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This paper presents a structured approach for the efficient operation of multi-carrier energy systems 
under the uncertainty of renewable energy sources. As the penetration of wind and solar energy 
increases, managing the resulting variability becomes critical to maintaining both economic efficiency 
and operational flexibility. To address this, a two-stage multi objective optimization framework is 
proposed. In the first stage, the objective is to minimize daily operational costs while incorporating 
the uncertain behavior of renewables using a scenario-based stochastic approach. The second stage 
focuses on simultaneously enhancing system flexibility by maximizing the available capacities for both 
electrical and thermal energy generation and improving green house emissions. To evaluate system 
adaptability, two performance indicators are introduced: the Average Energy Generation Flexibility 
Index (AEGFI) and the Average Thermal Generation Flexibility Index (ATGFI). The optimization model 
is solved using the Modified Water Evaporation algorithm. Sensitivity analyses are also conducted to 
explore the effects of fluctuations in gas and electricity prices on system performance. The proposed 
model is applied to a generalized multi-carrier energy system. Simulation results demonstrate 
significant improvements in flexibility, with AEGFI and ATGFI increasing by 27.43% and 39.91%, 
respectively. Overall, the framework offers a comprehensive solution to balance cost-effectiveness and 
flexibility in energy systems with high shares of renewables.

Keywords Multi-carrier energy system, PEV, Optimization, Economic, Generation flexibility, Demand 
response, Energy management

List of symbols
 IP ev,Ch/IP ev,Dch  Binary variables of PEV
 LCV  Calorific value of gas
γi,Up

t /γi,Down
t   Binary variable for DR

θw   Wind turbine speed
φµ  Price variation in electricity
CChp/Cb  CHP/Boiler unit cost
CGrid  Expense of procuring electricity from the upstream network
Di,Up

t /Di,Down
t   Shifted up/down power of DR

MLi,Up/MLi,Down  Maximum upward/downward shift for DR
P P ev,Ch

t,u /P P ev,Dch
t,u   Charging/discharging power of PEV

P i,Ch
t /P i,Dch

t   Charging/discharging power of energy storage

In the Conventional power system, the electrical and gas energy distribution systems have typically been 
operated and functioning independently without taking into account their interrelationships. Due to a lack 
of coordination between multi-energy carriers reduces efficiency, raises operating costs and degrades system 
performance. Population growth has boosted natural resource demand in recent decades. Global energy 
consumption relies on fossil fuels. However, fossil fuels emit greenhouse gases and pollute1,2. Thus, a quick 
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fix is needed. Addressing energy needs consumption worldwide, energy system modeling and planning focus. 
Researchers suggest microgrids (MGs) near load centers connect them with locally generated renewable energy 
(RES) to boost economic and traditional system sustainability3,4. In the contemporary age of energy systems, 
the landscape of energy management has been drastically modified as a result of the incorporation of renewable 
energy sources and the rise of multi-carrier energy systems5,6. When it comes to ensuring that energy supply is 
both efficient and reliable, multi-carrier energy systems, which are characterized by the coexistence of several 
energy carriers such as electricity, gas, heat and hydrogen, present potential as well as obstacles7,8. One of the most 
important aspects of the efficient operation of these intricate systems is the control of energy flows, particularly 
in light of the inherent uncertainties that are present in the generation of energy from renewable sources9,10. Most 
of the electrical energy in prior systems is produced by large-scale power machinery. Distributed power sources 
are considered to be small resources, loads or energy storage with explicit rules to address these challenges11. 
Examples of energy supplies that are smaller in scale compared to commonly used energy sources include solar 
panels, electricity-generating turbines, combined power and heat storage systems, diesel generators and variable 
loads12,13. The simultaneous operation of various energy production and transmission systems, such as gas and 
electricity networks, has been discussed in connection with the energy hub. Investors in this sector are concerned 
about the viability of energy hubs given the presence of several hazards, which are further intensified by various 
energy carriers14,15. It has been implemented to reduce greenhouse gas emissions, enhance power generation 
and decrease pricing. Additional notable issues arising from the utilization of the energy hub encompass system 
adaptability and peak shaving16,17. The primary goals are to reduce greenhouse gas emissions and decrease 
the total expenses of an energy center. In order to accomplish these objectives, it is necessary to comply with 
particular limitations, including the computation of the present load, the duration of the load during periods of 
high and low demand, and the prediction of the uncertain power output of distributed generators, such as solar 
and wind turbines18,19.

Due to the fact that they are less expensive and less harmful to the environment, sources of clean energy, 
such as solar and wind power, are becoming increasingly important in multi-carrier energy systems. On the 
other hand, the processes involved in the generation of energy are subject to enormous uncertainty due to the 
fact that they are unexpected and intermittent20–22. System operators and coordinators encounter challenges 
due to swings in renewable energy generation, stemming from various stochastic factors such as variation in 
the seasons, temperature changes, and weather fluctuations23,24. Renewable energy sources like wind and solar 
power pose a difficulty due to their irregular and unexpected energy generation. Focusing on minimizing the 
variability in energy production has been a crucial study topic in energy management25,26. Considering this issue 
allows decision-makers to develop effective methods for optimizing energy systems while considering objectives 
such as reducing expenses, conserving energy and advancing environmental sustainability.

Literature review
In1, researchers created a way to cut operating expenses while considering different objectives. Another study27 
used alternative time frames to reduce energy system expenditures ahead of time. A approach for managing 
uncertainty in Integrative Energy System management was proposed in another research12. An evolutionary 
algorithm was used to explore how hybrid energy storage devices affect IES scheduling16. In another study20, a 
model was built to schedule energy usage in phases to balance operational costs, reliability and flexibility. Despite 
incorporating uncertain consumption and renewable energy, these studies ignored water systems. Renewable 
energy sources present new problems for energy system operation planning, needing flexibility to adapt23,28. 
This flexibility is crucial for reliable and cost-efficient management. Reference29 created a complete model for 
system design by utilizing mixed-integer linear programming (MILP) and accounting for the unpredictability 
of MCES. However, the potential for adjusting and optimizing thermal and electrical power production was not 
taken into account30. The MCES has the ability to store energy through a charging mode when there is excess 
power available31. The energy saved can be used during times of increased demand or when Renewable energy 
production falls below the predicted quantities.

A four-objective assessment framework was proposed in reference34 to assess the effects of energy storage 
systems (ESS). However, the study did not directly examine the versatility of generation and Consumers. The 
proposed methodology took into account the probabilistic characteristics of wind energy in order to fulfill the 
necessary power demands. Nevertheless, this analysis disregarded demand-side flexibilities.

The multistage stochastic model in Ref.35 examines the impact of demand-side programmes on MCES 
schedule planning using a binary genetic algorithm. The study36 investigated the enduring effects of energy 
storage devices and demand response (DR) systems on the planning of operation for the MCES. This multi-
objective methodology aims to minimize operating expenses and environmental issues concurrently. Author did 
not study the flexibility of generation for electrical and thermal portions. Decreasing spinning reserve greatly 
impacts generation flexibility37,38. In the last few years multi-carrier energy systems are playing a vital role in 
the energy systems. In26 optimal scheduling of multi carrier energy systems is proposed with the AC power 
flow constraints. In this study, the author considers energy storage systems such as electrical and heat storage 
systems. However, it ignores the effect of wind power curtailment and issues of flexibility. In39 author introduces 
a two-stage robust optimization model for integrated energy hubs, addressing uncertainties in load demand, 
renewable generation, and market prices. It evaluates system performance through detailed simulations and 
shows improved flexibility and resilience in energy dispatch. A Two stage stochastic model has been proposed 
in29 by using bender decomposition strategy. This study also considers electrical demand response and thermal 
demand response in the absence of renewable uncertainties. For the optimum planning of MCES, a scenario 
based algorithm is proposed in the absence of electric vehicle and demand response. In23 robust optimisation 
is proposed for the MCES considering the uncertainty of electric vehicle. It ignored the effect of electrical, 
thermal demand response and RES uncertainty. Different types of energy storage systems are used for the energy 
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management of MCES in the presence of demand response and electric vehicle while ignoring the effect of 
uncertainty of RES. Two stage stochastic model for the MCES considering electrical and heating systems has 
been proposed. Although, it ignores the effect of cooling system and uncertainty. In10, author proposed a model 
for energy management of MCES having electrical, heat and ice system to examine the effect of demand and 
uncertainty of electric vehicle. In40 author presents a robust energy management framework for multi-carrier 
systems using scenario-based stochastic optimization. It emphasizes the role of electric vehicles and demand 
response in mitigating uncertainty. In32, author has proposed the stochastic framework for energy management 
of MCES considering the electrical demand response and uncertainty in the load. The main aim of this objective 
is to minimize the operational cost. Although this study ignores the effect of thermal demand response, EV 
uncertainty and renewable uncertainty. To overcome this effect of demand response and EV uncertainty the 
author has proposed multi carrier framework in25,41. However it ignores the effect of RES uncertainty and load 
uncertainty. Author has discussed exchange of energy between different energy carriers in presence of electrical 
and thermal storage systems. While it ignores the effect of demand response and uncertainty. Binary coded 
genetic algorithm is used for energy management of MCES. It mainly considers the operation cost of grid and 
boiler but it ignores the effect of electrical and thermal demand response and effect of uncertainty. In19 Author has 
discussed the optimal planning of MCES considering electrical demand response and EV uncertainty. Although 
in this study Author ignores the RES uncertainty and thermal demand response. Stochastic optimization 
has been proposed in13 for the minimization of operational cost in the presence electrical, thermal demand 
response and EV uncertainty, load certainty. However in this study author didn’t consider the RES uncertainty 
and curtailment of wind power. Author has proposed the robust optimization for the energy management of 
MCES. In this study author mainly considers the electrical and thermal demand response in the presence of 
load uncertainty. Although it ignores the RES uncertainty and price uncertainty. From the literature most of the 
study has considered the EV uncertainty, load uncertainty and ignore the effect of RES uncertainty. From the 
literature DR methods provides cost saving capability by transferring energy use from peak to off-peak time. But 
due to the uncoordinated demand management peak load increases during off peak hours. which would require 
additional local generation to meet demand of MCES. This decreases the electrical and thermal generation 
flexibility. To overcome these issues a two stage optimization approach has been proposed. The optimization 
problem in this work is solved using MWEA algorithm42.

In this study, a stochastic two stage optimization is proposed to improve generation and demand-side 
flexibility.This concept uniformizes load profiles through coordinated DR procedures and prevents peak loads. 
This boosts MCES versatility and promotes RES incorporation in transmission networks.

The Contribution of this paper is given as follows: 

 1. A Two stage coordinated operation scheme for the multi-carrier energy system is proposed. The first stage 
aims at minimizing operation cost and the second stage aims at optimizing flexibility. Inclusion of the second 
stage enable MCES to handle un-expected changes. Second stage is multi-objective and it is solved using 
weighted sum approach.

 2. The flexibility of the MCES is evaluated on the basis of two index, Average Energy Generation Flexibility 
Index (AEGFI) and Average Thermal Generation Flexibility Index (ATGFI).

 3. A scenario-based method is implemented to incorporate uncertain effect of renewables.
 4. Sensitivity analysis to investigate impact of gas and electricity price and efficiency if energy storage system is 

presented.

Modelling of the system
Modeling of electrical and thermal DR
The simulation involves implementing demand response programs for both electrical and thermal aspects based 
on models represented by Eqs. (1–4). Equation (1) specifically outlines the involvement of the Multi-carrier 
Energy System (MCES) in shiftable demand response (DR) systems, where the adjustments in power levels, 
whether increased or decreased, must balance out. The limitations for moving the periodic load are determined 
by Eqs. (2 and 3). Equation (4) plays a crucial role in determining the direction of these adjustments, whether 
pushing power levels upwards or downwards33.

 

∑
t

Di,Up
t =

∑
t

Di,Down
t  (1)

 0 ≤ Di,Down
t ≤ MLi,Downli

tγ
i,Down
t  (2)

 0 ≤ Di,Up
t ≤ MLi,Upli

tγ
i,Up
t  (3)

 0 ≤ γi,Up
t + γi,Down

t ≤ 1  (4)

Energy storage systems
Equations (5 and 6) set the boundaries for how much power can be used to charge or discharge energy in the 
system. The State of Charge (SoC) for storage systems is described in Eq. (7), indicating the level of energy 
stored. The allowable range for the Range of energy stored is determined by Eq.(8). Equation (9) determines the 
appropriate mode, either charging or discharging, for the system at a given time “t”. Equation (10) asserts that 
the final energy stored in the systems of storage must be equal to the starting energy output. In this formulation, 
the index i belonging to the set of systems for storing electricity, heat and cooling is denoted by e, h and c 
respectively, representing the different types of storage systems25.
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t ≤ P i,Dch

Max qi,Dch
t  (6)
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t ηi,Ch
)

−
(

P i,Dch
t

ηi,Dch

)
 (7)

 Essi
Min ≤ Essi

t ≤ Essi
Max  (8)

 0 ≤ qi,Ch
t + qi,Dch

t ≤ 1  (9)

 Essi
1 = Essi

24  (10)

Uncertainty modelling of RES
The nature of the RESs is rather probabilistic. The uncertainty of RESs should be taken into account while 
modeling a realistic optimization task. Probability density functions (PDF) are used to produce the scenarios in 
this work. There are a lot of scenarios in the scenario generation process, can be produced. Solution accuracy 
is increased by taking into account a large number of possibilities. The sun radiation scenarios are managed 
using a stochastic technique. A probability distribution function (PDF) for solar radiations is created to generate 
scenarios.

In this study, a large set of scenarios was initially generated using stochastic sampling techniques based on 
probability density functions for solar irradiance (Beta distribution) and wind speed (Weibull distribution). 
To manage the computational complexity, a scenario reduction technique was applied. This method selects 
a subset of scenarios that maintain the statistical properties of the original set by minimizing the overall 
deviation in probability space. Specifically, the reduction aimed to preserve key statistical features–such as 
mean and variance–while limiting the number of representative scenarios to four. This reduced set was found 
to be sufficient, as additional simulations showed minimal differences in operational cost and flexibility indexes 
(AEGFI and ATGFI), typically within a 2–3% range. This confirms that the reduced scenario set still offers 
accurate insights while significantly lowering the computational burden.

Modelling of solar generation
Modelling of solar radiations is described by the beta probability distribution function14.

 
fP DF (S) = Γ(p + q)

Γ(p)Γ(q))Sp−1(1 − S)q−1; Sε(0, 1)  (11)

 
q = (1 − ϕ)(ϕ(1 + ϕ)

σ2 − 1); p = ϕq

1 − ϕ
 (12)

where p and q are the parameters of beta PDF.

Modelling of wind speed
The Weibull probability density function (PDF) is typically used to represent the change of wind speed. Equation 
(14) provides the PDF function that connects the wind speed and WT output power14.
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 (15)

 
ψ = ϕ

Γ(1 + 1
k

)  (16)

Plug in EV
The limitations of electric vehicle charging and discharging capacity have been illustrated in Eqs. (17 and 18). 
Equation (19) is used to figure out the charging status or condition of electric vehicles at a specific time, denoted 
as t. Equation (20) establishes the permissible states of charge ranges. The energy consumed while in transit is 
computed using Eq. (21). Equation (22) ultimately ascertains whether the device is in the charging or discharging 
state32.

 0 ≤ P P ev,Ch
t,u ≤ P P ev,Ch

Max IP ev,Ch
t,u  (17)
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 0 ≤ P P ev,Dch
t,u ≤ P P ev,Dch

Max IP ev,Dch
t,u  (18)
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t,u ηP ev,Ch
u
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u
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− P P ev,T r
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 SocP ev
Min ≤ SocP ev

t,u ≤ SocP ev
Max  (20)

 P P ev,T r
t,u = ∆T dP ev

t,u × ηP ev
u  (21)

 0 ≤ IP ev,Ch
t,u + IP ev,Dch

t,u ≤ 1  (22)

Power balance
The power balance indicates that MCES must maintain consistent electrical generation and load throughout 
time slots. Equation (23) details the SIES electrical power balance. Additionally, Eq. (24) determines CHP unit 
electricity generation. Power input to ISC is restricted by Eq. (25). Equation (26) summarizes electric chiller 
electricity consumption limits. Furthermore, Eq. (27) presents the minimum and maximum limits for buying or 
selling power to and from the main power grid14.
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Heat balance
Equation (28) indicates equal heat generation and thermal demands for MCES at each time unit. Boiler and 
CHP heat generation is calculated using (29) and (30). Equations (31 and 32) specify the input gas ranges for 
the boiler and CHP. In addition, Eq. (33) restricts input heat to AC. Boiler thermal power production is limited 
by Eq. (34) The permitted ranges for supplied natural gas are shown in (35) and (36). Finally, the heating system 
limits are in (37)14.
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Cooling balance
Modelling of Cooling Power balance is illustrated in Eqs. (38−41)17.

 CEc
t + Cac

t + P C,Dch
t = lc

t  (38)

 P C,Ch
t = P Isc

t COP Isc  (39)

 Cac
t = Hac

t COP ac  (40)

 CEc
t = P Ec

t COP Ec  (41)
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Key assumptions and limitation of the proposed system
These include the use of scenario-based stochastic modeling for solar and wind uncertainties, fixed demand and 
price profiles per scenario, and ideal operation of storage systems without aging or losses. The system is assumed 
to be fully coordinated, with no network-level constraints or communication delays considered. The model 
does not incorporate network-level power flow constraints. Limitations such as the absence of cooling systems, 
simplified DR behavior and the exclusion of power-to-gas technologies are now explicitly discussed.

Two stage structure for flexible generation and demand
In the proposed work two stage optimization model has been developed. Where first stage is used for 
minimization of the operation cost and the objective of the second stage is used for enhance the generation 
flexibility. The methodology combines factors such as operational expenses, the versatility of electricity and heat 
generation and the adjustability of demand-side components to create a comprehensive scheduling mechanism. 
The MCES carries out scheduling to identify the optimal operating costs, represented as C*. This C* value is then 
passed to the next step, where it is used to adjust the primary schedule to improve generation flexibility.

First stage of the framework
This section encompasses the economic functioning of MCES. The MCES minimizes daily operation expenses 
by considering power expenditures, upstream signal pricing and load flexibility.

 f1 = MinC = CGrid + CChp + Cb + CEdr + CHdr  (42)
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∑
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ρsP Grid
t µe

t  (43)

 
CChp =

∑
t

GChp
t πg
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∑
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tπg
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∑
t

(
Ce,Down

dr De,Down
t + Ce,Up
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t

)
 (46)

 
CHdr =

∑
t

(
Ch,Down

dr Dh,Down
t + Ch,Up

dr Dh,Up
t

)
 (47)

Algorithm 1. Forward selection-based scenario reduction

Second stage of the model
The variability of renewable energy sources (RES) and fluctuating electricity demands pose new challenges for 
managing multi energy systems effectively. Flexibility in these systems refers to their ability to adapt to changes. 
This stage is multi-objective and it is solved using weighted sum approach. This flexibility can be achieved 
through various methods, which are divided into solutions related to generation and those related to managing 
demand. This particular aspect focuses on solutions related to generation, aiming to increase both electricity 
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and heat production simultaneously. By increasing the reserved capacity, the system gains more flexibility in 
generation. Therefore, efforts in this aspect aim to maximize the available capacity for both electricity and heat 
generation while meeting the required energy demands.

 Emt
Net =Emt

CO2 + Emt
SOx

+ Emt
NOx

 (48)
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Modified water evaporation algorithm
The Modified Water Evaporation Algorithm (MWEA) is used in this study as a metaheuristic optimization tool 
to solve the complex two-stage energy scheduling problem and designed to optimize multi-objective energy 
scheduling under uncertainty. It updates candidate solutions for control variables such as grid power purchase, 
CHP generation, energy storage, and demand response by mimicking the natural evaporation behavior of 
water molecules. The algorithm evaluates both economic (Eq. 42) and emission-based (Eq. 49–51) objectives 
using a weighted fitness function. A factor called θ, calculated from the fitness, controls how much a solution 
changes. Candidates with better performance are retained, while poor ones are evaporated. This balance between 
exploration and exploitation enables the algorithm to efficiently search the solution space and converge to an 
optimal energy dispatch schedule under uncertain conditions. Inspired by the natural evaporation of water, it 
iteratively improves candidate solutions by simulating directional movement and selective retention of better-
performing energy plans42. The algorithm effectively handles the non-linearity and uncertainty introduced 
by renewable sources and demand response. By updating solution vectors based on evaporation dynamics, 
MWEA explores a wide search space without getting trapped in local optima. Its adaptability makes it suitable 
for optimizing both economic and flexibility objectives. This ensures robust scheduling of distributed energy 
resources under uncertain operating conditions. Flowchart of the MWEA algorithm is represented in Fig. 5.

Two stage weighted optimization
This study employs a two-stage, priority-driven optimization framework to address the multi-objective problem 
(MOP). The primary objective–minimizing the network’s operational cost–is prioritized and optimized in the 
first stage. In the second stage, the additional objectives, GHG emissions and Generation Flexibility Index (GFI), 
are concurrently minimized while ensuring compliance with the cost constraint derived from the initial stage.

The first stage focuses solely on minimizing operational costs, setting a cost threshold C∗. The second stage 
then maximizes the flexibility of the generation while ensuring that the total cost remains within C ≤ C∗. 
Trade-offs are managed through a multi-objective weighted function that incorporates two normalized terms: 
emissions and flexibility indices. The weight factors ω1 and ω2 guide the balance between environmental impact 
and system flexibility. To improve transparency, we now include a sensitivity range analysis for these weights 
(Table 3), showing how different combinations influence the Pareto frontier. This provides justification for the 
selected values and illustrates the model’s responsiveness to different planning priorities.

 
Min

{
w1

∣∣∣∣
f2 − f∗

2

f∗
2

∣∣∣∣ + w2

∣∣∣∣
f3 − f∗

3

f∗
3

∣∣∣∣
}

 (51)

Flexibility indexes
AEGFI and ATGFI are critical indexes for assessing the flexibility of electrical and thermal energy generation, 
subsequently. These indexes quantify a system’s capacity to adjust its energy generation in response to 
fluctuations in demand or variations in operational conditions, providing valuable insight into the adaptability 
and efficiency of energy management frameworks. AEGFI indicates the adaptability of the electrical generation 
system. When the AEGFI value increases, it represents improved ability to efficiently modify output in response 
to demand variations, thereby improving system reliability and cost-effectiveness. Likewise, the ATGFI assesses 
the adaptability of thermal generation, where a higher index indicates a superior response to fluctuations in 
heating. These indexes are key characteristic for systems that manage both electrical and thermal energy, such as 
combined heat and power systems. Flexibility indexes are defined by Eqs. (52 and 53).

 
AEGF I = 1

nt

nt∑
t=1

SOCe,ESS
t + (P Chp

Max − P Chp
t )  (52)

 
AT GF I = 1

nt

nt∑
t=1

SOCh,ESS
t + (HChp

Max − HChp
t )  (53)

The efficacy, reliability and superiority of the recommended Two stagestructure were demonstrated by two case 
studies conducted on the MCES. The formulation of AEGFI and ATGFI is intended to measure the generation-
side flexibility by capturing two key components: the available energy stored in the system and the unused 
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capacity of the CHP unit. The sum of the storage level and the reserve margin of the CHP at each hour provides 
a direct estimate of how much the system can adapt to unexpected changes in load or renewable generation. 
Averaging this value over the scheduling horizon gives a consistent indicator of the system’s flexibility. This 
approach ensures that both stored energy and headroom in dispatchable generation are considered in evaluating 
the system’s real-time responsiveness.

The AEGFI and ATGFI indices are proposed to measure electrical and thermal flexibility in uncertain 
conditions. Unlike conventional metrics that focus only on reserve margins or static capacities, these indices 
consider the system’s real-time response using storage and demand-side resources across all scenarios. Their 
uniqueness lies in capturing average generation flexibility in a structured, scenario-based way. They are useful 
for assessing how well the system adapts to renewable variability without relying on cost-based optimization 
alone. However, a key limitation is that they rely on model-derived outputs and assume ideal control execution, 
which may not fully reflect real-world constraints such as communication delays or equipment degradation.

Case 1: The objective in this scenario is to decrease the total expenses for the following day by considering the 
utilization of sustainable energy sources and different energy storage technologies and programs for managing 
both electrical and thermal demand response.

Case 2: In this case MCES is using a recommended framework to enhance its operational efficiency. The 
focus is on improving operating costs, as well as the flexibility in thermal generation and electrical generation.

Results and discussion
The proposed system is illustrated in Fig. 1 presents the system architecture, providing an overview of its structural 
components. Figure 2 depicts the flowchart for scenario generation and reduction, outlining the methodology 
for managing uncertainties. Scenario reduction algorithm is represented by Figs. 3 and 4 illustrates the block 
diagram of the proposed two-stage model, detailing the operational framework and optimization process (Fig. 
5). Two case studies are modelled to demonstrate the proposed model. Figures 6, 7 and 8 shows the wind speed, 
solar irradiation and load for different scenarios respectively.The upper limit for energy transfers with the grid is 
assumed at 700 kW. The CHP unit functions with electrical and thermal efficiency of 35% and 45% respectively. 
The boiler has an efficiency of 80% and possesses a maximum heat production capacity of 20 kW. To address 
stochastic variability inherent in renewable energy output, demand and pricing Four scenarios are generated. 
Input data for the wind and solar is taken from32,33,43. CHP, Boiler and Energy storage input parameters are taken 
from8,22,24. Market price for different scenarios is represented by the Fig. 9. Table 1 provides a comparison with 
existing literature, highlighting the advancements and distinctions of the proposed approach. The Simulation 
findings of Table 2 indicates that AEGFI increases from 121.41 to 154.72 kWh and ATGFI increase from 118.23 
to 165.42 kWh. By using the multi stage, there is a significant improvement in the flexibility index 27.43% 
and 39.91% for AEGFI and ATGFI respectively. Table 3 presents the Pareto solutions for the second-stage 
optimization, demonstrating the trade-offs among multiple objectives. Proposed model reduces the peak load 
and improves the load factor as shown in Table 4. Peak load in the multi stage model reduces from 457.31 to 
398.74 kW which is decreased by 12.80%. Additionally this model enhances the load factor by 14.75%. Load 
profile for different case study is represented by Fig. 8. In Case Study-1 there is a new peak appears because of 
the lower price of the electricity during the off-peak time causing the shift a substantial portion of consumption 
to minimize operating costs. However By using the proposed model it smooths the load profile and enhances 
the performance of the system. The simulation findings reveal notable improvements in energy generation and 
flexibility when utilizing a multi-stage model. Specifically, the Average Energy Generation Flexibility Index 

Fig. 1. Architecture of the system.
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(AEGFI) increases from 121.41 to 154.72 kWh. Additionally, the multi-stage framework enhances the Average 
thermal Generation Flexibility Index (ATGFI) from 118.23 to 165.42 kWh. To confirm the reliability of the 
reduced set, we compared outcomes such as operational cost and flexibility indices across different scenario 
counts. The results showed minimal deviation within 2–3%, demonstrating that the selected scenarios effectively 
capture system behaviour.

The second level of the framework, which emphasizes on enhancing generation flexibility, leads to a 
substantial improvement. AEGFI and ATGFI show a significant increase of 27.43% and 39.91%, respectively, 
compared to the results from case study 1. The multi-stage model greatly reduces peak energy usage. Energy 
usage is more steady in the second stage, improving capacity utilization and maximum demand. The model 
lowered peak load by 12.80% in the first scenario, which was 457.36 kW. Due to its hybrid min–max and max–
min methods, the model boosted load factor by 14.76%. Table 4 shows that an uncoordinated Demand Response 
(DR) program can cause an off-peak. Case 1 has a peak load of 442.85 kW without DR programs and 457.36 kW 
with an uncoordinated program. Stressing that flattening the energy consumption profile reduces peak demands 
improves system adaptability.

Fig. 2. Flowchart for scenario generation and reduction.
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Sensitivity analysis
The following section presents a sensitivity analysis that showcases the effectiveness of the proposed multi-
stage approach across many circumstances. Figure 11 presents the association between the price of gas and 
the effectiveness of the system. The sensitivity analysis highlights the influence of gas prices, electricity price 
coefficients, and energy storage efficiency on the system’s performance. As gas prices increase, both AEGFI 
and ATGFI show a noticeable improvement under the proposed multi-stage framework, indicating better 
utilization of flexible resources. In contrast, the single-objective approach reflects a decline in flexibility with 
price fluctuations, emphasizing the advantage of the two-stage model. Moreover, the proposed system maintains 
stable flexibility levels despite changes in electricity prices, demonstrating its robustness. When the efficiency of 
energy storage systems is increased, a clear reduction in operational cost is observed, along with a significant 
enhancement in generation flexibility. These results underline the effectiveness of the proposed model in 
adapting to variable market conditions while ensuring reliable and cost-effective energy management.

The price of gas has risen from 18 cents per cubic meter to 26 cents per cubic meter. The outcomes of the 
simulation are displayed in Fig. 10. The results indicated that the proposed technique offers greater flexibility in 
electrical and thermal generation compared to a single objective framework. The suggested model results in a 
minimum improvement of 25.43% for AEGFI and 40.03% for ATGFI, as shown in Fig. 10.

Simulation findings indicates that as the value of the coefficient increases (indicating an increase in energy 
price), both the AEGFI and ATGFI decline in the framework with only one goal as shown in Fig. 12. Figure 13 
represnts the sesitivity analysis of EES. When the efficiency of ESS is increases there is a reduction in operation 
cost. Acoording to Fig. 11 the AEGFI and ATGFI improves atleast 27.80% and 41.62% correspondingly. 
Nevertheless, in the proposed approach, the AEGFI and ATGFI are unaffected by variations in electricity prices 
and are fixed at a consistent level of 157.51 kWh and 167.93 kWh, accordingly. The simulation findings indicate 
that the proposed strategy can enhance the AEGFI and ATGFI by 52.09% and 123.25% correspondingly, in 

Fig. 3. Flowchart for scenario reduction algorithm.
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different scenarios. This enhances spinning reservation during peak hours, helping the Multi-carrier energy 
System (MCES) manage Renewable Energy Source (RES) uncertainties. MCES uses most of its energy at these 
times to cut costs. On the other hand, the multi-stage model effectively evens out load patterns more efficiently. 
Figures 14 and 15 provide a comparison of electrical and thermal generation flexibility. The simulation findings 
indicate that Case 2 exhibits greater flexibility in both aspects. In Case 1, there is a lack of flexibility for MCES 
during the period from 18 to 21. Nevertheless, the suggested strategy guarantees a steady 100 kWh of flexibility 
for each time slot inside this specific time period. In addition, the suggested approach regularly outperforms 
Case 1 by providing over 100 kWh of thermal flexibility at each time interval. Significantly, Case 1 lacks thermal 
adaptability between the intervals of 10 and 11. Higher value of indexes, enable operators to better balance supply 
with demand fluctuations, enhancing system reliability, lowering operational costs and optimizing resource use. 
For end-users, these indexes contribute to greater stability and potential reductions in energy costs, along with a 
lowered risk of outages. Thus, MCES may better manage RES and load demand uncertainties with the suggested 
approach. MCES is more resilient in emergencies and can better control energy swings due to its flexibility.

The proposed two-stage framework highlights a clear trade-off between minimizing operational costs and 
maximizing system flexibility. The first stage focuses on minimizing cost, while the second stage improves 
flexibility without exceeding the initial cost limit. This setup helps evaluate how much flexibility can be added 
within budget constraints. Results show that a slight increase in cost leads to better use of storage and demand 
response. This trade-off supports more reliable and adaptive energy management.

Fig. 4. Block diagram for proposed two stage model.
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Conclusion
This work proposes a two stage optimization framework for optimal management of multi-carrier energy 
systems and solved by MWEA. The approach introduced in this framework brings together different sectors like 
electricity, heating, and cooling with the aim of improving the overall efficiency of the energy system. The first 
stage optimizes operation cost whereas the second stage enhances flexibility. The uncertainty in renewables in first 
stage is tackled using stochastic programming. Two metrics AEGFI and ATGFI are used to assess the flexibility 
of multi-carrier system. Moreover, a sensitivity analysis is presented to investigate impact of gas and electricity 
price on the operation of multi-carrier energy systems. The metrics show that the proposed two stage structure 
significantly improves the flexibility of the system. AEGFI and ATGFI are improved by 27.42% and 39.94% using 
the two stage structure as compared to single stage structure. The two stage structure appears highly relevant to 
real-world applications, particularly in smart grid environment where operation cost and flexibility are critical. 
In the future study we will extend this work in to the three stage framework by incorporating additional flexible 
resources, such as energy storage and power-to-gas systems. Future work will also focus on validating the model 
using real operational data from energy systems. This will help assess its performance under actual conditions 
and improve its practical relevance. We plan to use real load, generation and storage data to test the model’s 
accuracy and robustness. This step will strengthen its applicability for real-world deployments.

Fig. 5. Block diagram for MWEA.
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Fig. 7. Solar irradiation for different scenario.

 

Fig. 6. Wind speed for different scenario.
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Fig. 9. Price for different scenarios.

 

Fig. 8. Load for different scenarios.
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Cases Peak (kW) Load factor (%)

Base load 442.85 83.58

Case-1 457.31 81.42

Case-2 398.74 93.43

Improvement (%) 12.80 14.75

Table 4. Features of load profile.

 

S. no. C∗ ω1 ω2 Emission (kg) Generation flexibility (kWh)

1

Operating cost = 85875.65
(y=1.02)

0.1 0.9 47823.65 165.354

2 0.2 0.8 47767.75 165.279

3 0.3 0.7 47731.37 165.245

4 0.4 0.6 47672.72 165.216

5 0.5 0.5 47646.48 165.190

6 0.6 0.4 47635.45 165.078

7 0.7 0.3 47535.28 164.610

8 0.8 0.2 47567.65 164.395

9 0.9 0.1 47823.67 165.354

Table 3. Pareto solutions for the second-stage optimization.

 

Case study Cost ($) AEGFI (kWh) ATGFI (kWh)

Case-1 81231.39 121.41 118.23

Case-2 85875.69 154.72 165.42

Improvement (%) 5.71 27.43 39.91

Table 2. Comparison results of case study.

 

References Methodology Advantages Disadvantages

9 Transactive energy management Role of electrical and thermal energy storage is considered. Effect of DR 
is considered.

Effect of uncertainties are ignored. Wind power 
curtailment is not considered.

22

CVaR method stochastic 
programming Monte-carlo 
simulation benders decomposition 
technique is used

Maximize the expected profit and minimize the total customers 
consumption costs. Effect of electric DR is considered Uncertainties of 
load is considered

Effect of thermal DR is not considered. 
Uncertainties of EV, RES and prices are not 
considered. DG Outage contingency is not 
considered.

23

Rolling horizon method MILP is 
used for day-ahead scheduling. 
MIQP is used for local energy 
scheduling.

Three types of energy sources (i.e. Electricity, heat and gas) are 
considered. Both Demand response of microgrids and electricity 
sharing among microgrids is consi- deredin the proposed strategy.

Uncertainties of load and RES is ignored. Effect of 
Cooling energy system is not considered. Flexibility 
issues are not considered.

24 Cooperative based transactive 
energy management

Load and demand uncertainties are considered. Effect of DR is 
considered.

Flexibility issues are not considered. RES 
uncertainties are not considered.

27 IGDT approach single stage 
framework is used

Effect of both electrical and thermal DR is considered. Load and price 
uncertainties are considered. Electrical flexibility is considered.

Curtailment of wind power is not considered. RES 
uncertainties is ignored. Thermal Flexibility is not 
considered.

32 Deterministic approach single 
objective framework

Electrical and thermal storage are considered. Cooperative energy 
management is used. Load uncertainties are considered

Effect of electric and thermal flexibility is not 
considered. RES and price uncertainties are ignored.

33 Stochastic model probabilistic 
scenario based approach

Minimize electrical and natural gas energy cost Price uncertainties are 
considered Electric Flexibility is considered

Uncertainties of load and RES are ignored. Effect of 
thermal flexibility is not considered. Role of DR is 
not considered.

This study Two stage model stochastic 
optimization

Effect of electric and thermal flexibility is considered. DR effect is 
considered. RES uncertainties is considered.Second stage is multi-
objective and solved using weighted sum approach.

Table 1. Comparison with existing literature work.
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Fig. 11. Sensitivity analysis on gas price.

 

Fig. 10. Load profile.
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Fig. 13. Sensitivity analysis on efficiency of ESS.

 

Fig. 12. Sensitivity analysis on electricity price.
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Fig. 15. Flexibility of thermal generation.

 

Fig. 14. Flexibility of electricity generation.
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