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Abstract

The rollout of variable renewable energy (VRE) generators, along with the
electrification of heating and transport sectors and the production of synthetic
fuels for hard-to-abate industries, is a key strategy for mitigating climate change.
Energy infrastructure planning models must accurately capture the high spatio-
temporal variability of VRE to avoid misestimating their contribution to the
power generation. Integrated Assessment Models (IAMs), which operate at a
global scale with low spatio-temporal resolution, often rely on simplified VRE
representations with predetermined parameters— potentially leading to subop-
timal or infeasible scenarios. To address this limitation, we present the first
study to impose forced VRE shares in the high-resolution sector-coupled energy
system model for Europe, PyPSA-Eur, for the purpose of IAM parameteriza-
tion. For a nearly net-zero CO2-emissions system that disregards existing energy
infrastructure and builds the optimal capacity mix overnight, we assess the Eu-
ropean potential of each technology type across a scenario space with varying
forced VRE shares. We derive economic and technical parameters, providing
insights applicable to models with lower spatio-temporal resolution.

Introduction 1

The transition to a sustainable and low-carbon energy future is a paramount global 2

challenge. It necessitates a profound understanding of the interplay between energy 3
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systems and the broader socioeconomic and environmental contexts. Two funda- 4

mental tools in this endeavor are Integrated Assessment Models (IAMs) and Energy 5

System Models (ESMs), each possessing unique strengths and limitations. IAMs aim 6

to produce a coherent synthesis of all aspects of climate change, providing a global 7

perspective that encompasses complex global interactions between energy, economy, 8

climate, land use, and more. IAMs are particularly good at capturing the trade-offs 9

between energy scenarios and land-use change and Forestry (LULUCF) at a detaild 10

level to provide feasible estimates of carbon fluxes and other GHG emissions, etc. 11

[1]. Process-based IAMs examine the cost-effectiveness of scenarios, with an explicit 12

representation of the change in the global energy and land-use systems linked with 13

the economy [2]. Following a cost-efficiency approach, which utilizes optimization 14

frameworks to minimize system-wide costs of achieving defined climate targets, they 15

are common tools in assessments of policy decisions. The shortcoming of IAMs is 16

that they typically operate at a high level of spatial and temporal aggregation, which 17

makes them incapable of modeling storage or regional balancing using transmission 18

lines. In addition, they also often lack a proper representation of sector coupling (e.g., 19

direct electrification of heat or EVs and indirect electrification using power-to-X). For 20

this reason, the endogenous computation of optimal capacities and the estimation of 21

integration expenses of variable renewable energy generators is challenged in many 22

IAMs [3, 4, 5]. For instance, some work has shown that IAMs tend to underestimate 23

the supply of variable renewable energy (VRE) sources, comprised of wind energy 24

and solar PV [6]. 25

Contrary to IAMs, ESMs rely on more detailed representations of the energy sys- 26

tem at regional and local scale [7, 8, 9, 10]. They incorporate a high level of technical 27

and geographical granularity, enabling more precise assessments of technological and 28

operational aspects. Yet, their limited geographical scope and representation of land 29

use can constrain their ability to capture broader global implications, including bilat- 30

eral trade of commodities, competition for land and biomass resources, and emissions 31

from LULUCF and agriculture. Given the distinct differences in scope, level of detail, 32

and inclusion of critical system components, integrating the IAM and ESM frame- 33

works offers a promising pathway toward more comprehensive assessments of future 34

energy systems. Linking IAMs with ESMs offers the potential to capitalize on the 35

strengths of both: the global outlook of IAMs and the spatial and technological de- 36

tail of ESMs. This integration can take multiple forms. For example, prior work 37

has established a backwards (i.e., IAM-to-ESM) uni-directional soft link to test the 38

feasibility of IAM-optimized capacities [5], as well as a bi-directional iterative soft 39

link that maps the Lagrange multipliers between an IAM and ESM until reaching 40

equivalent values [11]. Inspired by the modular integration approach used in the 41

IAM MESSAGEix-GLOBIOM [12], we propose a third methodology. In this study, 42

we implement the first step of a forward uni-directional soft-link, in which parameters 43

are derived from the ESM and later integrated into the IAM. This approach avoids 44

increasing model complexity and reduces the computational burden associated with 45

bi-directional links [11], while also improving feasibility [5]. Using a sector-coupled 46

energy system model, we construct a scenario matrix containing both economic (e.g., 47

market values) and technical (e.g., curtailment) parameters, across a wide range of 48

different wind-solar PV mixes. With this scenario matrix, we intend to capture key 49

features of the energy system that are important to address in a model representation. 50

In this paper, we explain the outputs for key technologies included in the energy 51

system, while complete data is published for all technologies. Ideally, this dataset 52
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can be used across multiple modeling frameworks as a first step toward improving the 53

representation of renewable energy integration in IAMs. While the main contribution 54

of this paper is the provision of the scenario matrix, we also include an assessment 55

(in Supplementary Note 1) of how variable renewable energy is currently represented 56

in the MESSAGEix-GLOBIOM. 57

Methods 58

We use PyPSA-Eur, an open networked model of the European sector-coupled en- 59

ergy system [10, 8], to model an almost fully decarbonized European system (5% net 60

CO2 emissions relative to 1990 levels), with a 3-hourly resolution and a network of 37 61

nodes. In PyPSA-Eur, an optimization process involves both capacity expansion and 62

dispatch optimization. The objective is to minimize total system cost while determin- 63

ing optimal energy allocations in time and space, such as the capacity and generation 64

from wind energy and solar PV, in addition to other optimization parameters (see 65

Supplemental Note S2 in [10] for a detailed mathematical description of the model). 66

For this reason, in a default configuration, the proportion of wind and solar PV gen- 67

eration is a result of the optimization. Here, we force the model to deviate from the 68

optimum configuration, in order to trace the impact of integrating renewable energy 69

and collect our findings in a scenario matrix (see Fig. 1). To achieve this, we maintain 70

the 5% CO2 emissions constraint while forcing wind and solar PV separately into the 71

system (Eq. 1). The European aggregate wind and solar PV capacities are specified 72

exogenously, while the optimization determines the allocation of nodal capacities. 73

The results of PyPSA-Eur are nodal, so that capacity and dispatch are unique in 74

every node. The temporal aggregation from hourly to 3-hourly resolution would tend 75

to overestimate the potential of solar PV due to smoothed feed-in profiles and de- 76

mand peaks. However, previous work has shown that the error in total system costs 77

with 3-hourly resolution compared to hourly is insubstantial [8]. In this document, 78

we show results which have been aggregated on a European level. For the input time 79

series of available wind energy and solar PV resources, we use weather reanalysis data 80

for 2013, which is considered an average year with regard to its potential yield in solar 81

PV and wind energy [13]. 82

Modeled scenario 83

Using an overnight greenfield approach, we model a European sector-coupled energy 84

system with a strong policy drive for mitigation strategies (see Table 1 for key assump- 85

tions). In this scenario, the system is not allowed to exceed (on an annual balance) 86

5% of the 1990 historical CO2 emissions. A direct consequence of this constraint is a 87

strong push for technologies with low CO2 emissions. In the results section, we pro- 88

vide a sensitivity to the chosen CO2 emissions constraint. In addition to the power 89

sector, the model also encaptures the decarbonization of the energy consumption in 90

the heating, land transport, shipping, aviation, and industry (including industrial 91

feedstock) sectors with comprehensive carbon management. Sector-coupling brings 92

more flexibility to the system, mainly from energy storage (e.g., pit thermal energy 93

storage in district heating, H2 storage, and electric vehicle batteries). For electric- 94

ity storage, we assume Li-ion batteries that can be deployed on utility (high voltage 95

grid) or residential scale (low voltage). On top of this, H2 produced with electrolyz- 96

ers can be stored underground (salt caverns) and overground (steel tanks) which, if 97
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Fig. 1: Workflow. The steps to derive the metrics of interest in this study. The
steps include (I) defining the range of wind and solar PV shares of the electricity
generation mix, (II) solving the scenarios in the sector-coupled energy system model
PyPSA-Eur, and (III) summarizing technical and economic parameters for the defined
range. As a potential fourth step (IV), we show the example of deriving one of
four renewable integration constraints in the Integrated Assessment Model (IAM)
MESSAGEix-GLOBIOM. For a review of the four constraints used in MESSAGEix-
GLOBIOM, see Supplementary Note 1.
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cost-optimal, can be linked with fuel cells to revert it back to electricity, providing an 98

option for long-duration electricity storage (LDES). For all technologies, we use 2030 99

cost assumption from the Energy System Technology Data repository v0.5.0 [14] to 100

limit uncertainties related to technology cost evolution. 101

We include high-voltage transmission lines equivalent to today’s capacity and al- 102

low the model to expand it further with a maximum of 50% relative to today’s volume 103

(sum of the multiplication of capacity and length for all existing transmission lines 104

today). The distribution grid is not modeled, but we assume a distribution grid 105

expansion cost proportional to the deployed low-voltage generation and storage (in- 106

cluding EVs). On top of this, the model can also deploy H2 transmission network. 107

As a final step, we provide a sensitivity assessment of the assumptions of electricity 108

transmission expansion and CO2 emissions levels. 109

Table 1: Model settings.

Type Overnight optimization
Net CO2 emissions 5% relative to 1990
Capacities Greenfield (except electricity transmis-

sion lines). Existing hydropower capac-
ities are not included.

Time resolution 3-hourly
Network resolution 37 nodes
Renewable energy resolution 370 regions
Weather data ERA5 reanalysis of 2013 (to model solar

PV, we use SARAH-2 irradiance data)
Technology costs Assumptions according to predictions

for 2030
Sectors included Electricity, heating, industry, land

transport, shipping, and aviation
Transmission Limited to max. 50% volume expansion

of today’s grid. On top of this, cross-
border H2 pipelines can also be deployed
if cost-effective.

Renewable energy share constraint 110

For a renewable generator R, we define a constraint such that its available annual re- 111

sources equals a defined share of the electricity demand. Here, the difference between 112

the available resources and the generation from renewable generator R equals cur- 113

tailed renewable energy. To avoid the artifact of unintended energy losses1, usually 114

observed as an unintended storage cycling [15, 16], we do not impose a strict bind- 115

ing target on the renewable generation. Instead, we define a target on the available 116

1In hours with renewable generation potential higher than electricity load, the renewable gener-
ation constraint forces the renewable generator, instead of curtailing energy, to find alleys of energy
losses to fulfill the minimum generation requirement. Here, these alleys can be simultaneous charging
and discharging of energy storage which would be a model artifact.
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renewable resources, gR,available
n,t , which we write as: 117∑

n,t

gR,available
n,t =

∑
n,t

gRn,t +
∑
n,t

cRn,t = φR
∑
n,t

dn,t (1)

where gRn,t is the generation of renewable generator R, cRn,t is the renewable curtailment 118

of renewable generator R, φR is the electricity generation share of renewable generator 119

R, and dn,t is the total electricity demand in node n at time t. 120

The available renewable resources can be decomposed into a product of the hourly 121

availability factors ḡR,available
n,t and the installed capacity of the renewable generator 122

GR
n : 123∑

n,t

ḡR,available
n,t GR

n = φR
∑
n,t

dn,t (2)

which reveals that the left-hand side of the equality depends on one decision variable, 124

the nodal capacity GR
n . The right-hand side covers the total electricity demand dn,t 125

which includes both exogenous and endogenous sources. The exogenous electricity 126

demand is assumed fixed at historical levels, while an additional electricity demand, 127

i.e., the endogenous demand from direct and indirect electrification, is a variable of 128

the optimization. In our work, the constraint is imposed on wind energy, based on the 129

aggregate of offshore and onshore, and solar PV, based on the aggregate of rooftop 130

and utility scale. The ratio between offshore and onshore wind, as well as the ratio 131

between rooftop and utility-scale solar PV, is determined by the optimization. 132

133

Subsequent to the optimization, we calculate the resulting generation share of variable 134

renewable energy (VRE), while accounting for the curtailment in Eq. 1, as: 135

VRE share % =

∑
n,t g

R
n,t∑

n,s,t gn,s,t
(3)

where gn,s,t is the electricity produced by technology s in node n at time t. 136

We intend to encapsulate the full range of renewable integration levels, including 137

extreme cases which integrate only wind energy or solar PV, or overbuild renewables 138

such that its potential generation is much higher than the annual electricity demand. 139

Some of them might be unrealistic, practically infeasible, or suboptimal scenarios, but 140

they are useful in this study to indicate the penalty needed on the objective when 141

approaching these extremities. 142

Renewable energy curtailment 143

The curtailment of variable renewable energy partially depends on the mismatch be- 144

tween the electricity demand and the renewable generation, the availability of storage 145

(which is limited by the capacity and the filling level) and the available transmission 146

line capacity. With a high spatio-temporal resolution and a model of the high-voltage 147

grid, we can account for these factors. A third aspect that could lead to additional 148

renewable curtailment is the commitments of other generation sources and their ramp- 149

ing constraints. Since our analysis is based on aggregate level and not on plant level, 150

our assessment does not include ramping limit and unit commitment constraints. 151

However, the model assumes long-term market equilibrium (i.e., every asset subject 152

to the optimization needs to operate such that it exactly recovers its costs), which 153
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entails capital intensive power plants to run at a certain capacity factor. This can 154

cause higher levels of unutilized renewable energy at a forced integration level of wind 155

and solar PV. 156

The order at which curtailment of different technologies occur is determined by 157

the merit order of curtailment. Since the model is built on a cost minimization prob- 158

lem, the model will always choose the generator with the highest marginal costs to 159

be curtailed first. In reality, wind and solar PV have zero marginal costs, but here, 160

we add marginal costs of 0.01 EUR/MWh for wind (both onshore and offshore) and 161

0.015 EUR/MWh for solar PV (both utility and rooftop) to control the order of cur- 162

tailment. The marginal costs are small such that they do not affect the objective of 163

the optimization. 164

165

We report Europe-aggregated renewable curtailment relative to the electricity de- 166

mand: 167

curtailed energy % =

∑
n,t

(
ḡR,available
n,t GR

n − gRn,t

)
∑

n,t dn,t
(4)

Market values and price smoothing indicators 168

In this analysis, we develop metrics to describe the economic potential of all types of 169

technologies in the energy system model. For electricity generation technologies, we 170

use the commonly used market value, while for storage and transmission, we describe 171

the potential based on their price smoothing. 172

173

1. Market value 174

The market value indicates the potential revenue of a generation unit per energy 175

produced. Previous work focused on how the market values of renewable power gen- 176

erators decreases while penetrating the energy market, driven by the cannibalization 177

effect (i.e., higher renewable shares decrease the marginal cost of producing electric- 178

ity, causing revenues of renewable generators to drop [17]). Other studies showed 179

that this effect can be avoided with the adequate policy measure, i.e. setting a CO2 180

tax instead of a renewable capacity target [18]. In our analysis, we do not track the 181

change of market values when penetrating today’s system. Instead, we consider a 182

scenario in which the system is already close to a full decarbonization, for which we 183

alter the renewable share from very low to very high. In that way, we map the mar- 184

ket values in the range of renewable integration levels at a constant CO2 emissions 185

level, which is different compared to previous work. The market values for generation 186

technologies are calculated as: 187

Market values =
∑

n,t gn,s,tpn,t∑
n,t gn,s,t

(5)

where pn,t is the locational electricity price, gn,s,t is the generation of every technology 188

s, in every hour t and location n. 189

190

2. Price smoothing potential of storage 191

For each level of renewable integration, our study intends to measure the flexibility 192

required by the model. To its core, flexibility is provided by energy storage. To 193
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measure the required storage, we report the capacity of every technology included in 194

the model. As a supplement to storage capacity, we calculate the potential revenue 195

of each storage type, determined by the price differences between the purchased and 196

the resold power. We refer to this as the storage price smoothing (SPS) indicator. 197

For a storage technology s, this is calculated as: 198

SPSs =

∑
n,t+ g+n,s,tp

+
n,t −

∑
n,t− g−n,s,tp

−
n,t∑

n Gn,s
(6)

where p+n,t is the price of the purchased power g+n,s,t, p−n,t is the price of the resold 199

power g−n,s,t. Here, we normalize the net revenue by the total deployment
∑

n Gn,s of 200

storage technology s. 201

202

3. Price smoothing potential of transmission 203

Similarly, for transmission, we calculate a metric based on the price differences 204

between two nodes, A and B, which we refer to as the transmission price smoothing 205

potential (TPS) for transmission technology s: 206

TPSs =

∑
l,t fl,t(p

A
t − pB

t )∑
l Fl

(7)

where fl,t is the power flow of line l at time t. Here, we normalize the net revenue by 207

the total line capacity
∑

l Fl. 208

Results 209

In our analysis, the system is exposed to both a strong policy push towards decar- 210

bonization and a support towards renewable energy technologies proportional to the 211

renewable energy share driven by the constraint in Eq. 2. As this constraint defines 212

the available resources and not the generation, the final renewable fraction of the 213

electricity generation mix depends on the level of curtailment. Fig. 2a indicates a 214

proportionality between the forced integration level and the resulting generation share 215

until the saturation point of 100% is reached. At this point, the marginal contribution 216

of additional generators is low. 217

The stringent policy on CO2 emissions pushes out carbon-intensive power gener- 218

ators. Under low VRE integration levels, this leaves room for nuclear power as the 219

primary substitute of wind and solar PV (Fig. 2b). In the nuclear-dominant system, 220

the remaining share is provided mainly by biomass combined heat and power (CHP) 221

plants, supplemented by OCGT and gas CHP. This is, however, a much more expen- 222

sive solution, which is noticeable from the total system cost (Fig. 2c). Compared 223

to the optimum combination of wind and solar PV, it is 25% more expensive. The 224

figure also shows how, for Europe, wind-dominant systems are less costly than solar 225

PV-dominant systems, in line with many previous papers [19, 20, 21, 8]. The system 226

cost of all combinations of wind and solar PV shows a global minimum at 60% wind 227

and 40% solar PV. An oval shape of near-optimal solutions emerge with similar cost 228

levels but at widely different wind and solar PV combinations, similar to previous 229

research [22]. At a 3% cost increase limit, 15 near-optimal wind-solar combinations 230

emerge, ranging from a 4:1 ratio of wind and solar PV to a 2:3 ratio. 231
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We also show the CO2 shadow price (Fig. 2d), highlighting combinations that 232

require more policy measures to reach the stringent CO2 emissions target. The CO2 233

shadow price ranges from 350 to 500 EUR/tCO2. Here, wind-dominant systems and 234

combinations with solar PV require a lower CO2 tax compared to the remaining sce- 235

narios. 236

237

Fig. 3a and b show the market values calculated for wind and solar PV. Wind 238

resources generally exhibit higher market values than solar PV. This is primarily at- 239

tributed to their respective generation profiles: solar PV output is more concentrated 240

and peaks during limited number of hours each day, whereas wind generation tends 241

to be more evenly distributed throughout the day, causing a higher yield per capacity 242

[17]. As previously described, the low VRE share scenarios entail high proportions of 243

nuclear power. As this is a more costly option, the electricity price is higher, which 244

drives up the potential revenue streams for renewable generators. Market values drop 245

proportional to the VRE share due to the cannibalization effect, but does never reach 246

zero, even at very high integration levels (>100%). This is due to the decarboniza- 247

tion policy push, which drives the cross-sectoral electrification, and necessitates more 248

VRE generation capacity in the system, in line with previous studies [18]. 249

When VRE shares are below or equal to 100%, we observe curtailment rates of 250

below 5% and 10% for wind and solar PV (Fig. 3c and d). Over-deployment of VRE 251

(i.e., VRE shares above 100% of the electricity demand) forces renewable generators 252

to have much higher curtailment. In that case, we observe curtailment rates up to 253

25% and 30%, making the added value of additional renewable generation low when 254

above 100% VRE, and for this reason, the market values of VRE drop dramatically. 255

This explains why these extreme scenarios are not cost-efficient, as shown in Fig. 2c. 256

257

In Fig. 4, we first show that the optimal storage capacity is not linear proportional 258

to the share of VRE generation. Instead, it depends largely on the mix of wind and 259

solar PV. Our results reveal the typical pattern of short-duration energy storage and 260

LDES, which is an essential techno-economic aspect of optimal integration of wind and 261

solar PV. Batteries (short-duration storage) complement large penetrations of solar 262

PV, while LDES is only favorable in wind-dominant systems, in line with previous 263

research [24, 25, 26, 27]. Second, we evaluate the economic indicator SPS, for which 264

batteries show lower potential compared to LDES, for the following reason. The bulk 265

energy associated with LDES is much larger due to its lower storage energy capacity 266

cost, making the value per discharge capacity ratio much higher. 267

In Fig. 5, we evaluate electricity transmission expansion within the range of wind- 268

solar PV combinations. Every scenario utilizes the option of expanding electricity 269

transmission, and it shows some proportionality to the integration of VRE generation. 270

In addition, electricity transmission expansion is noticeably more profitable in wind- 271

dominant systems, based on the transmission price smoothing (TPS) indicator. Such 272

systems have stronger benefit of connecting regions to smoothen spatial imbalances 273

in the renewable energy supply. 274

For H2 infrastructure (Fig. 6), we observe distinct behavior between solar- and 275

wind-dominant systems. In solar-dominant systems, the model chooses to ramp up 276

capacity of H2 electrolyzers and transmission. Conversely, wind-dominant systems 277

have a weakened H2 grid but a strengthened H2 storage capacity, compared to solar- 278

dominant cases. This difference is explained by the the seasonal characteristic of 279

wind and solar PV production, where wind is better aligned with the seasonality of 280
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the energy demand. To handle the seasonal mismatch between solar PV production 281

and the energy demand, solar-dominant systems increase the production of H2 and 282

synthetic oil (Supplementary Fig. 7). Wind-dominant systems show more H2 storage 283

to balance wind energy droughts, in line with Fig. 4. 284

When considering the technology mix in the heating supply (Fig. 7), we observe 285

distinct results across the scenario matrix. First, heat pumps (including ground and 286

air source) are the main choice in all combinations, but is highly impacted by the 287

electricity mix as the share of heat pumps varies from 60% to 85%. Generally, an 288

electricity mix with high baseload (which is the case at low VRE scenarios), the sys- 289

tem favors a less diverse heating mix. In that case, it is primarily covered with heat 290

pumps (85%) and biomass (10%). Integrating wind and solar PV into the power 291

mix invites different participants into the heating supply. In our model, this includes 292

individual heating units such as resistive heaters and gas boilers (compensated by 293

direct air capture (DAC), see Supplementary Fig. 8), and district heating based on 294

combined heat and power (CHP) units fueled with solid biomass and gas with or 295

without carbon capture (CC). In solar PV-dominant systems, gas boilers have the 296

second highest share (16%) on top of heat pumps (68%) and biomass (10%). For 297

wind-dominant systems, the resistive heaters has the second highest share (14%), on 298

top of heat pumps (63%), biomass (10%), and gas boilers (10%). There are different 299

reasons for why the system tends to deploy more gas boilers or resistive heaters, but 300

the main driver is that it needs low-cost capacity to be activated during cold spells 301

that cause low coefficient of performance of heat pumps. Solid biomass CHP with 302

carbon capture is favored in solar PV-dominant systems. Due to the limited biomass 303

potential, biomass is either used in CHP units or in individual units, depending on 304

the wind-solar PV combination. 305

306

In addition to our main results, based on the assumptions listed in Table 1, we 307

include a second version of the dataset at which we do not allow the expansion of the 308

electricity transmission grid. With this version, it is possible to monitor the system- 309

wide impacts of transmission expansion. Here, we show 4% cost reductions driven by 310

the (maximum 50%) electricity transmission expansion, compared to a case in which 311

we did not allow the expansion of today’s grid (Fig. 8, consistent with other research 312

[8]. The cost reductions occur predominantly in wind-dominant systems because the 313

transmission connects better areas with different wind availability. For that reason, 314

transmission expansion pushes the near-optimal space towards higher shares of wind 315

energy. In Supplementary Fig. 9, we show that with transmisison expansion, lower 316

CO2 taxes are required to facilitate the defined CO2 emissions limit (5% of 1990 levels) 317

at the given wind and solar PV combination (i.e., the decarbonization needs less policy 318

push because it is more technology-driven). It furthermore eases the curtailment 319

with a few percentage points of both solar PV and wind energy, proving a more 320

efficient utilization of renewable resources. This is partially also helped by a stronger 321

potential of long-duration storage in the wind-dominant systems. As an example, 322

with transmission expansion, the system achieves 95% power generation from wind 323

and solar PV (at the extreme case when forcing 100% wind energy and 10% solar PV 324

into the system), while this is reduced to 91% without it. 325

While our results are obtained at a specific CO2 emissions level, it is important 326

to address the sensitivity to this assumption. To do so, we remove the renewable 327

share constraint in Eq. 2 and replace it with a range of CO2 emissions levels (from 328

25% to 0% relative to 1990 levels), making the build-out of wind and solar PV a 329
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subject to the optimization. As previously described, using a CO2 target instead of 330

a renewable share target would lead to more stable market values for renewables, 331

according to literature [18]. In Fig. 9, we show the same. This is consistent with 332

and without transmission expansion, and for a third case in which we include the 333

existing hydropower infrastructure of today. The slight increase in market values of 334

wind energy occur in parallel with a reduced level of wind energy curtailment (see 335

Supplementary Fig. 10-12). To enable the model to reach a full variable renewable 336

power supply, today’s capacity of hydropower in Europe was omitted. This choice 337

impacts mostly system costs, since the model finds balancing services elsewhere but 338

with new investments. As shown in Fig. 9, the impact of excluding hydropower on 339

market values of wind and solar PV is insignificant. 340

Discussion 341

In this paper, we collect and describe key parameters of a sector-coupled European 342

energy system across a multitude of renewable integration levels. Our study includes 343

an assessment of the required storage and transmission capacities, the market values 344

and revenue indicators of power generators, storage facilities, and transmission lines, 345

as well as the optimal technology mix. Our findings emphasize the importance of ac- 346

counting for the wind-solar PV mix when considering key integration aspects (includ- 347

ing features related sector-coupling, e.g., heating technology mix, H2 and synthetic 348

gas production, etc.), as they exhibit distinct patterns across the scenario matrix. 349

350

Our investigation also serves as a first step in soft-linking ESMs and IAMs. The 351

proceding steps include parameterizing the metrics reported in this study. As we ex- 352

plain in Supplementary Note 1, the parameterization in MESSAGEix-GLOBIOM is 353

based on marginal contributions (e.g., to curtailment) from the increment in the wind 354

or solar PV integration level. For this to work in a linear optimization framework, the 355

metrics considered should be convex across the scenario matrix. This holds for some 356

metrics, while for others, it might not, requiring some convex function approxima- 357

tion. This could induce some error in the parameterization, which should be carefully 358

assessed. Additionally, we observed a diverse system configuration for heating and 359

power-to-X technologies across the wind-solar PV mix. Accounting for this variation 360

in the parameterization, or using it as a bench mark for validation, would enhance the 361

robustness of the soft link. We recommend implementing this framework initially at 362

a European level, to match the geographical domain of this study. For future work, 363

to succeed with a global IAM analysis, our scenario matrices should be adapted to 364

other regions, accounting for differences in VRE potentials and demand profiles. 365

366

Here, we mention some limitations of our work. In the heating supply, we assume 367

that generation units can balance each other, similar to electricity generation units. 368

This is a fair assumption for centralized solutions in the urban areas with district 369

heating which usually rely on having a second generation type as a back unit. For 370

individual units, this assumption does often not hold. Moreover, the study was mo- 371

tivated by monitoring the full range of VRE integration. For this reason, we did 372

not account for the existing generation capacity fleet in Europe, e.g., reservoir hy- 373

dropower, but instead made use of a greenfield approach Integration costs related 374

to the drop in production of existing power plants, as they would need to operate 375
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less, is not accounted for in this data set. Future work should consider how a proper 376

accounting of the starting capacity fleet impacts the results. 377

Code availability 378

Our assessment relies on the open energy modeling framework PyPSA and makes 379

use of the model PyPSA-Eur v0.8.0. Costs and technology assumptions are obtained 380

with technology-data v0.4.0. Scripts generated for this project can be accessed from 381

a public repository PyPSA-Eur-Curtailment-Emulator. 382

Data availability 383

The data underlying the results presented in this study are openly available from the 384

two repositories ERDA at https://anon.erda.au.dk/cgi-sid/ls.py?share_id= 385

ESLUn4EMQn&current_dir=.&flags=f and Zenodo at 10.5281/zenodo.14831993 [23]. 386

They contain the raw network files, obtained with PyPSA-Eur, and a dataset with 387

the key metrics reported in this study, respectively. 388
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Fig. 2: Renewable electricity share and system cost. (a) Share of electricity
generation provided by wind energy and solar PV. (b) Share of electricity generation
provided by nuclear power. (c) Total system cost shown as a percentage change from
the cost-optimal combination of wind and solar PV. (d) Shadow price of the CO2

emissions constraint. The dashed line indicates combinations of wind and solar PV
in which the generation potential is equal to the annual electricity demand (including
electrified demands in heating, industry, and land transport sectors). A cutoff at
150% renewable share is imposed, while data above the cutoff can be found in Source
Data file [23].
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Fig. 3: Market values of variable renewable electricity generators. (a,b)
Market values of (a) solar PV and (b) wind energy. (c,d) Curtailment of (c) wind
energy and (d) solar PV relative to the annual electricity demand. A cutoff at 150%
renewable share is imposed, while data above the cutoff can be found in Source Data
file [23].
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Fig. 4: Storage. (a,c) Discharge power capacity and (b,d) storage price smoothing
(SPS) indicator of battery and long-duration electricity storage (LDES). The storage
capacities are normalized by the cumulative generation capacity of wind and solar PV
to explore the proportionality between the two. Note that we use different scales in
each subfigure. A cutoff at 150% renewable share is imposed, while data above the
cutoff can be found in Source Data file [23].
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Fig. 5: Transmission. (a) The capacity of electricity transmission relative to today’s
grid. (b) Transmission price smoothing (TPS) indicator of electricity transmission.
Note that we use different scales in each subfigure. A cutoff at 150% renewable share
is imposed, while data above the cutoff can be found in Source Data file [23]. See
Supplementary Fig. 5 for H2 transmission.
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Fig. 6: H2 infrastructure. Capacity of (a) H2 electrolyzers, (b) H2 transmission,
and (c) H2 storage (including both underground and steel tank). Note that we use
different scales in each subfigure. A cutoff at 150% renewable share is imposed, while
data above the cutoff can be found in Source Data file [23].
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Fig. 7: Heating supply. (a-f) Heating supply mix in percentage for (a) heat pumps,
(b) resistive heaters, (c) combined heat and power (CHP) fueled with solid biomass
with carbon capture (CC), (d) biomass boiler, (e) CHP fueled with gas, and (f) gas
boiler. Note that we use different scales in each subfigure. A cutoff at 150% renewable
share is imposed, while data above the cutoff can be found in Source Data file [23].
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Fig. 8: Impact of transmission expansion. (a) System cost when disallowing
an expansion of the electricity transmission grid. (b) Relative change in system cost
when allowing an electricity transmission expansion.

Fig. 9: Market values of wind and solar PV at different CO2 emissions
levels. This is evaluated for three systems, including the one used to generate the
primary dataset (reference), one without transmission expansion (w/o transmission
exp.), and a third in which we include today’s capacity of hydropower (w/ hydro).
This part of the analysis disregards the renewable energy share constraint used to
generate the primary dataset (Eq. 2).
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