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worldwide under climate-driven hydrological changes

Mirjam P Bak"”* (@), Ilaria Micella”* ), Edward R Jones’ (), Rohini Kumar’ (), Albert Nkwasa"* (@,
Ting Tang’©®, Michelle T H van Vliet’(©, Mengru Wang'© and Maryna Strokal'

Earth Systems and Global Change Group, Wageningen University & Research, Wageningen, The Netherlands

Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands

Department Computational Hydrosystems, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig 04318, Germany
Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis
(ITASA), Schlossplatz 1, A-2361 Laxenburg, Austria

Department of Water and Climate, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium

Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi
Arabia

7 Equal first authorship.

* Authors to whom any correspondence should be addressed.

1
2
3
4

o w

E-mail: mirjam.bak@wur.nl and ilaria.micella@wur.nl

Keywords: water quality, multiple pollutants, building trust, climate, uncertainty, hydrological changes

Supplementary material for this article is available online

Abstract

Future climate-driven hydrological changes may strongly affect river exports of multiple pollutants
to coastal waters. In large-scale water quality (WQ) models the effects are, however, associated with
uncertainties that may differ in space and time but are hardly studied worldwide and for multiple
pollutants simultaneously. Moreover, explicit ways to assess climate-driven uncertainties in
large-scale multi-pollutant assessments are currently limited. Here, we aim to build trust in future
river exports of nutrients (i.e. nitrogen and phosphorus), plastics (i.e. micro and macroplastics),
and chemicals (i.e. diclofenac and triclosan) under climate-driven hydrological changes on the
sub-basin scale worldwide. We used a soft-coupled global hydrological (VIC) and WQ
(MARINA-Multi) model system, driven by five Global Climate Models (GCMs), to quantify river
exports of selected pollutants to seas for 2010 and 2050 under an economy-driven and high global
warming scenario. Subsequently, we developed and applied a new approach to build trust in
projected future trends in coastal water pollution for the selected pollutants. Results reveal that in
arid regions, such as the Middle East, East Asia, and Northern Africa, climate-driven uncertainties
play a key role in future river exports of pollutants. For African sub-basins, high increases in river
exports of pollutants are projected by 2050 under climate-driven hydrological uncertainty.
Nevertheless, over 80% of the global sub-basin areas agree on the direction of change in future
river exports of individual pollutants for at least three GCMs. Multi-pollutant agreements differ
among seas: 53% of the area agrees on increasing river exports of six pollutants into the Indian
Ocean by 2050, whereas 17% agrees on decreasing trends for the Mediterranean Sea. Our study
indicated that even under climate-driven hydrological uncertainties, large-scale WQ models
remain useful tools for future WQ assessments. Yet, awareness and transparency of modelling
uncertainties are essential when utilising model outputs for well-informed actions.

1. Introduction export these pollutants often from common sources

such as agricultural runoff and sewage systems [2,
Nutrients, plastics, and chemicals enter rivers and 5-8] impacting the aquatic environment. Nutrient
then are exported to coastal waters [1-4]. Rivers pollution, for example, triggers harmful algal

© 2025 The Author(s). Published by IOP Publishing Ltd
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blooms [9, 10], while plastics and chemicals disrupt
ecosystems [11, 12]. Today, many rivers and coastal
waters are exposed to multi-pollutant issues [13-16].
In the future, water pollution is likely to increase due
to socio-economic developments like urbanisation
and population growth [15-18].

Climate change is expected to influence river
exports of pollutants because of long-term changes in
runoff, river discharge patterns [16, 19, 20], and water
storage [21, 22]. In large-scale water quality (WQ)
models, this may affect flows of pollutants as well as
their retention in river systems [17, 18]. In addition,
climate change affects terrestrial pollutant sources
and biogeochemical processes. For example, rising
temperatures can alter nutrient cycling and pollut-
ant emissions [23]. This study, however, focuses spe-
cifically on the effects of climate-driven hydrological
changes on river exports of multiple pollutants. The
meteorological forcings (e.g. air temperature, precip-
itation) from global climate models (CGMs) are often
used by global hydrological models to project run-
off and river discharges, which are further used as
input to global WQ models. Large-scale WQ mod-
els such as MARINA-Multi (Model to Assess River
Inputs of pollutaNts to seAs) [18], IMAGE-GNM
(Integrated Model to Assess the Global Environment-
Global Nutrient Model) [24], SWAT+ (Soil and
Water Assessment Tool) [25], WorldQual [26], and
DynQual (Dynamical Surface WQ model) [27] are
the most suitable tools to study water pollution issues
on regional to global scales. They account for hydro-
logical flows driven by GCMs. Yet, many GCMs
depend on climate forcings that differ largely in space
and time [28, 29], adding uncertainties to hydrolo-
gical projections [30]. The effects of these uncertain-
ties, particularly on river exports of nutrients, plastics,
and chemicals, are hardly studied worldwide in a spa-
tially explicit way (knowledge gap 1).

Building trust under uncertainties associated with
climate-driven hydrological changes is important for
WQ assessments. Yet, to date, there is no compre-
hensive assessment of the uncertainties associated
with hydrological drivers in large-scale WQ models.
Traditional evaluation methods, such as model val-
idation at the catchment scale, are inadequate for
the complexities of large-scale, climate-driven mod-
els: e.g. large diversity in pollutants and limited obser-
vation data [31, 32]. Hence, large-scale models need
thorough evaluation to ensure accuracy and reliab-
ility, especially for policymaking and environmental
management. Gleeson et al [33] and Strokal et al [32]
emphasise the need for new evaluation methods that
go beyond validation, especially for emerging pol-
lutants lacking observations [31]. Strokal et al [32]
presented a building trust approach for large-scale
WQ models (see SI appendix B) with 13 strategies
to evaluate model inputs, outputs, and structures
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via comparisons, sensitivity analysis, innovations,
expert knowledge, and local models [32]. However,
those strategies focus on individual models rather
than propagating uncertainties through modelling
chains for multiple pollutants. Hence, explicit ways
to assess climate-driven hydrological uncertainties in
global multi-pollutant assessments of coastal waters
are limited in current building trust approaches
(knowledge gap 2).

Our study aims to build trust in future river
exports of nutrients (i.e. nitrogen and phosphorus),
plastics (i.e. micro and macro), and chemicals
(i.e. triclosan and diclofenac) under climate-driven
hydrological changes on the sub-basin scale world-
wide. We define coastal water pollution as river
exports of pollutants to seas (in loads). We used a soft-
coupled water quantity (variable infiltration capacity
model; VIC [34, 35]) and WQ (MARINA-Multi [18])
model system, driven by five GCMs, to simulate river
exports of six pollutants in 2010 and 2050. We fol-
lowed an economy-driven and high global warm-
ing scenario: Shared Socioeconomic Pathway 5 [36]
and Representative Concentration Pathway 8.5 [37]
(SSP5-RCP8.5) [38]. Then, we developed and applied
a new approach to build trust in projected trends in
coastal water pollution across GCMs and pollutants.
Focusing on multiple pollutants simultaneously is
important for two main reasons. First, since pollut-
ants may have different sources and pathways, they
may respond differently to climate-driven hydrolo-
gical uncertainties [39]. Second, real-world exposures
are typically to multiple pollutants [ 17, 18], highlight-
ing the need to understand the robustness of multi-
pollutant trends under climate-driven hydrological
uncertainties. This could support the development of
environmental policies that are resilient to climate-
driven uncertainties. Our study contributes to the
first global-scale WQ model intercomparison effort
as proposed by the WQ sector of the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP)
which is an international collaborative effort that
assesses climate change impacts. (www.isimip.org/).

2. Methodology

2.1. A soft-coupled model system

We used a soft-coupled water quantity (VIC) and
WQ (MARINA-Multi) model system: i.e. outputs of
VIC were used as inputs to MARINA-Multi (figure 1).
VIC provided hydrological data driven by five GCMs
(figure 1). The MARINA-Multi model aims to ana-
lyse trends and sources of water pollution. Hence,
it simulates annual river exports of dissolved inor-
ganic (DIN, DIP) and dissolved organic (DON,
DOP) nitrogen (N) and phosphorus (P), micro-
(MIP), and macroplastics (MAP), triclosan (TCS),
and diclofenac (DCL). We combined inorganic and


https://www.isimip.org/

10P Publishing

Environ. Res. Lett. 20 (2025) 094033

M P Bak et al

Global Climate
Models

Global Hydro-
logical Model

Emission scenario
7T

I

— model run 5

and model descriptions.

— model run1 TDN  total dissolved nitrogen ¢ inter-GCM agreement
—— model run 2 TDP  total dissolved phosphorus ' multi-pollutant agreement
— % model run 3 MIP  microplastics

model run 4 MAP  macroplastics

TCS  triclosan
DCF  diclofenac

Figure 1. Overview of the soft-coupled water quantity (light-grey dotted box) and water quality (dark-grey dotted box) model
system. Global climate models (GCMs) provided inputs (forcings) to the hydrological VIC model that simulated river discharges
for the water quality MARINA-multi model. MARINA-multi model outputs included river exports of nutrients (TDN, TDP),
plastics (MIP, MAP) and chemicals (TCS, DCL) in loads (kg yr—!). We used five GCM:s resulting in five model runs. We used the
results of the five model runs to analyse future inter-GCM and multi-pollutant agreements for sub-basins worldwide (see table 1
for definitions). RCP8.5 is short for Representative Concentration Pathway 8.5. Source: see section 2.2 for references to the GCMs

this study

Global Water
Quality Model

river export of pollutants by
sub-basin by GCM (kg/yr)

TDN, TDP, MIP, MAP, TCS, DCL

TDN, TDP, MIP, MAP, TCS, DCL

MARINA-Multi

TDN, TDP, MIP, MAP, TCS, DCL
Model

TDN, TDP, MIP, MAP, TCS, DCL

TDN, TDP, MIP, MAP, TCS, DCL

organic nutrients into total dissolved N and P: TDN
and TDP. This is done by source for 8890 sub-basins
for 2010 and 2050 in three steps.

First, the model simulates inputs of pollutants
to rivers from point and diffuse sources (kg yr—1).
Point sources include sewage systems and direct
discharges of animal manure (only for China in
2010) and untreated human waste. Diffuse sources
are distinguished between anthropogenic and non-
anthropogenic (natural). Anthropogenic sources
include synthetic fertilisers, animal manure, atmo-
spheric N deposition on agricultural areas, biolo-
gical N, fixation by crops, leaching of organic mat-
ter, weathering of P-contained minerals from agri-
cultural areas and mismanaged plastic waste. For
natural sources, the model includes atmospheric N
deposition on non-agricultural areas, biological N,
fixation by natural vegetation, leaching of organic
matter, and weathering of P-contained minerals from
non-agricultural areas. Inputs of pollutants from
land (diffuse sources) to rivers are corrected for the
retention and losses in the soil. Second, the model
simulates inputs of pollutants reaching the outlets
of sub-basins (kg yr—!). These inputs are corrected
for retention and losses during the export (e.g. river
damming, water removals, denitrification). Third,
the model simulates river exports of pollutants to the
river mouths (coastal waters) (kg yr—!) while consid-
ering retention and losses.

For our model runs, we used socio-economic and
climate drivers following the combined storylines
of SSP5-RCP8.5. This economy-driven scenario
assumes high emissions and moderate population
growth, with continued reliance on fossil fuels and
a reactive approach to environmental challenges.

Input data related to socio-economic aspects like
population, urbanisation, land use, human develop-
ment, wastewater treatment, agriculture, and waste
management were directly taken from Micella et al
[18] (see SI appendix A). VIC provided five runs for
drivers namely river discharges based on five GCMs
(figure 1 and SI (appendix A).

We selected five different GCMs following the
Coupled Model Intercomparison Project 5 (CMIP5)
[40] and ISIMIP2b [41] (www.isimip.org/): (1)
MIROC-ESM-CHEM [42], (2) IPSL-CM5A-LR [43],
(3) HadGEM2-ES [44], (4) NorESM1-M [45], and
(5) GFDL-ESM2M [46]. This selection covered a vari-
ety of features: e.g. their components differ in their
resolutions and interaction levels [29]. Each GCM
was used by VIC (version 4.1.2 [34, 35]) to simulate
annual natural river discharges under RCP8.5. VIC is
a widely used process-based hydrological model [19,
47-51] that provided data at the 0.5-degree grid scale.
We averaged the data over 2005-2015 (for 2010) and
2045-2055 (for 2050) and processed it to the sub-
basin scale for MARINA-Multi [5, 15, 18], separately
for all five GCMs (figure 1, see SI appendix A for
details). We chose VIC because of its earlier integ-
ration into the MARINA-Multi model [19, 47-51]
(ST appendix A and SI appendix C) and VIC solves
both surface energy and water balances [34, 35]. The
GCM forcing data for VIC were downscaled and
bias-corrected following the trend-preserving ISIMIP
approach [41].

2.2. Building trust under climate-driven
uncertainties

We developed a three-stage approach to build trust
under climate-driven uncertainties. This approach

3
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Table 1. Agreement classes on the direction of change (increases or decreases) between the year 2010 and the year 2050 in river exports
of pollutants to seas. The agreement classes are used to assess inter-GCM agreement for individual pollutants (Stage 2 in section 2.2) and
the multi-pollutant agreement for areas with moderate to very high inter-GCM agreements (Stage 3 in section 2.2). Our study includes
five GCMs and six pollutants at the sub-basin scale. GCM is short for global climate model.

Inter-GCM agreement
(number of GCMs agreeing
on the direction of change
for individual pollutants

Multi-pollutant agreement
(number of pollutants
agreeing on the direction
of changes out of the six

Agreement classes out of the five GCMs) pollutants®)
Very high 5/5 6/6

High 4/5 4-5/6
Moderate 3/5 3/6
Diverging — 2/6 or 3/6°
Disagreement <3/5 < 2/6°

2 Only applicable for areas with moderate to very high inter-GCM agreement.

b Equal agreement among pollutants. This applies to two situations: (A) three pollutants agree on an

increasing trend, three pollutants agree on a decreasing trend; (B) two pollutants agree on an increasing

trend, two pollutants agree on a decreasing trend, two pollutants show disagreements in trend (i.e.

inter-GCM disagreement).

¢ The majority of the pollutants disagree due to inter-GCM disagreements. Hence, the multi-pollutant

agreement remains inconclusive. This applies to six situations: (A) two pollutants agree on an increasing

trend, one pollutant shows a decreasing trend, three pollutants show disagreements in trends (i.e. inter-GCM
disagreement); (B) two pollutants agree on a decreasing trend, one pollutant shows an increasing trend, three
pollutants show disagreements in trends (i.e. inter-GCM disagreement); (C) one pollutant shows an
increasing trend, one pollutant shows a decreasing trend, four pollutants show disagreements in trends (i.e.
inter-GCM disagreement); (D) one pollutant shows an increasing trend, five pollutants show disagreements
in trends (i.e. inter-GCM disagreement); (E) one pollutant shows an increasing trend, five pollutants show

disagreements in trends (i.e. inter-GCM disagreement); (F) all six pollutants show disagreement in trends

(i.e. inter-GCM agreement).

complements the 13 alternative strategies as identi-
fied by Strokal et al [32]. In Stage 1, we analysed the
ensemble mean and coefficient of variation (CV) in
river exports of pollutants from five GCMs for 2010
and 2050. The ensemble mean was calculated by aver-
aging the annual river exports of each pollutant per
unit sub-basin area (kg km™2 yr=! or g km =2 yr~!)
over five GCMs. The CV, calculated as the ratio of the
standard deviation to the mean, indicates the spread
in projected river exports of each pollutant among the
five GCMs by sub-basin.

In Stage 2, we evaluated inter-GCM agreement
(table 1) for changes in river exports of single pollut-
ants, focusing solely on 2010 and 2050. Agreements
are associated with trust in model projections for
individual pollutants, whereas disagreement indicates
higher climate-driven uncertainty in projections. We
first calculated the percentage change in river exports
of pollutants by sub-basin between 2010 and 2050 per
GCM (S, figure H.1). Second, we set a 5% threshold
for changes in river exports of pollutants to determine
the direction of change per GCM: >5% indicates an
increase in river export, <—>5% indicates a decrease in
river export, and changes between —5% and 5% are
deemed inconclusive. Finally, we assessed the agree-
ment across GCMs for individual pollutants by sub-
basin using the agreement classes as defined in table 1.

In Stage 3, building on the outcomes of Stage 2 we
analysed the multi-pollutant agreement (table 1) by
sub-basin and by sea. Agreements are associated with

strong multi-pollutant trends, whereas disagreements
indicate uncertainty in multi-pollutant trends. We
estimated the area share of multi-pollutant agreement
classes for five large seas in the world: the Arctic Sea,
Mediterranean Sea, Atlantic Ocean, Pacific Ocean,
and Indian Ocean (S, figure E.1).

3. Results

3.1. Ensemble means and variability for individual
pollutants (Stage 1)
Pollutant loads are projected to be high in many
sub-basins of Asia, Europe, and Central America
in 2050 (figure 2). This holds for most pollutants:
>900 kg km 2 yr~! for TDN, >50kg~? yr ! for TDP,
>1.5kg™? yr~! for MIP, >3 g~2 yr~! for TCS, and
>0.9 g=2 yr~! for DCL. Exceptions are many sub-
basins of Africa and Asia where rivers are projected
to export more MAP (>6 kg=2 yr~!) compared to
sub-basins elsewhere in the world. Generally, rivers
are projected to export much TDN (50 Tg yr~! glob-
ally) compared to other pollutants (e.g. 2.7 Tg yr—!
for TDP, 0.6 Tg yr—! for MAP, and 0.2 Tg yr~! for
DCL globally).

Climate-driven uncertainties play a key role
in water pollution in (highly) arid areas in 2050
(figure 2). For example, the spread in river exports
of all pollutants among the five GCMs (measured
by CV) is generally large in the Middle Eastern,
East Asian, South Asian, Northern African, and some
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mean river export of pollutants

TDN

TDP

MiP

MAP

TCS

DCL

(g/km?/yr)00-0.0300.03-0.300.3-0.90>0.9[JNS

model and scenario descriptions).

Figure 2. Ensemble means of river exports of individual pollutants in loads at the sub-basin scale worldwide (left panels,
kgkm=2y~! or gkm =2 yr~!) and their coefficient of variation associated with climate-driven hydrological changes (right
panels, unitless) for the year 2050. The ensemble mean is estimated over five model runs, each of which is based on hydrology
simulated using climate forcings from one of the five global climate models. CV is short for the coefficient of variation, which is
the ratio of standard deviation to the mean. * = bins of CVs are different for nutrients (TDN, TDP) compared to plastics (MIP,
MAP) and chemicals (TCS, DCL) to show spatial variability. Pollutants include total dissolved nitrogen (TDN), total dissolved
phosphorus (TDP), microplastics (MIP), macroplastics (MAP), triclosan (TCS), and diclofenac (DCL). 2050 is based on Shared
Socioeconomic Pathway 5 (rapid urbanisation and high economic development) and Representative Concentrative Pathway 8.5
(high global warming). NS (Not part of the study area) denotes sub-basins that are not part of our study area as they do not drain
into the seas or are part of Greenland (see SI, figure E.1 for details). Source: the MARINA-Multi model [52] (see section 2 for the

Coefficient of Variation (CV)*

(-)H0-0.000500.0005-0.007 [§ 0.007-0.05[]>0.05 [ NS

North and Central American sub-basins (figure 2).
For those sub-basins, CVs are highest for nutri-
ents (>0.45), but also relatively higher for plastics
and chemicals (>0.05) compared to other regions.
For nutrients, the spread is also projected to be
large in Australian sub-basins. Conversely, the spread
is generally small for all pollutants in sub-basins
across (sub)arctic regions, Southeast Asia, and South

America. Among pollutants, the spread is approxim-
ately four times larger for nutrients than for plastics
and chemicals (figure 2).

For Africa, mean river exports of pollutants are
projected to increase largely under high climate-
driven uncertainties. To illustrate, pollution levels
in rivers are projected to rise under global change
by 2050, ranging from 29%-206% across pollutants.




10P Publishing

Environ. Res. Lett. 20 (2025) 094033

M P Bak et al

TDN

50
% of sub-basin area

% of sub-basin area

TDP

Agreementon decreases

% of sub-basin area

Agreementon increases

Disagreement (< 3/5 GCMs)

scenario descriptions).

Moderate (3/5GCMs) [___] [__| Moderate (3/5 GCMs)
High (4/sGcMs) [ [ High (4/5 GCMs)
very High (5/5GcMs) [ I very High (5/5 GCMs)

L s

Figure 3. Inter-GCM agreements for the direction of change (increases or decreases) in river exports of individual pollutants
between 2010 and 2050 at the sub-basin scale. Maps show sub-basins for which three (moderate agreement), four (high
agreement), or five (very high agreement) GCMs agree on the direction of change or sub-basins for which less than three GCMs
agree (disagreement) on the direction of change. For more details regarding agreement classes see table 1. Horizontal bars show
the share of the global sub-basin area for each agreement class (table 1). This shows the results using a 5% threshold for changes
in river export of pollutants to determine the direction of change (see SI appendix I, for results using a 1% and 10% threshold).
GCMs are short for global climate models. Pollutants include total dissolved nitrogen (TDN), total dissolved phosphorus (TDP),
microplastics (MIP), macroplastics (MAP), triclosan (TCS), and diclofenac (DCL). 2050 is based on Shared Socioeconomic
Pathway 5 (rapid urbanisation and high economic development) and Representative Concentrative Pathway 8.5 (high global
warming). NS (Not part of the study area) denotes sub-basins that are not part of our study area as they do not drain into the seas
or are part of Greenland (see SI, figure E.1 for details). Source: the MARINA-Multi model [52] (see section 2 for the model and

These increases in river exports of pollutants are often
accompanied by a larger spread in future projections,
suggesting the importance of climate-driven uncer-
tainties in Africa: e.g. 48%—-60% of the sub-basin areas
show higher CVs for pollutants in 2050 compared to
2010 (figures 2 and SI appendix G). Asian sub-basins
show similar patterns, though less extreme, with pol-
lution levels ranging from a 9% decrease to a 93%
increase and higher CVs in 14%-38% of the areas.
Other regions displayed varying trends depending on
the pollutant and projection (see SI appendix G).

3.2. Inter-GCM agreements (Stage 2)

Our results show inter-GCM agreements for over
80% of the sub-basin areas globally (figure 3). These
areas agree on the direction of change (increases or
decreases) in future river exports of individual pollut-
ants between 2010 and 2050 for at least three GCMs
(table 1).

For increases in future pollution levels, 45%—
84% of sub-basin areas globally show moderate to
very high inter-GCM agreement (figure 3, table 1
for definitions of the agreement classes). This
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range depends on pollutants. For increases in river
exports of nutrients, approximately two-thirds of
sub-basin areas show moderate to very high inter-
GCM agreements, especially for many sub-basins
of Southeast Asia, Sub-Saharan Africa, and parts
of North America. For increases in river exports
of plastics, very high inter-GCM agreements range
from 47% (MIP) to 84% (MAP) of the sub-basin
areas globally. For chemicals, these ranges are 45%—
50% (figure 3). Many North American, Sub-Saharan
African, and Southeast Asian sub-basins show very
high inter-GCM agreements for increases in river
exports of MAP and chemicals. Anthropogenic
sources are expected to play an important role in sub-
basins with moderate to very high inter-GCM agree-
ments (on increases or decreases). This is because
agricultural activities (e.g. fertilisers, animal manure,
sewage) are projected to contribute 50% of TDN and
70% of TDP in coastal waters globally in 2050 (SI,
figure J.1). By 2050, household sources, such as laun-
dry and dust, are expected to dominate MIP export
by rivers (SL, figure J.1).

For decreases in future pollution levels, 10%—
47% of sub-basin areas globally show moderate to
very high inter-GCM agreements (figure 3, table 1).
For nutrients, 32%—-34% of the sub-basin areas show
moderate to very high inter-GCM agreements, partic-
ularly along the west coast of North America, Europe,
Eastern Asia, and the east coast of Australia. Results
show very high inter-GCM agreement on decreas-
ing trends in river exports of plastics (10%—47% of
the area) and chemicals (35%—42% of the area). This
especially holds for many sub-basins of Europe and
the east coast of North America. While many regions
project increases in river exports of MIP by 2050 (see
the previous paragraph), some sub-basins, especially
in Eastern Asia, are expected to export less.

Disagreements among GCMs on future trends in
river exports of pollutants are estimated for 5%—20%
of the sub-basin areas globally (figure 3). For example,
the lowest inter-GCM disagreement is estimated for
future river exports of MIP (5% of the area) because
of the greater effects of anthropogenic sources (e.g.
household dust in sewage) compared to hydrology.
For nutrients, the disagreements are estimated for
over 15% of the sub-basin areas. This is primarily
due to the large contribution of natural sources to
future nutrient pollution in those areas (SI, figure J.1).
The highest disagreement is, however, estimated for
future river exports of chemicals (15%-20% of the
global surface areas).

3.3. Multi-pollutant agreements (Stage 3)

For most of the global sub-basin areas, multi-
pollutant agreements (>3 GCMs for >3 pollutants,
table 1) are estimated for increases or decreases in
river exports by 2050 (figure 4). For increases, very
high multi-pollutant agreements cover regions such
as Sub-Saharan Africa, South Asia, and Subarctic

7

M P Bak et al

North America (table 1 for agreement classes). High
agreements predominantly cover regions like Eastern
South America, parts of the United States, and
Europe. For decreases, very high agreements appear
in scattered locations and high agreements are preval-
ent in large parts of Asia, Mexico and parts of Europe
and South America. For both directions (increases
and decreases), areas of moderate agreement are
scattered.

Diverging trends or disagreements cover parts of
Northern Asia and Southern America or parts of
North America. This implies that, although inter-
GCM agreements exist for individual pollutants, their
responses to urbanisation and climate change vary
among areas. Those regions are often characterised
by increases in river exports of nutrients, and MIP,
whereas MAP and chemicals are projected to decrease
by 2050. Contrarily, areas of multi-pollutant disagree-
ment are often associated with prominent inter-GCM
disagreements for individual pollutants, indicating
the presence of climate-driven uncertainties.

Multi-pollutant agreements on future trends for
2050 differ among seas (figure 4, pies). This spe-
cifically holds for coastal waters of the Indian Ocean
and the Mediterranean Sea, which show oppos-
ite trends. Projections for the Indian Ocean show
multi-pollutant agreements on increases for 81%
of its drainage area (figure 4). In contrast, for the
Mediterranean Sea, multi-pollutant agreements are
on decreases for 64% of its drainage area. This dif-
fers from other coastal waters. For the coastal waters
of the Atlantic Ocean, multi-pollutant agreements on
increases in future pollution are estimated for nearly
two-thirds of its drainage area. In the Pacific Ocean,
this is for 41% of the drainage area, whereas 33%
agrees on decreases and 18% shows diverging trends.
The Arctic Ocean has a mix of multi-pollutant agree-
ments (figure 4).

4. Discussion

4.1. Water Quality in a changing climate

Climate change affects the water cycle, and in turn,
the WQ. Although hydrological changes remain
uncertain [53, 54], inter-GCM agreements high-
light hotspots of future wetter and drier conditions
[55] (selected examples of agreement approaches in
SI appendix D). Under RCP 8.5 (high emissions),
approximately five billion people could experience
substantial shifts in precipitation patterns by 2100
[55]. Comparing Trancoso et al’s [55] agreements in
water quantity trends with our agreements on WQ
trends (figures 3, 4 and SI appendix I), we find that
some wetting regions (e.g. Northern Europe, and
Northern America) show increasing pollution levels.
Yet, this does not apply to all areas, implying that
socio-economic drivers play an important role in WQ
trends [17, 18, 39]. Generally, arid areas (e.g. Saharan
Africa or Australia) show relatively low wetting or
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ARCTIC OCEAN

PACIFIC OCEAN

Agreementon decreases

Agreementon increases

INDIAN OCEAN )

Moderate (3/6 pollutants) [__] [___] Moderate (3/6 pollutants)
High (4-5/6 pollutants) I:l High (4-5/6 pollutants)
Very High (6/6 pollutants) [l I very High (6/6 pollutants)

Disagreement (<3/6 pollutants) [ [ Diverging (2/3 or 3/6* pollutants)

[Ins

Figure 4. Multi-pollutant agreements on the direction of change (increases or decreases) in their river exports between 2010 and
2050. The map shows the multi-pollutant agreement (as defined in table 1) in the direction of change in river exports for at least
three GCMs across six pollutants in a spatially explicit way. The pies show the area share of multi-pollutant agreement classes for
five large seas in the world (i.e. see SI, Figure E.1 for a specification of the drainage areas by sea). Multi-pollutant agreement
classes include: moderate (3/6 pollutants agree) high (4-5/6 pollutants agree), and very high (6/6 pollutants agree), disagreement
(<3 pollutants agree) and diverging (an equal number of pollutants, i.e. 2/6 or 3/6 pollutants, agree on each direction). See table 1
for details on agreement classes. NS (Not part of the Study area) denotes sub-basins that are not part of our study area as they do
not drain into the seas or are part of Greenland (see SI, Figure E.1 for details). Pollutants include total dissolved nitrogen (TDN),
total dissolved phosphorus (TDP), microplastics (MIP), macroplastics (MAP), triclosan (TCS), and diclofenac (DCL). Source: the
MARINA-Multi model [52] (see section 2 for the model and scenario descriptions).

drying agreements [55, 56]. This aligns with our find-
ings of greater variability in natural river discharge
(higher CV, see SI appendix F) and pollutant exports
(higher CV in figure 2). As we used 10-year averaged
hydrological inputs for five GCMs, our sample size
was relatively small and may have introduced biases in
our CV results. While averaging reduced the effect of
cascading uncertainties (SI, figure L.3), we may have
under- or overestimated uncertainties related to dry
and wet years (S, figures L.1 and L.2). The main mes-
sage remains unchanged when accounting for yearly
hydrological inputs (55 model runs, SI, figure L.2),
while the results require careful interpretation.

Our results show that in an economically driven
future with reactive environmental management and
high-emissions (SSP5-RCP8.5), river exports of stud-
ied pollutants will increase globally, with greater
climate-driven uncertainty in model simulations
across all analysed regions. This highlights the need
to act. This especially holds for areas like Sub-Saharan
Africa, where monitoring data are lacking [17], pollu-
tion levels are projected to increase substantially, and
model uncertainty is greatest (figure 2). In regions

with high river exports of pollutants, investments
might be useful to focus on greater political and pub-
lic awareness of WQ issues [31], along with identi-
fying and implementing effective solutions to tackle
regional pollution challenges. This requires an under-
standing of climate-driven hydrological uncertainties
in WQ models (this study), drivers of pollution in
hotspot areas [57], technological developments [58,
59], alternative treatment pathways (e.g. construc-
ted wetlands) [60], and awareness campaigns [61—
63]. In areas with higher climate-driven uncertainties,
investments could be useful in mitigating climate-
related WQ risks via monitoring strategies that ensure
accessible and transparent outputs. For example,
accessible monitoring data could help to enhance our
understanding of prominent issues today (i.e. eval-
uation of current status and supporting decision-
making), while preparing for arising issues in the dec-
ades to come (i.e. reduce uncertainties in global water
quantity and quality models) [64]. In figure M.1 of
the SI, we show that an alternative future with proact-
ive environmental management and low-emissions
(SSP1-RCP2.6) can substantially limit pollution and
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climate-driven uncertainty. Examples include mon-
itoring campaigns for areas with higher climate-
driven hydrological uncertainties, targeted research,
and implementation of effective pollution reduction
strategies.

This study contributes to improving the transpar-
ency and robustness of global WQ models. Our WQ
model simulates pollutant inputs from land to river
and river exports to coastal waters under climate-
driven hydrological changes (see figure 1, and SI
appendix A and N for descriptions of the approach).
However, land-to-river transport processes, such as
nutrient runoff, weathering of P-contained miner-
als, and leaching of organic matter are treated in a
simplified and static manner. They are not dynam-
ically modelled in response to climate change, which
limits their physical representations when simulat-
ing total pollutant export estimates. The goal of this
study is narrower: to quantify how climate-driven
hydrological changes affect annual river export loads
of nutrients, plastics, and chemicals at the sub-basin
scale by 2050, relative to 2010, under a high-end
warming scenario (SSP5-RCP8.5). This is achieved
using the soft-coupled VIC-MARINA-Multi frame-
work. By isolating hydrological drivers, we are able to
assess how uncertainties in future hydrology propag-
ate through the modelling chain and influence the
robustness of global river export projections. We
foresee the benefits of more integrated WQ assess-
ments (e.g. better representation of dynamic climate-
sensitive terrestrial processes) by linking large-scale
WQ models with advanced Terrestrial or Earth
Systems Models. For instance, LM3-TAN [65] or the
Community Land Model [66], could complement
large-scale WQ models as they offer a detailed repres-
entation of terrestrial processes and biogeochemical
cycling. However, such models often do not account
for emerging pollutants such as plastics and chemic-
als. They are often computation-heavy. Moreover, the
global WQ modelling community is still in an early
stage of development. As such, this level of integration
is beyond the scope of this study. Future work should
aim to incorporate these climate-sensitive processes
to further improve the robustness of large-scale WQ
projections under climate change.

4.2. Model uncertainties and their propagation

Our models contain uncertainties in inputs, paramet-
ers, structure, outputs, and scenarios. When coupled,
these uncertainties propagate through the system,
compounding their influence on the accuracy and
interpretation of results. Below, we analyse the indi-
vidual model uncertainties and illustrate how they
propagate across the modelling chain.

4.2.1. Individual model uncertainties

GCMs simplify complex climate systems with dif-
ferent levels of complexity (SI table O.1) and are
based on limited knowledge of some key climate
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variables. This introduces structural and parameter
uncertainties, which could lead to a range in long-
term projections [67]. Hence, using model ensembles
is widely recommended to capture a broader range
of possible outcomes. Although using more models
(e.g. 10) could improve peak streamflow predictions
[30], our five selected GCMs effectively captured
the overall variability as they represent a wide
range of simulation projections [68, 69] (SI table
O.1). Uncertainties in the hydrological simulations
of the VIC model are well-studied [35] (see Liang
et al [34] for details on validation and Van Vliet
et al [35] for a hydrological model intercompar-
ison) and originate from three main sources: inher-
ent structural differences in GCMs that affect input
data (structural/input uncertainties), downscaling of
GCM outputs (scenario uncertainties), and simplific-
ation of hydrological processes (structural uncertain-
ties). Additionally, knowledge gaps in hydrological
parameters contribute to parameter uncertainties
[35]. While relying on a single hydrological model
and a single WQ model ensures internal consistency,
it limits the ability to explore structural variability.
Future studies could address this limitation by integ-
rating multiple hydrological models. Uncertainties in
MARINA-Multi are addressed [13, 16, 18] and mainly
related to structure (e.g. deterministic model), para-
meterisation (e.g. hydrological sensitivity of model
parameters, see SI appendix C), and model inputs
(e.g. river discharge [70]). This inherently limits its
ability to capture dynamic WQ processes. Yet, the
model is strong in analysing source attributions and
scenario analyses to support policy-relevant ques-
tions on multi-pollutant reductions. To build trust in
its projections, the MARINA-Multi model has been
validated for the year 2010 against historical data [13,
16] (see SI table B.2). Its reliability for future assess-
ments has also been evaluated through comparis-
ons with other global and regional (Africa) model-
ling efforts [16, 18] (see SI table B.2). A comprehens-
ive description of the model’s structure, equations,
and the outcomes of both validation and evaluation
are available in Micella et al [18]. Finally, all models
are also subject to scenario uncertainty, as storylines,
such as those represented by SSPs [36] and RCPs [37],
can influence projections.

4.2.2. Propagation of uncertainties in the modelling
chain

Understanding the propagation of uncertainties
throughout the modelling chain is essential for multi-
pollutant assessments. Hence, we evaluated the rel-
ative sensitivity of the MARINA-Multi model to
variations in inputs across the modelling chain (SI
appendix K-L). First, GCM uncertainties propagate
into the VIC model. For instance, river discharge pro-
jections based on the HadGEM model consistently
yielded the highest river exports across pollutants.
Conversely, the NorESM or MIROC models often
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generated the lowest river exports across pollutants
(see SI, table K.1). This may be explained by their
differences in climate forcings (e.g. greenhouse gas
scenarios) [28] and variations in atmospheric pro-
cess modelling [29]. Second, uncertainties propag-
ate further into the MARINA-Multi model. We first
projected pollutant inputs to rivers by GCM-driven
hydrology (see SI figure N.1), which already revealed
a spread in inputs, particularly for nutrients (see SI
figure N.2). This may be explained by the influence
of diffuse sources, which are strongly driven by sur-
face runoff [2, 18] (see SI box N.1). This especially
holds for low-discharge conditions, where rainfall
variability amplifies discharge fluctuations [71, 72].
Then, we account for pollutant retention processes in
rivers, reservoirs and through water consumption to
quantify the river exports of pollutants to seas among
the five GCMs. The spread in river exports indic-
ates a stronger influence of uncertainties on nutrients
(e.g. 50-54 Tg for TDN) compared to plastics and
chemicals (e.g. 396-416 ton for TCS; see SI, table
K.1). Moreover, uncertainties are larger for projec-
tions of pollutant exports by rivers than for pollut-
ant inputs to the rivers. Here, climate-driven uncer-
tainties for pollutants from point sources are mainly
related to retention/removal processes in rivers and
reservoirs, which depend on discharge and water
residence times [15, 18]. Despite cascading uncer-
tainties, the MARINA-multi model remains robust.
Its consistency, partly due to its simplicity, reinforces
its credibility in identifying climate-driven hydrolo-
gical changes which affect pollutant flows and key
processes. Understanding uncertainty propagation
allows us to refine models and improve techniques,
ensuring reliable, policy-relevant insights.

4.3. Reflection on a new multi-pollutant building
trust approach

We identified three principles to keep in mind when
building trust in large-scale multi-pollutant models
under climate-driven hydrological changes.

Principle 1: be aware of the strengths and limita-
tions of large-scale WQ models. Our modelling sys-
tem’s strengths include its ability to simulate mul-
tiple pollutants simultaneously, for past and future
years while accounting for climate-driven hydrolo-
gical uncertainties (knowledge gap 1, section 1). This
enables analyses of pollutant behaviour and trends
while keeping computational demands low, mak-
ing results accessible. However, simplicity also limits
resolution and affects hydrological sensitivity across
pollutants. For example, phosphorus appears to be
the most sensitive and microplastics least sensitive
(see section 3.1 and SI, table K.1 and boxes N.I,
N.2), potentially contributing to cascading uncer-
tainties (section 4.2). For example, as dynamics
in climate-driven terrestrial pollutant flows are not
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represented explicitly, this limits our capacity to
model total pollutant export by rivers dynamically.
In our study, this was not the aim. Our model-
ling system enhances understanding of global WQ
trends under climate-driven hydrological changes
and extends to broader environmental challenges. By
leveraging ISIMIP hydrological data, we can generate
insights relevant to multiple sectors, including lakes
and ecosystems (as demonstrated by Tigli et al [9]).

Principle 2: select evaluation strategies based on
pollutants and model purpose. Validation is com-
monly used to evaluate models, yet dependent on
monitoring data and, therefore, may not be ideal
for building trust in emerging pollutants, data-scarce
regions, and future trends [32]. Hence, the applic-
ability of evaluation strategies may depend on the
selected pollutants and the model’s purpose. Strokal
et al [32] identified 13 model evaluation strategies
(overview in SI table B.1). Yet, these strategies do
not explicitly account for building trust under uncer-
tainties associated with climate-driven hydrological
changes (knowledge gap 2, section 1). Our proposed
three-stage approach (section 2.2) can complement
the 13 strategies as identified by Strokal et al [32]
as it focuses on understanding the extent to which
emergent trends in water pollution are robust across
a range of GCMs and pollutants. Herewith, it proves
abroader, integrative perspective on uncertainty than
conventional sensitivity analysis offers. For example,
while our approach involves varying model inputs, it
differs from sensitivity analysis in both purpose and
execution (see table B.1 and box B.1 in the SI). While
we used VIC and MARINA-Multi, our approach is
adaptable to other models in frameworks like ISIMIP.
An example of this is the application to the DynQual
model [73].

Principle 3: clear and transparent communication
reinforces trust. With this study, we have built
trust in multi-pollutant projections under climate-
driven hydrological changes. Yet, our results remain
an abstraction of environmental systems, includ-
ing their cascading uncertainties, and, therefore,
should be treated carefully. By presenting results,
their uncertainties, and the potential implications
of those uncertainties clearly and transparently, we
can reinforce trust. Avoiding jargon, indicating the
model’s purpose, and providing context to model
evaluation results are essential for correct interpret-
ation and effective communication with other sci-
entific disciplines and policymakers. This aids in
a wide understanding of uncertainties associated
with climate-driven hydrological changes in pollu-
tion management. Enabling identification of context-
specific solutions to future WQ issues amid grow-
ing pressure on climate, environmental systems, and
society.
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5. Conclusion

We developed and applied a three-stage approach to
build trust in future river exports worldwide under
climate-driven hydrological changes for nutrients,
plastics, and chemicals, simultaneously. For this, we
used a soft-coupled water quantity (VIC) and WQ
(MARINA-Multi) model system, driven by five GCMs
under a high global warming scenario (RCP8.5). We
ran the MARINA-Multi model with VIC hydrological
outputs for each GCM to quantify river exports of
pollutants to seas for 2010 and 2050. In arid regions
such as the Middle East, East Asia, and Northern
Africa, climate-driven uncertainties play a key role
in future river pollutant exports. For many African
sub-basins, high increases in river exports of pol-
lutants are projected by 2050 under high climate-
driven uncertainties. Globally, over 80% of the sub-
basin areas agree on future trends, either increasing
or decreasing, in river exports of individual pollutants
for at least three GCMs. Multi-pollutant agreements
on future trends differ among seas: 53% of the area
agrees on increasing river exports of six pollutants
into the Indian Ocean by 2050, whereas 17% agrees
on decreasing trends for the Mediterranean Sea. Our
approach builds trust in future multi-pollutant trends
under climate-driven hydrological changes, strength-
ening global WQ assessments. Providing clear and
transparent information on climate-driven hydrolo-
gical uncertainties improves awareness and supports
the effective use of WQ model outputs for well-
informed actions.
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