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Abstract 

Future climate-driven hydrological changes may strongly affect river exports of multiple 
pollutants to coastal waters. In large-scale water quality models the effects are, however, 
associated with uncertainties that may differ in space and time but are hardly studied worldwide 
and for multiple pollutants simultaneously. Moreover, explicit ways to assess climate-driven 
uncertainties in large-scale multi-pollutant assessments are currently limited. Here, we aim to 
build trust in future river exports of nutrients (i.e. nitrogen and phosphorus), plastics (i.e. micro 
and macroplastics), and chemicals (i.e. diclofenac and triclosan) under climate-driven 
hydrological changes on the sub-basin scale worldwide. We used a soft-coupled global 
hydrological (VIC) and water quality (MARINA-Multi) model system, driven by five Global 
Climate Models (GCMs), to quantify river exports of selected pollutants to seas for 2010 and 
2050 under an economy-driven and high global warming scenario. Subsequently, we developed 
and applied a new approach to build trust in projected future trends in coastal water pollution 
for the selected pollutants. Results reveal that in arid regions, such as the Middle East, East 
Asia, and Northern Africa, climate-driven uncertainties play a key role in future river exports 
of pollutants. For African sub-basins, high increases in river exports of pollutants are projected 
by 2050 under climate-driven hydrological uncertainty. Nevertheless, over 80% of the global 
sub-basin areas agree on the direction of change in future river exports of individual pollutants 
for at least three GCMs. Multi-pollutant agreements differ among seas: 53% of the area agrees 
on increasing river exports of six pollutants into the Indian Ocean by 2050, whereas 17% agrees 
on decreasing trends for the Mediterranean Sea. Our study indicated that even under climate-
driven hydrological uncertainties, large-scale water quality models remain useful tools for 
future water quality assessments. Yet, awareness and transparency of modelling uncertainties 
are essential when utilising model outputs for well-informed actions.

Keywords: water quality, multiple pollutants, building trust, climate, uncertainty, 
hydrological changes
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1. Introduction  

Nutrients, plastics, and chemicals enter rivers and then are exported to coastal waters1-4. Rivers 
export these pollutants often from common sources such as agricultural runoff and  sewage 
systems2,5-8 impacting the aquatic environment. Nutrient pollution, for example, triggers 
harmful algal blooms9,10, while plastics and chemicals disrupt ecosystems11,12. Today, many 
rivers and coastal waters are exposed to multi-pollutant issues13-16. In the future, water pollution 
is likely to increase due to socio-economic developments like urbanisation and population 
growth15-18. 

Climate change is expected to influence river exports of pollutants because of long-term 
changes in runoff, river discharge patterns16 19,20, and water storage21,22. In large-scale water 
quality models, this may affect  flows of pollutants as well as their retention in river systems17,18. 
In addition, climate change affects terrestrial pollutant sources and biogeochemical processes. 
For example, rising temperatures can alter nutrient cycling and pollutant emissions23. This 
study, however, focuses specifically on the effects of climate-driven hydrological changes on 
river exports of multiple pollutants. The meteorological forcings (e.g. air temperature, 
precipitation) from Global Climate Models (CGMs) are often used by Global Hydrological 
Models (GHMs) to project runoff and river discharges, which are further used as input to global 
water quality models. Large-scale water quality models such as MARINA-Multi (Model to 
Assess River Inputs of pollutaNts to seAs)18, IMAGE-GNM (Integrated Model to Assess the 
Global Environment-Global Nutrient Model)24, SWAT+ (Soil and Water Assessment Tool)25, 
WorldQual26, and DynQual (Dynamical Surface Water Quality model)27 are the most suitable 
tools  to study water pollution issues on regional to global scales. They account for hydrological 
flows driven by GCMs. Yet, many GCMs  depend on climate forcings that differ largely in 
space and time28,29, adding uncertainties to hydrological projections30. The effects of these 
uncertainties, particularly on river exports of nutrients, plastics, and chemicals, are hardly 
studied worldwide in a spatially explicit way (knowledge gap 1).

Building trust under uncertainties associated with climate-driven hydrological changes is 
important for water quality assessments. Yet, to date, there is no comprehensive assessment of 
the uncertainties associated with hydrological drivers in large-scale water quality models. 
Traditional evaluation methods such as model validation at the catchment scale, are inadequate 
for the complexities of large-scale, climate-driven models: e.g. large diversity in pollutants and 
limited observation data31,32. Hence, large-scale models need thorough evaluation to ensure 
accuracy and reliability, especially for policymaking and environmental management. Gleeson 
et al.33 and Strokal et al.32 emphasise the need for new evaluation methods that go beyond 
validation, especially for emerging pollutants lacking observations31. Strokal et al.32 presented 
a building trust approach for large-scale water quality models (see SI B) with 13 strategies to 
evaluate model inputs, outputs, and structures via comparisons, sensitivity analysis, 
innovations, expert knowledge, and local models32. However, those strategies focus on 
individual models rather than propagating uncertainties through modelling chains for multiple 
pollutants. Hence, explicit ways to assess climate-driven hydrological uncertainties in global 
multi-pollutant assessments of coastal waters are limited in current building trust approaches 
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(knowledge gap 2). 

Our study aims to build trust in future river exports of nutrients (i.e. nitrogen and phosphorus), 
plastics (i.e. micro and macro), and chemicals (i.e. triclosan and diclofenac) under climate-
driven hydrological changes on the sub-basin scale worldwide. We define coastal water 
pollution as river exports of pollutants to seas (in loads). We used a soft-coupled water quantity 
(Variable Infiltration Capacity model; VIC34,35) and water quality (MARINA-Multi18) model 
system, driven by five GCMs, to simulate river exports of six pollutants in 2010 and 2050. We 
followed an economic-driven and high global warming scenario: Shared Socioeconomic 
Pathway 536 and Representative Concentration Pathway 8.537  (SSP5-RCP8.5)38. Then, we 
developed and applied a new approach to build trust in projected trends in coastal water 
pollution across GCMs and pollutants. Focusing on multiple pollutants simultaneously is 
important for two main reasons. First, since pollutants may have different sources and 
pathways, they may respond differently to climate-driven hydrological uncertainties39. Second, 
real-world exposures are typically to multiple pollutants17,18, highlighting the need to 
understand the robustness of multi-pollutant trends under climate-driven hydrological 
uncertainties. This could support the development of environmental policies that are resilient 
to climate-driven uncertainties. Our study contributes to the first global-scale water quality 
model intercomparison effort as proposed by the Water Quality (WQ) sector of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP) which is an international 
collaborative effort that assesses climate change impacts.  (https://www.isimip.org/). 
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2. Methodology 

2.1 A soft-coupled model system 

We used a soft-coupled water quantity (VIC) and water quality (MARINA-Multi) model 
system: i.e. outputs of VIC were used as inputs to MARINA-Multi. VIC provided hydrological 
data driven by five GCMs (Figure 1). The MARINA-Multi model aims to analyse trends and 
sources of water pollution. Hence, it simulates annual river exports of dissolved inorganic (DIN, 
DIP) and dissolved organic (DON, DOP) nitrogen (N) and phosphorus (P), micro- (MIP), and 
macroplastics (MAP), triclosan (TCS), and diclofenac (DCL). We combined inorganic and 
organic nutrients into total dissolved N and P: TDN and TDP. This is done by source for 8,890 
sub-basins for 2010 and 2050 in three steps. 

First, the model simulates inputs of pollutants to rivers from point and diffuse sources (kg/year). 
Point sources include sewage systems and direct discharges of animal manure (only for China 
in 2010) and untreated human waste. Diffuse sources are distinguished between anthropogenic 
and non-anthropogenic (natural). Anthropogenic sources include synthetic fertilisers, animal 
manure, atmospheric N deposition on agricultural areas, biological N2 fixation by crops, 
leaching of organic matter, weathering of P-contained minerals from agricultural areas and 
mismanaged plastic waste. For natural sources, the model includes atmospheric N deposition 
on non-agricultural areas, biological N2 fixation by natural vegetation, leaching of organic 
matter, and weathering of P-contained minerals from non-agricultural areas. Inputs of pollutants 
from land (diffuse sources) to rivers are corrected for the retention and losses in the soil. Second, 
the model simulates inputs of pollutants reaching the outlets of sub-basins (kg/year). These 
inputs are corrected for retention and losses during the export (e.g., river damming, water 
removals, denitrification). Third, the model simulates river exports of pollutants to the river 
mouths (coastal waters) (kg/year) while considering retention and losses. 

For our model runs, we used socio-economic and climate drivers following the combined 
storylines of SSP5-RCP8.5. This economy-driven scenario assumes high emissions and 
moderate population growth, with continued reliance on fossil fuels and a reactive approach to 
environmental challenges. Input data related to socio-economic aspects like population, 
urbanisation, land use, human development, wastewater treatment, agriculture, and waste 
management were directly taken from Micella et al.18 (see SI A). VIC provided five runs for 
drivers namely river discharges based on five GCMs (Figure 1 and SI A).  

We selected five different GCMs following the Coupled Model Intercomparison Project 5 
(CMIP5)40 and ISIMIP2b41 (https://www.isimip.org/): (1) MIROC-ESM-CHEM42, (2) IPSL-
CM5A-LR43, (3) HadGEM2-ES44, (4) NorESM1-M45, and (5) GFDL-ESM2M46. This selection 
covered a variety of features: e.g. their components differ in their resolutions and interaction 
levels29. Each GCM was used by VIC (version 4.1.234,35) to simulate annual natural river 
discharges under RCP8.5. VIC is a widely used process-based hydrological model19,47-51 that 
provided data at the 0.5-degree grid scale. We averaged the data over 2005-2015 (for 2010) and 
2045-2055 (for 2050) and processed it to the sub-basin scale for MARINA-Multi5,15,18, 
separately for all five GCMs (Figure 1, see SI A for details). We chose VIC because of its earlier 
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integration into the MARINA-Multi model19,47-51 (SI A and SI C) and VIC solves both surface 
energy and water balances34,35. The GCM forcing data for VIC were downscaled and bias-
corrected following the trend-preserving ISIMIP approach41. 

2.2 Building trust under climate-driven uncertainties

We developed a three-stage approach to build trust under climate-driven uncertainties. This 
approach complements the 13 alternative strategies as identified by Strokal et al.32. In Stage 1, 
we analysed the ensemble mean and coefficient of variation (CV) in river exports of pollutants 
from five GCMs for 2010 and 2050. The ensemble mean was calculated by averaging the annual 
river exports of each pollutant per unit sub-basin area (kg/km2/yr or g/km2/yr) over five GCMs. 
The CV, calculated as the ratio of the standard deviation to the mean, indicates the spread in 
projected river exports of each pollutant among the five GCMs by sub-basin. 

In Stage 2, we evaluated inter-GCM agreement (Table 1) for changes in river exports of single 
pollutants, focusing solely on 2010 and 2050. Agreements are associated with trust in model 
projections for individual pollutants, whereas disagreement indicates higher climate-driven 
uncertainty in projections. We first calculated the percentage change in river exports of 
pollutants by sub-basin between 2010 and 2050 per GCM (SI, Figure H.1). Second, we set a 
5% threshold for changes in river exports of pollutants to determine the direction of change per 
GCM: >5% indicates an increase in river export, <-5% indicates a decrease in river export, and 
changes between -5% and 5% are deemed inconclusive. Finally, we assessed the agreement 
across GCMs for individual pollutants by sub-basin using the agreement classes as defined in 
Table 1. 

In Stage 3, building on the outcomes of Stage 2 we analysed the multi-pollutant agreement 
(Table 1) by sub-basin and by sea. Agreements are associated with strong multi-pollutant 
trends, whereas disagreements indicate uncertainty in multi-pollutant trends. We estimated the 
area share of multi-pollutant agreement classes for five large seas in the world: the Arctic Sea, 
Mediterranean Sea, Atlantic Ocean, Pacific Ocean, and Indian Ocean (SI, Figure E.1). 
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Figure 1: Overview of the soft-coupled water quantity (light-grey dotted box) and water quality 
(dark-grey dotted box) model system. Global Climate Models (GCMs) provided inputs 
(forcings) to the hydrological VIC model that simulated river discharges for the water quality 
MARINA-Multi model. MARINA-Multi model outputs included river exports of nutrients (TDN, 
TDP), plastics (MIP, MAP) and chemicals (TCS, DCL) in loads (kg/yr). We used five GCMs 
resulting in five model runs. We used the results of the five model runs to analyse future inter-
GCM and multi-pollutant agreements for sub-basins worldwide (see Table 1 for definitions). 
RCP8.5 is short for Representative Concentration Pathway 8.5. Source: see Section 2.2 for 
references to the GCMs and model descriptions.
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Table 1: Agreement classes on the direction of change (increases or decreases) between the 
year 2010 and the year 2050 in river exports of pollutants to seas. The agreement classes are 
used to assess inter-GCM agreement for individual pollutants (Stage 2 in Section 2.2) and the 
multi-pollutant agreement for areas with moderate to very high inter-GCM agreements (Stage 
3 in Section 2.2). Our study includes five GCMs and six pollutants at the sub-basin scale. GCM 
is short for Global Climate Model. 

Agreement 
classes 

Inter-GCM agreement 

(number of GCMs agreeing on 
the direction of change for 
individual pollutants out of the 5 
GCMs)

Multi-pollutant agreement

(number of pollutants agreeing 
on the direction of changes out 
of the 6 pollutants*)

Very high 5/5 6/6

High 4/5 4-5/6

Moderate 3/5 3/6

Diverging - 2/6 or 3/6 **

Disagreement <3/5 ≤ 2/6***

* Only applicable for areas with moderate to very high inter-GCM agreement. 
 ** Equal agreement among pollutants. This applies to two situations: (A) 3 pollutants agree on an 
increasing trend, 3 pollutants agree on a decreasing trend; (B) 2 pollutants agree on an increasing trend, 
2 pollutants agree on a decreasing trend, 2 pollutants show disagreements in trend (i.e. inter-GCM 
disagreement). 
*** The majority of the pollutants disagree due to inter-GCM disagreements. Hence, the multi-pollutant 
agreement remains inconclusive. This applies to six situations: (A) 2 pollutants agree on an increasing 
trend, 1 pollutant shows a decreasing trend, 3 pollutants show disagreements in trends (i.e. inter-GCM 
disagreement); (B) 2 pollutants agree on a decreasing trend, 1 pollutant shows an increasing trend, 3 
pollutants show disagreements in trends (i.e. inter-GCM disagreement); (C) 1 pollutant shows an 
increasing trend, 1 pollutant shows a decreasing trend, 4 pollutants show disagreements in trends (i.e. 
inter-GCM disagreement); (D) 1 pollutant shows an increasing trend, 5 pollutants show disagreements 
in trends (i.e. inter-GCM disagreement); (E) 1 pollutant shows an increasing trend, 5 pollutants show 
disagreements in trends (i.e. inter-GCM disagreement); (F) all 6 pollutants show disagreement in trends 
(i.e. inter-GCM agreement). 
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3. Results

3.1 Ensemble means and variability for individual pollutants (Stage 1)

Pollutant loads are projected to be high in many sub-basins of Asia, Europe, and Central 
America in 2050 (Figure 2). This holds for most pollutants:  >900 kg/km2/yr for TDN, >50 
kg/km2/yr for TDP, >1.5 kg/km2/yr for MIP, >3 g/km2/yr for TCS, and >0.9 g/km2/yr for DCL. 
Exceptions are many sub-basins of Africa and Asia where rivers are projected to export more 
MAP (>6 kg/km2/yr) compared to sub-basins elsewhere in the world. Generally, rivers are 
projected to export much TDN (50 Tg/yr globally) compared to other pollutants (e.g., 2.7 Tg/yr 
for TDP, 0.6 Tg/yr for MAP, and 0.2 Tg/yr for DCL globally). 

Climate-driven uncertainties play a key role in water pollution in (highly) arid areas in 2050 
(Figure 2). For example, the spread in river exports of all pollutants among the five GCMs 
(measured by CV) is generally large in the Middle Eastern, East Asian, South Asian, Northern 
African, and some North and Central American sub-basins (Figure 2). For those sub-basins, 
CVs are highest for nutrients (>0.45), but also relatively higher for plastics and chemicals 
(>0.05) compared to other regions. For nutrients, the spread is projected to be also large in 
Australian sub-basins. Conversely, the spread is generally small for all pollutants in sub-basins 
across  (sub)arctic regions, Southeast Asia, and South America. Among pollutants, the spread 
is approximately four times larger for nutrients than for plastics and chemicals (Figure 2). 

For Africa, mean river exports of pollutants are projected to increase largely under high climate-
driven uncertainties. To illustrate, pollution levels in rivers are projected to rise under global 
change by 2050, ranging from 29-206% across pollutants. These increases in river exports of 
pollutants are often accompanied by a larger spread in future projections, suggesting the 
importance of climate-driven uncertainties in Africa: e.g., 48-60% of the sub-basin areas show 
higher CVs for pollutants in 2050 compared to 2010 (Figure 2 and SI G). Asian sub-basins 
show similar patterns, though less extreme, with pollution levels ranging from a 9% decrease 
to a 93% increase and higher CVs in 14-38% of the areas. Other regions displayed varying 
trends depending on the pollutant and projection (see SI G).
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Figure 2: Ensemble means of river exports of individual pollutants in loads at the sub-basin 
scale worldwide (left panels, kg/km2/yr or g/km2/yr) and their coefficient of variation associated 
with climate-induced hydrological changes (right panels, unitless) for the year 2050. The 
ensemble mean is estimated over five model runs, each of which is based on hydrology 
simulated using climate forcings from one of the five global climate models. CV is short for the 
coefficient of variation, which is the ratio of standard deviation to the mean. *=bins of CVs are 
different for nutrients (TDN, TDP) compared to plastics (MIP, MAP) and chemicals (TCS, 
DCL) to show spatial variability. Pollutants include total dissolved nitrogen (TDN), total 
dissolved phosphorus (TDP), microplastics (MIP), macroplastics (MAP), triclosan (TCS), and 
diclofenac (DCL). 2050 is based on Shared Socioeconomic Pathway 5 (rapid urbanisation and 
high economic development) and Representative Concentrative Pathway 8.5 (high global 
warming). NS (Not part of the Study area) denotes sub-basins that are not part of our study 
area as they do not drain into the seas or are part of Greenland (see SI, Figure E.1  for details). 
Source: the MARINA-Multi model (see Section 2 for the model and scenario descriptions). 
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3.2 Inter-GCM agreements (Stage 2) 

Our results show inter-GCM agreements for over 80% of the sub-basin areas globally (Figure 
3). These areas agree on the direction of change (increases or decreases) in future river exports 
of individual pollutants between 2010 and 2050 for at least three GCMs (Table 1).  

For increases in future pollution levels, 45-84% of sub-basin areas globally show moderate to 
very high inter-GCM agreement (Figure 3, Table 1 for definitions of the agreement classes). 
This range depends on pollutants. For increases in river exports of nutrients, approximately 
two-thirds of sub-basin areas show moderate to very high inter-GCM agreements, especially 
for many sub-basins of Southeast Asia, Sub-Saharan Africa, and parts of North America. For 
increases in river exports of plastics, very high inter-GCM agreements range from 47% (MIP) 
to 84% (MAP) of the sub-basin areas globally. For chemicals, these ranges are 45-50% (Figure 
3). Many North American, Sub-Saharan African, and Southeast Asian sub-basins show very 
high inter-GCM agreements for increases in river exports of MAP and chemicals. 
Anthropogenic sources are expected to play an important role in sub-basins with moderate to 
very high inter-GCM agreements (on increases or decreases). This is because agricultural 
activities (e.g., fertilisers, animal manure, sewage) are projected to contribute 50% of TDN and 
70% of TDP in coastal waters globally in 2050 (SI, Figure J.1). By 2050, household sources, 
such as laundry and dust, are expected to dominate MIP export by rivers (SI, Figure J.1). 

For decreases in future pollution levels, 10-47% of sub-basin areas globally show moderate to 
very high inter-GCM agreements (Figure 3, Table 1). For nutrients, 32-34% of the sub-basin 
areas show moderate to very high inter-GCM agreements, particularly along the west coast of 
North America, Europe, Eastern Asia, and the east coast of Australia. Results show very high 
inter-GCM agreement on decreasing trends in river exports of plastics (10-47% of the area) and 
chemicals (35-42% of the area). This especially holds for many sub-basins of Europe and the 
east coast of North America. While many regions project increases in river exports of MIP by 
2050 (see the previous paragraph), some sub-basins, especially in Eastern Asia, are expected to 
export less. 

Disagreements among GCMs on future trends in river exports of pollutants are estimated for 5-
20% of the sub-basin areas globally (Figure 3). For example, the lowest inter-GCM 
disagreement is estimated for future river exports of MIP (5% of the area) because of the greater 
effects of anthropogenic sources (e.g., household dust in sewage) compared to hydrology. For 
nutrients, the disagreements are estimated for over 15% of the sub-basin areas. This is primarily 
due to the large contribution of natural sources to future nutrient pollution in those areas (SI, 
Figure J.1). The highest disagreement is, however, estimated for future river exports of 
chemicals (15-20% of the global surface areas). 
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c

Figure 3: Inter-GCM agreements for the direction of change (increases or decreases) in river 
exports of individual pollutants between 2010 and 2050 at the sub-basin scale. Maps show sub-
basins for which three (moderate agreement), four (high agreement), or five (very high 
agreement) GCMs agree on the direction of change or sub-basins for which less than three 
GCMs agree (disagreement) on the direction of change. For more details regarding agreement 
classes see Table 1.  Horizontal bars show the share of the global sub-basin area for each 
agreement class (Table 1). This shows the results using a 5% threshold for changes in river 
export of pollutants to determine the direction of change (see SI I, for results using a 1% and 
10% threshold). GCMs are short for global climate models. Pollutants include total dissolved 
nitrogen (TDN), total dissolved phosphorus (TDP), microplastics (MIP), macroplastics (MAP), 
triclosan (TCS), and diclofenac (DCL). 2050 is based on Shared Socioeconomic Pathway 5 
(rapid urbanisation and high economic development) and Representative Concentrative 
Pathway 8.5 (high global warming). NS (Not part of the Study area) denotes sub-basins that 
are not part of our study area as they do not drain into the seas or are part of Greenland (see 
SI, Figure E.1 for details). Source: the MARINA-Multi model (see Section 2 for the model and 
scenario descriptions). 

Page 12 of 26AUTHOR SUBMITTED MANUSCRIPT - ERL-121024.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



13

3.3 Multi-pollutant agreements (Stage 3)

For most of the global sub-basin areas, multi-pollutant agreements (≥3 GCMs for ≥3 pollutants,  
Table 1) are estimated for increases or decreases in river exports by 2050 (Figure 4). For 
increases, very high multi-pollutant agreements cover regions such as Sub-Saharan Africa, 
South Asia, and Subarctic North America (Table 1 for agreement classes). High agreements 
predominantly cover regions like Eastern South America, parts of the United States, and 
Europe. For decreases, very high agreements appear in scattered locations and high agreements 
are prevalent in large parts of Asia, Mexico and parts of Europe and South America. For both 
directions (increases and decreases), areas of moderate agreement are scattered. 

Diverging trends or disagreements cover parts of Northern Asia and Southern America or parts 
of North America. This implies that, although inter-GCM agreements exist for individual 
pollutants, their responses to urbanisation and climate change vary among areas. Those regions 
are often characterised by increases in river exports of nutrients, and MIP, whereas MAP and 
chemicals are projected to decrease by 2050. Contrarily, areas of multi-pollutant disagreement 
are often associated with prominent inter-GCM disagreements for individual pollutants, 
indicating the presence of climate-driven uncertainties. 

Multi-pollutant agreements on future trends for 2050 differ among seas (Figure 4, pies). This 
specifically holds for coastal waters of the Indian Ocean and the Mediterranean Sea, which 
show opposite trends. Projections for the Indian Ocean show multi-pollutant agreements on 
increases for 81% of its drainage area (Figure 4). In contrast, for the Mediterranean Sea,  multi-
pollutant agreements are on decreases for 64% of its drainage area. This differs among other 
coastal waters. For the coastal waters of the Atlantic Ocean, multi-pollutant agreements on 
increases in future pollution are estimated for nearly two-thirds of its drainage area. In the 
Pacific Ocean, this is for 41% of the drainage area, whereas 33% agrees on decreases and 18% 
show diverging trends. The Arctic Ocean has a mix of multi-pollutant agreements (Figure 4).
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Figure 4: Multi-pollutant agreements on the direction of change (increases or decreases) in 
their river exports between 2010 and 2050. The map shows the multi-pollutant agreement (as 
defined in Table 1) in the direction of change in river exports for at least three GCMs across 
six pollutants in a spatially explicit way. The pies show the area share of multi-pollutant 
agreement classes for five large seas in the world (i.e. see SI, Figure E.1 for a specification of 
the drainage areas by sea). Multi-pollutant agreement classes include: moderate (3/6 
pollutants agree) high (4-5/6 pollutants agree), and very high (6/6 pollutants agree), 
disagreement (<3 pollutants agree) and diverging (an equal number of pollutants, i.e. 2/6 or 
3/6 pollutants, agree on each direction). See Table 1 for details on agreement classes.  NS (Not 
part of the Study area) denotes sub-basins that are not part of our study area as they do not 
drain into the seas or are part of Greenland (see SI, Figure E.1 for details). Pollutants include 
total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), microplastics (MIP), 
macroplastics (MAP), triclosan (TCS), and diclofenac (DCL). Source: the MARINA-Multi 
model (see Section 2 for the model and scenario descriptions). 
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4. Discussion 

4.1 Water quality in a changing climate 

Climate change affects the water cycle, and in turn, the water quality. Although hydrological 
changes remain uncertain52,53, inter-GCM agreements highlight hotspots of future wetter and 
drier conditions54 (selected examples of agreement approaches in SI D). Under RCP 8.5 (high 
emissions), approximately five billion people could experience substantial shifts in 
precipitation patterns by 210054. Comparing Trancoso et al.’s54 agreements in water quantity 
trends with our agreements on water quality trends (Figures 3-4, SI I), we find that some wetting 
regions (e.g. Northern Europe, and Northern America) show increasing pollution levels. Yet, 
this does not apply to all areas, implying that socio-economic drivers play an important role in 
water quality trends17,18,39. Generally, arid areas (e.g., Saharan Africa or Australia) show 
relatively low wetting or drying agreements54,55. This aligns with our findings of greater 
variability in natural river discharge (higher CV, see SI F) and pollutant exports (higher CV in 
Figure 2). As we used 10-year averaged hydrological inputs for five GCMs, our sample size 
was relatively small and may have introduced biases in our CV results. While averaging 
reduced the effect of cascading uncertainties (SI, Figure L.3), we may have under- or 
overestimated uncertainties related to dry and wet years (SI, Figures L.1-L.2). The main 
message remains unchanged when accounting for yearly hydrological inputs (55 model runs, 
SI, Figure L.2), while the results require careful interpretation. 

Our results show that in an economically driven future with reactive environmental 
management and high-emissions (SSP5-RCP8.5), river exports of studied pollutants will 
increase globally, with greater climate-induced uncertainty in model simulations across all 
analysed regions. This highlights the need  to act. This especially holds for areas like Sub-
Saharan Africa, where monitoring data are lacking17, pollution levels are projected to increase 
substantially, and model uncertainty is greatest (Figure 2). In regions with high river exports of 
pollutants, investments might be useful to focus on greater political and public awareness of 
water quality issues31, along with identifying and implementing effective solutions to tackle 
regional pollution challenges. This requires an understanding of climate-driven hydrological 
uncertainties in water quality models (this study), drivers of pollution in hotspot areas56, 
technological developments57,58, alternative treatment pathways (e.g. constructed wetlands)59, 
and awareness campaigns60-62. In areas with higher climate-induced uncertainties, investments 
could be useful in mitigating climate-related water quality risks via monitoring strategies that 
ensure accessible and transparent outputs. For example, accessible monitoring data could help 
to enhance our understanding of prominent issues today (i.e., evaluation of current status and 
supporting decision-making), while preparing for arising issues in the decades to come (i.e., 
reduce uncertainties in global water quantity and quality models)63. In Figure M.1 of the SI, we 
show that an alternative future with proactive environmental management and low-emissions 
(SSP1-RCP2.6) can substantially limit pollution and climate-induced uncertainty. Examples 
include monitoring campaigns for areas with higher climate-driven hydrological uncertainties, 
targeted research, and implementation of effective pollution reduction strategies. 
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This study contributes to improving the transparency and robustness of simplified global water 
quality models. Our water quality model simulates pollutant inputs from land to river and river 
exports to coastal waters under climate-driven hydrological changes (see Figure 1 and SI Figure 
N.1 and SI A and N for descriptions of the approach). However, land-to-river transport 
processes, such as nutrient runoff, weathering of P-contained minerals, and leaching of organic 
matter are treated in a simplified and static manner. They are not dynamically modelled in 
response to climate change, which limits their physical representations when simulating total 
pollutant export estimates. The goal of this study is narrower: to quantify how climate-driven 
hydrological changes affect annual river export loads of nutrients, plastics, and chemicals at the 
sub-basin scale by 2050, relative to 2010, under a high-end warming scenario (SSP5-RCP8.5). 
This is achieved using the soft-coupled VIC-MARINA-Multi framework. By isolating 
hydrological drivers, we are able to assess how uncertainties in future hydrology propagate 
through the modelling chain and influence the robustness of global river export projections. We 
foresee the benefits of more integrated water quality assessments (e.g. better representation of 
dynamic climate-sensitive terrestrial processes) by linking large-scale water quality models 
with advanced Terrestrial or Earth Systems Models. For instance, LM3-TAN64 or the 
Community Land Model65, could complement large-scale water quality models as they offer a 
detailed representation of terrestrial processes and biogeochemical cycling. However, such 
models often do not account for emerging pollutants such as plastics and chemicals. They are 
often computation-heavy. Moreover, the global water quality modelling community is still in 
an early stage of development. As such, this level of integration is beyond the scope of this 
study. Future work should aim to incorporate these climate-sensitive processes to further 
improve the robustness of large-scale water quality projections under climate change. 4.2 
Model uncertainties and their propagation

Our models contain uncertainties in inputs, parameters, structure, outputs, and scenarios. When 
coupled, these uncertainties propagate through the system, compounding their influence on the 
accuracy and interpretation of results. Below, we analyse the individual model uncertainties 
and illustrate how they propagate across the modelling chain.

Individual model uncertainties
GCMs simplify complex climate systems with different levels of complexity (Table O.1) and 
are based on limited knowledge of some key climate variables. This introduces structural and 
parameter uncertainties, which could lead to a range in long-term projections66. Hence, using 
model ensembles is widely recommended to capture a broader range of possible outcomes. 
Although using more models (e.g., 10) could improve peak streamflow predictions30, our five 
selected GCMs effectively captured the overall variability as they represent a wide range of 
simulation projections67,68 (Table O.1). Uncertainties in the hydrological simulations of the VIC 
model are well-studied35 (see Liang et al.34 for details on validation and Van Vliet et al.35 for a 
hydrological model intercomparison) and originate from three main sources: inherent structural 
differences in GCMs that affect input data (structural/input uncertainties), downscaling of GCM 
outputs (scenario uncertainties), and simplification of hydrological processes (structural 
uncertainties). Additionally, knowledge gaps in hydrological parameters contribute to 
parameter uncertainties35. While relying on a single hydrological model and a single water 
quality model ensures internal consistency, it limits the ability to explore structural variability. 
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Future studies could address this limitation by integrating multiple hydrological models. 
Uncertainties in MARINA-Multi are addressed13,16,18 and mainly related to structure (e.g., 
deterministic model), parameterisation (e.g., hydrological sensitivity of model parameters, see 
SI C), and model inputs (e.g., river discharge69). This inherently limits its ability to capture 
dynamic water quality processes. Yet, the model is strong in analysing source attributions and 
scenario analyses to support policy-relevant questions on multi-pollutant reductions. To build 
trust in its projections, the MARINA-Multi model has been validated for the year 2010 against 
historical data13,16 (see Table B.2). Its reliability for future assessments has also been evaluated 
through comparisons with other global and regional (Africa) modelling efforts16,18 (see Table 
B.2). A comprehensive description of the model’s structure, equations, and the outcomes of 
both validation and evaluation are available in Micella et al.18. Finally, all models are also 
subject to scenario uncertainty, as storylines, such as those represented by SSPs36 and RCPs37, 
can influence projections.  

Propagation of uncertainties in the modelling chain
Understanding the propagation of uncertainties throughout the modelling chain is essential for 
multi-pollutant assessments. Hence, we evaluated the relative sensitivity of the MARINA-Multi 
model to variations in inputs across the modelling chain (SI K-L). First, GCM uncertainties 
propagate into the VIC model. For instance, river discharge projections based on the HadGEM 
model consistently yielded the highest river exports across pollutants. Conversely, the NorESM 
or MIROC models often generated the lowest river exports across pollutants (see SI, Table 
K.1). This may be explained by their differences in climate forcings (e.g. greenhouse gas 
scenarios)28 and variations in atmospheric process modelling29. Second, uncertainties propagate 
further into the MARINA-Multi model. We first projected pollutant inputs to rivers by GCM-
driven hydrology (see SI Figure N.1), which already revealed a spread in inputs, particularly 
for nutrients (see SI Figure N.2). This may be explained by the influence of diffuse sources, 
which are strongly driven by surface runoff2,18 (see Box N.1). This especially holds for low-
discharge conditions, where rainfall variability amplifies discharge fluctuations70,71. Then, we 
account for pollutant retention processes in rivers, reservoirs and through water consumption 
to quantify the river exports of pollutants to seas among the 5 GCMs. The spread in river exports  
indicates a stronger influence of uncertainties on nutrients (e.g. 50-54 Tg for TDN) compared 
to plastics and chemicals (e.g. 396-416 ton for TCS; see SI, Table K.1). Moreover, uncertainties 
are larger for projections of pollutant exports by rivers than for pollutant inputs to the rivers. 
Here, climate-driven uncertainties for pollutants from point sources are mainly related to 
retention/removal processes in rivers and reservoirs, which depend on discharge and water 
residence times15,18. Despite cascading uncertainties, the MARINA-Multi model remains 
robust. Its consistency, partly due to its simplicity, reinforces its credibility in identifying 
climate-driven hydrological changes which affect pollutant flows and key processes. 
Understanding uncertainty propagation allows us to refine models and improve techniques, 
ensuring reliable, policy-relevant insights. 

4.3 Reflection on a new multi-pollutant building trust approach 

We identified three principles to keep in mind when building trust in large-scale multi-pollutant 
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models under climate-driven hydrological changes. 

Principle 1: Be aware of the strengths and limitations of large-scale water quality models. 
Our modelling system’s strengths include its ability to simulate multiple pollutants 
simultaneously, for past and future years while accounting for climate-driven hydrological 
uncertainties (knowledge gap 1, Section 1). This enables analyses of pollutant behaviour and 
trends while keeping computational demands low, making results accessible. However, 
simplicity also limits resolution and affects hydrological sensitivity across pollutants. For 
example, phosphorus appears to be the most sensitive and microplastics least sensitive (see 
Section 3.1 and SI, Table K.1 and Boxes N.1-N.2), potentially contributing to cascading 
uncertainties (Section 4.2). For example, as dynamics in climate-driven terrestrial pollutant 
flows are not represented explicitly, this limits our capacity to model total pollutant export by 
rivers dynamically. In our study, this was not the aim. Our modelling system enhances 
understanding of global water quality trends under climate-driven hydrological changes and 
extends to broader environmental challenges. By leveraging ISIMIP hydrological data, we can 
generate insights relevant to multiple sectors, including lakes and ecosystems (as demonstrated 
by Tigli et al.9). 

Principle 2: Select evaluation strategies based on pollutants and model purpose. Validation 
is commonly used to evaluate models, yet dependent on monitoring data and, therefore, may 
not be ideal for building trust in emerging pollutants, data-scarce regions, and future trends32. 
Hence, the applicability of evaluation strategies may depend on the selected pollutants and the 
model’s purpose. Strokal et al.,32 identified 13 model evaluation strategies (overview in SI 
Table B.1). Yet, these strategies do not explicitly account for building trust under uncertainties 
associated with climate-driven hydrological changes (knowledge gap 2, Section 1). Our 
proposed three-stage approach (Section 2.3) can complement the 13 strategies as identified by 
Strokal et al.,32  as it focuses on understanding the extent to which emergent trends in water 
pollution are robust across a range of GCMs and pollutants. Herewith, it proves a broader, 
integrative perspective on uncertainty than conventional sensitivity analysis offers. For 
example, while our approach involves varying model inputs, it differs from sensitivity analysis 
in both purpose and execution (see Table B.1 and Box B.1 in the SI). While we used VIC and 
MARINA-Multi, our approach is adaptable to other models in frameworks like ISIMIP. An 
example of this is the application to the DynQual model72.  

Principle 3: Clear and transparent communication reinforces trust. With this study, we 
have built trust in multi-pollutant projections under climate-driven hydrological changes. Yet, 
our results remain an abstraction of environmental systems, including their cascading 
uncertainties, and, therefore, should be treated carefully. By presenting results, their 
uncertainties, and the potential implications of those uncertainties clearly and transparently, we 
can reinforce trust. Avoiding jargon, indicating the model’s purpose, and providing context to 
model evaluation results is essential for correct interpretation and effective communication with 
other scientific disciplines and policymakers. This aids in a wide understanding of uncertainties 
associated with climate-driven hydrological changes in pollution management. Enabling 
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identification of context-specific solutions to future water quality issues amid growing pressure 
on climate, environmental systems, and society. 
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5. Conclusion 

We developed and applied a three-stage approach to build trust in future river exports 
worldwide under climate-driven hydrological changes for nutrients, plastics, and chemicals, 
simultaneously. For this, we used a soft-coupled water quantity (VIC) and water quality 
(MARINA-Multi) model system, driven by five Global Climate Models under a high global 
warming scenario (RCP8.5). We ran the MARINA-Multi model with VIC hydrological outputs 
for each GCM to quantify river exports of pollutants to seas for 2010 and 2050. In arid regions 
such as the Middle East, East Asia, and Northern Africa, climate-driven uncertainties play a 
key role in future river pollutant exports. For many African sub-basins, high increases in river 
exports of pollutants are projected by 2050 under high climate-driven uncertainties. Globally, 
over 80% of the sub-basin areas agree on future trends, either increasing or decreasing, in river 
exports of individual pollutants for at least three GCMs. Multi-pollutant agreements on future 
trends differ among seas: 53% of the area agrees on increasing river exports of six pollutants 
into the Indian Ocean by 2050, whereas 17% agrees on decreasing trends for the Mediterranean 
Sea. Our approach builds trust in future multi-pollutant trends under climate-driven 
hydrological changes, strengthening global water quality assessments. Providing clear and 
transparent information on climate-driven hydrological uncertainties improves awareness and 
supports the effective use of water quality model outputs for well-informed actions. 
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