from toll exemptions, or other
commuting ‘privileges’ [14]. The median income in
Askøy, Bærum and Malvik is also around 20%–30%
higher than the median income in Bergen, Oslo and
Trondheim [31], illustrating the role of income in EV
ownership [37].

There are also spatial differences in EV own-
ership within municipalities. In specific neighbor-
hoods, more than half of the vehicles are electric.
Different aspects can potentially explain these differ-
ences, such as income, the possibility of charging the
car at home [38, 39], access to public charging stations
[15, 40, 41], or social norms [42].

Linking the EV incentives with the spatial and
temporal trends in EV ownership and life cycle
GHG emissions could constitute future researchwork
for understanding their effectiveness and efficiency.
New tailored policies targeting geographic locations
where EVs are not popular could speed up mobil-
ity decarbonization [11] and are likely necessary to
achieve further climate change mitigation.

4.2. EVs: a decarbonization option?
The European Union (EU) has set strict CO2 emis-
sion targets for the direct emissions of new pas-
senger cars: from 2030, new cars should emit less
than 49.5 gCO2 km−1 [43]. Norway has set even
stricter targets, aiming for all new private cars in
2025 to be electric [44]. In Norway, the average use
phase GHG emissions for newly registered vehicles
decreased by 89% between 2000 and 2023 (from
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Figure 3. Description and characteristics of the vehicle fleet between 2000 and 2023 in Norway: (a) number of cars by powertrain,
(b) number of cars by size (the bottom value of the range is excluded except for the first range 400–900 kg, the top value of the
range is included), (c) average curb weight and material composition for a car, (d) life cycle GHG emissions per vehicle-kilometer
averaged across the car fleet.

164 to 19 gCO2-eq vkm−1) (figure 1(d)) and are,
therefore, well below the European targets for 2030.
However, these use-phase emissions do not account
for the component-related emissions, which have
increased by 81% since 2000 (from 58 to 104 gCO2-
eq vkm−1) (figure 1(d)). A life cycle perspective is
therefore necessary to provide an overview of climate
mitigation potential and trade-offs of EVs. In this
regard, the EU plans to release guidelines for account-
ing for upstream emissions by the end of 2025 [45].

Under the United Nations Framework
Convention on Climate Change (UNFCCC), Norway
is reporting territorial emissions [46]. Hence, Norway
does not account, in its road traffic emissions, for
production-related emissions occurring abroad. This,
combined with a decarbonized electricity grid (about
30 gCO2eq kWh−1 [47]) offers additional motiva-
tion for electrifying road transport. We estimated
(details in section S3.5 in SI S1), using average yearly

driving distance [48], that total vehicle direct emis-
sions in 2023 were 1.2 MtCO2-eq lower than in
2014 (−24%), whilst outsourced emissions of newly
registered vehicles to vehicle producing countries
increased by 0.8 MtCO2-eq (+40%). Reduced dir-
ect emissions thus partly led to increased production
emissions that Norway does not report to UNFCCC.

We have shown the scale and speed of Norway’s
EV transition, how it has reduced direct emissions
and the trade-offs on increased upstream emissions.
Reducing life cycle GHG emissions beyond the use
phase requires decarbonizing material production
andmanufacturing [49, 50], limiting battery capacity
[24, 51], material efficient lightweight designs [52],
lifetime extension [53], or material circularity [54].
EV batteries used for short-term energy storage may
also offer benefits for renewable electricity grid sta-
bility and flexibility [55]. Norway’s shift towards elec-
trified personal mobility will continue towards 2040
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Figure 4. [Right column—fleet from microdata.no] description of historical vehicle fleet in Norway per municipality category
and [left column—fleet from Geodata] description of 2022 car fleet in Norway per municipality: (a) and (b) share of electric cars;
(c) and (d) average curb weight of a car; (e) and (f) average life cycle GHG emissions for a car. Vehicles under ‘Unknown
municipality’ refer to vehicles mostly owned by companies/organizations, but also to a smaller extent unknown owners or owners
living outside Norway. The light blue areas in quadrants (a) and (c) represent the range of values encompassing all municipalities.
Due to data extraction constraints from microdata.no, it was not possible to extract the necessary data to produce such graphic
for the life cycle GHG emissions in quadrant (e). Detailed explanations on how each of these graphics have been produced can be
found in section S3 in SI S1.
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Figure 5. Car fleet description in the three most populous municipalities in Norway (Oslo, Bergen, Trondheim) in 2022: (a)–(c)
share of electric vehicles per district; (d)–(f) average curb weight per district; (g)–(i) average life cycle GHG emissions per district.
Mean and standard deviation values are provided for each of the municipalities and indicators.

[56, 57]. Utilizing sustainably produced biofuel as a
transitional fuel in ICE vehicles during the phase-
out period can provide additional climate change
mitigation [57–59].

4.3. Limitations and uncertainty
We retrieved the stock of vehicles between 2000
and 2023 from microdata.no. However, this data-
set presents some discrepancies and uncertainties.
First, before 2016, hybrid vehicles were registered
as gasoline/diesel vehicles. We attempted to correct
these data (section S1.2.3 in SI S1), but the num-
ber of hybrid vehicles before 2016 should still be
considered with caution. Second, between 2020 and
2021, we observe that the number of vehicles of
a certain registration year and fuel type belonging
to certain size categories (based on curb weight)
suddenly increased/decreased. These inconsistencies
come from changes in curb weight registration [60].
We tested (sections S1.2.5 & S4.1 in SI S1) if these
discrepancies are not affecting our main results and
conclusions. Lastly, we compared the stock of vehicles
for 2022 betweenGeodata andmicrodata.no. (section
S1.2.4 in SI S1) and found that the datasets are rather

consistent in shares of each powertrain despite differ-
ences in the total stock (the stock of cars in Geodata
is 6% lower than in the three main datasets based on
microdata.no).

The life cycle GHG emissions generated by car-
culator encompass uncertainties [24]. Based on the
Ecoinvent database, the inventory of the supply
chains and end-of-life are not region-specific, and we
used the package’s default parameters (e.g. for effi-
ciency, battery size and range). Limitations are hence
carried by our results. Future research could account
for geographic origin of vehicles in the Norwegian
fleet and fate of batteries [61]. The stochastic mode
in carculator was used to define uncertainty ranges
on the GHG emissions. Other sources of uncertainty
exist, but they are not captured in this research.

Life cycle GHG emissions were calculated using
the same total yearly distance driven by all cars,
independently of their powertrain. SSB reports that
EV and hybrid vehicles were, on average, driven for
20%–84% longer distances in 2023 than ICE vehicles,
whose average yearly distance driven shows a decreas-
ing trend [62]. This could be due to people owning
several vehicles and using EVs frequently for shorter
distances (e.g. EV buyers keeping their old cars [14]),

8
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Figure 6. Scatter plots of passenger vehicles and socio-economic characteristics of municipalities (each dot in the pair plot
represents a municipality): (a) visualization of variables describing vehicles and municipalities (all variables are for 2022 except
population density, which is for 2023). Correlations are measured by the Pearson correlation coefficient ρ. The population density
is displayed using a logarithmic axis; (b) population density of Norwegian municipalities in 2023 (categorized by quartiles). A
description of the variables and a linear regression analysis are available in section S3.4. in SI S1.

a faster pay off of EVs with high capital cost but
lower operating cost, or the ICE fleet aging and being
used less frequently. The average age of discarded
vehicles has remained around 18 years for the past ten
years [63] (close to theWestern Europeanmean [64]),
indicating that EVs adoption has not yet affected the
age of discarded vehicles. A sensitivity analysis on
the lifetime in total kilometers and lifetime in years,
parameters used in carculator, is conducted show-
ing limited effects on the changes in fleet-average life
cycle GHG emissions per kilometer driven since 2000
(section S4.3 in SI S1).

4.4. Implications and outlook
Incentives to adopt EVs have had visible effects in
Norway. The share of EVs in the fleet has multiplied
by 16 since 2014, EVs constitute more than four out

of five newly registered cars, and the reduction of
total tailpipe emissions of the fleet is significant (24%
decrease between 2014 and 2023). This reveals a rapid
shift within the past ten years and creates a unique
EV situation in Norway. However, fleet-average life
cycle GHG emissions per km driven have decreased
only by 8% since 2000. This small decline reflects the
latency of GHG emissions given the slow turnover of
the fleet, in line with literature [56], and the increas-
ing component-related emissions of newly registered
vehicles, mitigating the apparent success of EV
incentives.

Whilst the strong EV policies made Norway a
world-leading EV adopter, it also led to revenue losses
that had to be compensated by other income [65,
66]. Researchers estimated the cost of reduced CO2

emissions to be of several thousands of Norwegian
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Kroner per tonne of tailpipe or life cycle GHG emis-
sions reduced [67–70]. Tax exemptions were applied
to all types of EVs, with a higher economic value for
heavier, more expensive EVs. We have shown that
the average weight of vehicles has been increasing
over the last years despite the use of lightweight alu-
minum (as opposed to steel) for car production [53,
71]. EVs gained the most weight, probably driven
by an increase in battery range, leading to higher
component-related emissions. Even if no causal rela-
tionship is studied, winter conditions affecting the
range [72] might have encouraged buyers to choose
vehicles with longer driving distance and heavier bat-
teries, and a general trend towards the adoption of
larger EVs was most likely facilitated by the incent-
ives. Some of the most attractive incentives have
been revised, reflecting the increasing maturity of the
EV market. For instance, a weight-based vehicle tax
introduced in January 2023 [34] incentivizes lighter
vehicles [73]. In addition, the value added tax exemp-
tion for EVs became applicable only for the first
500 000 Norwegian Kroner (about 45 000 US. dollar)
of the selling price [74]. By introducing a threshold on
vehicle price, expensive EVs are now partially taxed,
reducing the incentives for wealthy households to
purchase expensive EVs and benefitting from the full
VAT exemption.

While we show a positive correlation between
median income and the share of EVs per municipal-
ity, this remains an observation. Investigating the role
of income requires further statistical analysis [75, 76]
and should be considered when designing EV incent-
ives, which is beyond the scope of this research.

It is important to highlight that the incentives
have been technology-focused, not questioning the
use of private passenger vehicles leading to more
vehicles in the stock and an increasing number of
km driven [77]. Some of the incentives (e.g. free
parking and tolls, use of the bus lanes) were most
likely encouraging more driving, getting an EV as
an additional car, and replacing alternative transport
modes [70, 78]. Consequently, car-related issues such
as traffic jams or particulate matter pollution from
tires (especially winter tires) and break wear were
left unaddressed [67, 79]. These non-exhaust emis-
sions bear significant public health risks worsen by
the increasing weight of vehicles which increases such
emissions [80–85], highlighting that the EV incent-
ives have been focused on GHG emissions.

As we demonstrated with electrification of the
fleet, policies take time to show significant changes at
the fleet level, even with attractive policies. However,
we could still observe a reduction in use-phase emis-
sions and an increase in component-related emis-
sions, underscoring the insufficiency of focusing only
on direct emissions when trying to understand the
role of EVs in mitigating GHG emissions. The con-
centration of EV ownership in urban and peri-urban

areas indicates that an effective GHG mitigation
likely requires tailored policies considering spatial
differences.
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