

Sustainable Development Key to Limiting Climate Change-Driven Wildfire Damages

Yi-Ling Hwong

Edward Byers, Michaela Werning, Yann Quilcaille

EGU2025

Background

- Climate change is causing wildfires to become more frequent, intense, persistent, and widespread
- Process-based fire models capable of simulating fire emission and burned areas (e.g., FireMIP)
- Climate-related factors ("fire weather") strongly correlated with burned areas
- However,
 - Economic loss modelling of wildfire damage in its infancy
 - Non-climate related predictors under-explored

Research objectives

- 1. Identify key drivers of global economic damages of wildfires
- 2. Project and compare future global wildfire damages under different climate and socio-economic scenarios (SSPs)

S A L L A S A

Methods

- Multiple regression analysis (generalised linear model)
- Outcome variable y: wildfire economic damage data (EM-DAT), normalized by country GDP (%GDP)
- Independent variables X:
 - Climatological: fire-season water vapour pressure deficit (VPD_{fs})(ISIMIP3a)
 - Anthropogenic: population density around forested area (PD_{forest})(GLOBIOM)
 - Socio-economic: human vulnerability index (HVI = 1 HDI)(UNDP)
- Equation with standardised variables:

$$Z_{log(damage)} = \beta_0 + \beta_1 Z_{log(VPD_{fs})} + \beta_2 Z_{log(PD_{forest})} + \beta_3 Z_{log(HVI)} + \epsilon$$

• Project future wildfire economic damages using β 's from fitted model

Important predictors of wildfire damages

- $R^2 = 0.85$ • 10-fold CV $R^2 = 0.83$
- All three predictors statistically significant (p < .05)
- Predictor importance ranking:
 - 1. HVI ($\beta = 0.68$)
 - 2. VPD_{fs} ($\beta = 0.23$)
 - 3. PD_{forest} ($\beta = -0.18$)
- PD_{forest} negatively correlated with wildfire damages

Trends in predictor evolution

Trends in predictor evolution

- VPD_{fs} worst under SSP370, slightly improves under SSP126
- PD_{forest} decreases under SSP126, grows fastest under SSP370 due to greater population growth
- HVI drops under SSP126, remains high and stagnates under SSP370

MEA (Middle East), LAM (Latin America & Caribbean), EEA (Eastern Europe & West-Central Asia), DEV (Developed countries), APC (Asia & Developing Pacific), AFR (Africa)

MEA (Middle East), LAM (Latin America & Caribbean), EEA (Eastern Europe & West-Central Asia), DEV (Developed countries), APC (Asia & Developing Pacific), AFR (Africa)

 Global mean wildfire damages greater under SSP370, with LDC experiencing larger damages

MEA (Middle East), LAM (Latin America & Caribbean), EEA (Eastern Europe & West-Central Asia), DEV (Developed countries), APC (Asia & Developing Pacific), AFR (Africa)

- Global mean wildfire damages greater under SSP370, with LDC experiencing larger damages
- Disparity widens by 2070: damages
 3x larger under SSP370 vs. SSP126

MEA (Middle East), LAM (Latin America & Caribbean), EEA (Eastern Europe & West-Central Asia), DEV (Developed countries), APC (Asia & Developing Pacific), AFR (Africa)

- Global mean wildfire damages greater under SSP370, with LDC experiencing larger damages
- Disparity widens by 2070: damages
 3x larger under SSP370 vs. SSP126
- Socio-economic (HVI) and climate (VPD_{fs}) improvements under SSP126 outweigh effects of population decline

MEA (Middle East), LAM (Latin America & Caribbean), EEA (Eastern Europe & West-Central Asia), DEV (Developed countries), APC (Asia & Developing Pacific), AFR (Africa)

- Global mean wildfire damages greater under SSP370, with LDC experiencing larger damages
- Disparity widens by 2070: damages
 3x larger under SSP370 vs. SSP126
- Socio-economic (HVI) and climate (VPD_{fs}) improvements under SSP126 outweigh effects of population decline
- More even damage distribution under SSP126

Predictor contributions to future wildfire damages

Predictor contributions to future wildfire damages

 Damage reduction due to improving socio-economic conditions can offset climatedriven damages, but less certain under SSP370

Predictor contributions to future wildfire damages

- Damage reduction due to improving socio-economic conditions can offset climatedriven damages, but less certain under SSP370
- VPD_{fs} (climate) related damages stabilise under SSP126, grow under SSP245 and SSP370
- Climate-driven damages highest for all three SSPs if socio-economic conditions remain stagnant at historical levels

Following SSP126 leads to damage reduction, except in PD_{forest}-only scenario

- Following SSP126 leads to damage reduction, except in PD_{forest}-only scenario
- Developed countries: climate hazard could become dominant driver if socioeconomic conditions remain stable at current high levels

- Following SSP126 leads to damage reduction, except in PD_{forest}-only scenario
- Developed countries: climate hazard could become dominant driver if socioeconomic conditions remain stable at current high levels
- LDCs: potential gains of following SSP126 up to 10x greater compared to developed countries

Conclusions

- Socio-economic factor (HVI) strongest predictor of historical wildfire damages, differs from predictions of burned areas where climatological factors more important
- A sustainable pathway (SSP126) leads to reduction and more even distribution in wildfire damages through more equitable socioeconomic progress (lower HVI) and stronger climate actions (lower VPD_{fs})
- Robust socio-economic development can offset wildfire damages attributable to climate hazards, but this outcome not guaranteed under SSP370

preprint

Hwong et al. (submitted)