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Temporal complexity of terrestrial
ecosystem functioning and its drivers

Marcos Fernández-Martínez 1 , Ivan A. Janssens 2, Michael Obersteiner3,4,
Peter Manning 5, Filipe M. Andrade 1, Eladio Rodríguez-Penedo 1 &
Josep Peñuelas 1,6

Thedevelopment of non-linear dynamics theory showed that simple processes
can lead to high complexity in the functioning of nature, with ecological stu-
dies showing that non-linear dynamics are common across populations of
different taxa. However, whether the energy and matter fluxes of entire eco-
systems follow non-linear dynamics, and how complex these dynamics are, is
still unknown. We investigate the drivers of- and trends in the temporal
complexity of ecosystem functioning by calculating the correlation dimension
of gross primary production (GPP), ecosystem respiration, and net ecosystem
production. We use long-term, eddy-covariance C fluxes from 57 terrestrial
ecosystems, including boreal, temperate, and Mediterranean biomes. Gen-
erally, ecosystems located undermore temporally complex weather also show
more complex C fluxes. Causal analyses indicate that larger C fluxes generally
causehigher temporal complexity, and larger and temporally complexCfluxes
reduce interannual variability, suggesting higher resistance to perturbations.
We report a positive trend in GPP complexity over time, which correlates with
increasing GPP. This result may indicate that ecosystems are increasingly
responsive to endogenous or exogenous stimuli, but the biology underlying
these trends is not yet understood. We show that the short-term temporal
complexity of ecosystem functioning can elucidate ecosystem properties
otherwise missed by longer timescales.

The fields of non-linear dynamics and chaos theory deal with deter-
ministic systems that exhibit complex behaviour and are characterised
by their strong dependence on initial conditions1–3. The discovery of
chaotic behaviour in dynamic deterministic models broke the
assumption that deterministic systems were fully predictable1,4. Since
then, fractals (i.e., Rényi dimensions5) have played an important role
describing the complexity of dynamic systems2. Biological systems are
ideal to study non-linear dynamics because of their vast complexity,
their obvious dependence on initial conditions and their lack of pre-
dictability in the long term (e.g., population dynamics, infection or
growth rates6,7). Non-linear dynamics and fractals have foundmultiple

applications in the field of biology, from investigating the chaotic
nature of population dynamics8,9 to relating the structural and func-
tional temporal complexity of the human brain10,11. Even though chaos
was thought to be rare in nature for decades, recent analyses using
improved methodologies and long time series suggest that chaos,
nonlinear and complex dynamics are more common across nature
than previously thought3,7,9,12.

The correlation dimension4,5 is an entropy-based metric that
provides an estimate of the degrees of freedom of the system (e.g., the
number of different drivers controlling its temporal behaviour).
Hence, the correlation dimension can be used as a metric of temporal
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complexity. Systems that behave more periodically are characterised
by an attractor (i.e., the hypervolume in phase-space where the system
is preferentially found) with very few degrees of freedom (Supple-
mentary Fig. S1a). These systems present low values of correlation
dimension, low temporal complexity, and thus, high predictability.
Instead, chaotic systems are characterised by a larger number of
degrees of freedom, so they have higher correlation dimension values,
and are only predictable in the short term (Supplementary Fig. S1b).
Finally, completely random systems, or systems without any kind of
underlying pattern, have infinite degrees of freedom (i.e., non-
saturating or infinite correlation dimension), and are thus unpredict-
able at all timescales (Supplementary Fig. S1c). Nonetheless, other
methods used to quantify the temporal complexity of time series, such
as ordinal pattern statistics, permutation entropy or Fisher informa-
tion, typically estimate very low complexity in completely random
time series. This is because random time series lack the meaningful
structure or patterns that these complexity measures are designed to
capture13–15.

Changes in the attractor of a system (i.e., changes in the temporal
dynamics of a biological system) result in alterations in its temporal
complexity; significant drops or increases in the degrees of freedomof
the attractor are indicative of regime shifts within the system4. This is
why the correlation dimension has been employed to investigate the
nonlineardynamics of environmental andbiological time series16,17. For
example, hydrological studies have provided strong evidence for low-
dimensional chaos in precipitation and stream runoff time series,
suggesting variations in the dimensionality of their attractors amongst
catchments18,19. Other studies have pointed out that the temporal
complexity of climate subsystems (e.g., temperature and precipita-
tion) may differ between dry and humid climates20. In biological sys-
tems, low-dimensional chaos has been detected in fruit production
timeseries17 and several studies have demonstrated that changes in the
short-term temporal complexity of organismal functions (e.g., heart
rate) correlate with fluctuations in the health status and the activities
performed by that organism21,22. Changes in temporal complexity of
organismal and ecosystem level properties could also happen due to
changes in limiting factors, such as constrained photosynthesis and
respiration due to droughts or weather extremes. At larger timescales,
temporal complexity of ecosystem functioning could change due to
ecosystem shifts, for instance, from a forest to a savannah, losing or
gaining different species with distinct phenology and functioning.

At the individual level, the temporal dynamics of electro-
encephalograms (a medical test that records electrical activity in the
brain) have been found to become random when individuals are
awake, present low-dimensional chaos when sleeping (4–5 degrees of
freedom) and, most interestingly, drop down to around 2 degrees of
freedom during epileptic crises22. More recently, a decrease with age
was detected in the structural complexity of the human brain10. Other
studies have found that the attractor of the heart rate of a healthy
person is more complex than that of a person that died of a cardiac
arrest a few days later, which became much more periodic21. These
results seem to indicate that reduced complexity, either temporal or
structural, is related to detrimental effects for the functioning of key
organismal functions, because it indicates a reduced capacity of the
system to react to environmental stimuli (e.g. climate or hydrological
changes in ecosystems). The temporal complexity in thebehaviour of a
systemshould reflect the capacity of the system to exist in awide range
of states, in response to a wide range of drivers and to withstand large
environmental variability. Hence, temporal complexity of a biological
system should represent endogenous (i.e., internal functioning) and
exogenous (i.e., environmental variability) sources of complexity.
Whether high or low short-term (from minutes to days) temporal
complexity in the functioning of entire ecosystems relates to other
ecosystem properties that drive or indicate their status (e.g., annual
production, interannual variability, biomass accumulation or species

richness) is so far unknown. To date, no study has focused on the
temporal complexity of the functioning of ecosystems and its drivers
beyond assessing the non-linearity of population dynamics9,12. While
there is a long history of examining ecological stability23–25 the metrics
tend to focus on simple variability and response rates. Here we pro-
pose that the more complex temporal dynamics captured by the
correlation dimension may provide additional insights into
thedynamics of ecosystems, e.g. their capacity to respond to stimuli or
their predictability, rather than just variability.

The carbon (C) cycle of an ecosystem integrates the C uptake and
release processes of all organisms within the ecosystem and can be
approximated by estimating the gross primary production (sum of all
CO2 entering the system through photosynthesis) and the ecosystem
respiration (sum of all respiratory CO2 production). Studying non-
linear dynamics of the C cycle is a promising line of research because
assessing these dynamics can help identify the conditions under which
ecosystems experience changes in their short-term functioning (e.g.
half-hourly). This understanding could elucidate the implications of
short-term changes in functioning for the resistance and resilience of
ecosystems to disturbances26, which co-determine ecosystem func-
tioning at longer time-scales, such as annual C uptake or the inter-
annual variability in C uptake. Identifying the drivers of the temporal
complexity of the C balance in ecosystems is essential for improving
predictions of the coupled C-climate system in the future. This is
because we have reasonably good projections for future climate
change, but the future trajectories of C sinks, on which climate change
projections and mitigation policies critically depend, remain highly
uncertain27.

Hence, we here use data from 57 ecosystems monitored with
eddy-covariance towers, including 36 forests, 11 shrublands and
savannahs, and 10grasslands, to calculate the correlation dimensionof
half-hourly time series of gross primary production (GPP, representing
ecosystem photosynthesis), ecosystem respiration (Re; integrating
respiration fromboth the autotrophic andheterotrophic components)
and net ecosystem production (NEP, as the difference between GPP
and Re) as a proxy for the temporal complexity of ecosystem func-
tioning. We investigate the effects of annual mean C fluxes and their
interannual variability and seasonality, as well as climate, species
diversity, leaf nitrogen (N) and phosphorus (P) concentrations, atmo-
spheric N deposition, standing biomass and stand age on the temporal
complexity of ecosystem functioning. These are all factors that have
been repeatedly reported to be important drivers of ecosystem C
fluxes28–30. We also study temporal trends in short-term temporal
complexity of ecosystem functioning and investigate the drivers of
these trends.

We hypothesise that: i) ecosystems with greater short-term tem-
poral complexity in weather patterns will generally exhibit higher
temporal complexity in ecosystem functioning due to the dependence
of C fluxes on climate and environmental fluctuations31–33 (H1,), ii)
ecosystems with greater temporal complexity are expected to have
larger annual C fluxes for two reasons 1) reduced temporal complexity
has been shown to be detrimental to the functioning of organisms16,
and 2) more productive ecosystems can support a larger number of
interacting organisms, resulting in greater exchanges of energy and
matter. This capacity allows for the temporal superposition of the
functioning of more organisms and processes, leading to a more
complex temporal behaviour at the ecosystem level (H2

34,35,), and iii)
old forests, or ecosystems with large standing biomass, are expected
to exhibit lower temporal complexity in GPP compared to young for-
ests or ecosystems with minimal biomass. This phenomenon is
attributed to their reduced sensitivity to short-term environmental
fluctuations and the theoretical decrease of productivity36 (GPP to
biomass ratio) of the autotrophic compartment over time. We con-
jecture the opposite for Re due to a more developed and species-rich
heterotrophic compartment leading to increased heterotrophic
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respiration per unit of biomass production37,38 (H3).We further explore
the causal relationships between annual C fluxes, their short-term
temporal complexity and their interannual variability using directed
acyclic graphs to investigate how short-term ecosystem responses
relate to annual and multiannual temporal behaviour.

Results
Temporal complexity in C fluxes and weather variables
We found cone-like attractors for GPP and NEP, mostly presenting
daily cycles (typically showing lags around 6 h per dimension), while
for Re theyweregenerally long and relatively thin (Fig. 1).We speculate
that long-thin attractors could indicate that there is no differential
seasonal response in the system, while cone-like attractors
could indicate that the system behave differently depending on the
season. Interestingly, clearer trajectories seemed more likely to
occur in C flux variables with greater short-term temporal complexity
(hereafter, temporal complexity), hence showing that more complex
attractors are related to higher dimensional chaotic dynamics. How-
ever, further research is needed to confirm whether the interpretation
of the shapes of these attractors would hold for other systems.
Regarding weather, temperature and VPD showed tunnel-like attrac-
tors (Supplementary Fig. S2) indicating diurnal cycles over sea-
sons, and precipitation presented mussel-shaped attractors mostly
due to the smoothing performed for visualisation purposes. Wind
speed generally presented irregular attractors with no clear shape,
coinciding with the highest temporal complexity. Carbon fluxes
were generally less temporally complex than weather variables,
both when analysing multiannual time series and individual years
(Supplementary Fig. S3).

When analysing the entire time series per site (Supplementary
Fig. S3a), GPP typically presented less than 4.5 degrees of freedom,
being the least temporally complex variable amongst C fluxes (Tukey
test for multiple comparisons, N = 171, p <0.001, against Re and NEP).
Degrees of freedomof Re ranged from 1.7 to almost 7.8 and presented,
on average, significantly fewer degrees of freedom than NEP
(p < 0.001), which ranged from 3.5 to 8.5. Regarding weather variables,
precipitation presented the lowest average complexity ranging from
0.2 to 6.3 degrees of freedom (p <0.001, against all other weather
variables), most likely because zero is by far the most likely value of
precipitation at the half-hourly scale. Degrees of freedom ranged from
0.8 to 10.2 for VPD, from 4.5 to 11.5 for temperature, and from 8.0 to
14.2 for wind speed, with VPD and wind speed being, respectively and
on average, the least and themost complexweather variables amongst
these three (p <0.001, for all three pairwise comparisons).

Temporal complexity of GPP presented a clear seasonal pattern,
being higher in spring and especially summer compared to winter and
autumn when they presented a more periodic behaviour (Supple-
mentary Fig. S4, p <0.001). In contrast, Re and NEP showed higher
complexity during winter and summer compared to spring and
autumn. Seasonal differences in the temporal complexity of C flux
variables were generally larger than those of weather variables (Sup-
plementary Fig. S5), indicating a clear biological signature.

Drivers of temporal complexity in ecosystem functioning
Our analyses, combining the best performing models (ΔBIC < 2) and
using all forest, shrubland and grassland ecosystems (N = 57 sites)
indicated that the temporal complexities of GPP and Re were nega-
tively related to their interannual variability, one of their most

Fig. 1 | Examples of the three-dimensional attractors of gross primary pro-
duction (GPP), ecosystem respiration (Re) and net ecosystem
production (NEP). Attractors displayed are from the two sites showing the lowest
(top row) and highest (bottom row) correlationdimension in their fluxeswithin our
dataset (trajectories were smoothed using local regressions spanning 48

observations to improve visualisation). Panels a–c show fluxes for site FI-Sod
(Sodankyla, Finland) for the year 2001. Panels d–f show fluxes for site FR-LBr (Le
Bray, France) for the year 1997. See Supplementary Fig. S1 for idealised cycles and
their interpretation. Blue lines of the attractor indicate winter, red indicates spring,
yellow indicates summer and grey indicates autumn.
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important predictors (see Supplementary Materials: Model summa-
ries, Section 1, Supplementary Tables S1–S3). Additionally, ecosystems
with stronger seasonality presented lower temporal complexity
in GPP. Temporal complexity in NEPwas positively related to temporal
complexity in Re. Ecosystem type, however, did not emerge as
a relevant predictor of temporal complexity for any C flux. This finding
suggests that the dominant vegetation type of an ecosystem may not
be an important factor controlling the temporal complexity ofCfluxes.
Generally, ecosystems located under more temporally complex
weather also showed more complex functioning (e.g., wind speed
and Re, temperature and NEP; Fig. 2h), thus supporting hypothesis
H1. Climate differences amongst sites, however, did not arise as a very
important predictor of temporal complexity in C fluxes. Ecosystems
with higher standing biomass were found to have lower temporal
complexity in GPP (supporting H3), but ecosystems with higher green
biomass (i.e., EVI) generally showed higher temporal complexity in
Re (also supporting H3, Fig. 2). More diverse ecosystems, presenting
higher plant species diversity, were also more likely to present
higher temporal complexity in NEP (Fig. 2g). Ecosystems recei-
ving larger atmospheric nitrogen deposition rates presented
higher temporal complexity in GPP but lower temporal complexity
in Re.

Leaf nutrient concentrations played a minor role in controlling
the temporal complexity of C fluxes, even though foliar N and P

concentrations were included in some of the best models explaining
spatial variability in temporal complexity across ecosystems (Supple-
mentary Tables S1 and S3). Overall, foliar N and P concentrations were
positively related to GPP temporal complexity, and foliar P con-
centration was negatively related to NEP temporal complexity. Our
analyses using only forests (N = 36 sites) mostly replicated the findings
described above when including all ecosystem types. However, in
forests we found a contrasting effect of stand age on Re and NEP
temporal complexity (positive relationship) compared to that on GPP
(negative relationship, Fig. 2c, f, i, and SupplementaryMaterials:Model
summaries, Section 2, Supplementary Tables S4–S6). Again, these
results support H3 for GPP and Re, suggesting a contrasting behaviour
between autotrophic and heterotrophic processes (affecting only Re
and NEP) in forest ecosystems.

Regarding the causal relationships amongstmean annual C fluxes,
interannual variability, and temporal complexity, our analyses found
that the model with the strongest statistical support (Supplementary
materials: Model Summaries, Section 3) included negative causal
effects from mean annual sums to interannual variability (Fig. 3a–d;
Supplementary Table S7), positive causal effects from mean annual
sums to temporal complexity (Fig. 3a, e–g), supporting the hypothesis
that higher temporal complexity is associatedwith larger Cfluxes (H2),
and negative causal effects from temporal complexity to interannual
variability (Fig. 3a).
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Fig. 2 | Partial residuals plots showing the relationship between temporal
complexity of carbon fluxes across ecosystems and biotic and abiotic pre-
dictors. Data and relationships were extracted from the subset of models with
ΔBIC < 2. Panels a, b, d, e, g and h correspond to analyses performed with all
ecosystem types (N = 57). Panels c, f and i correspond to analyses performed using
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based on to two-sided t-tests based on N = 57. The shaded area represents the 95%
confidence interval of the slopes. Significance levels: * indicates p <0.05, ** indi-
cates p <0.01 and *** indicates p <0.001. GPP gross primary production, Re eco-
system respiration, NEP net ecosystem production, CD correlation dimension, EVI
enhanced vegetation index, df degrees of freedom (df).
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Trends in temporal complexity of ecosystem functioning
There was a statistically significant annual increase in the temporal
complexity of GPP across all ecosystems, primarily driven by increases
in temporal complexity during spring and autumn (Table 1). The
temporal complexity of Re and NEP did not present any significant
trend at the annual scale; however, Re showed a decrease in temporal
complexity during winter. Our analyses did not reveal statistically
significant trends in the temporal complexity of annual weather vari-
ables, except for a declining trend in precipitation, which was also
observed during spring and autumn. Overall, the detected trends in
temporal complexity, both in C fluxes and weather variables, were
relatively low, mostly below 0.05 degrees of freedom per year. Con-
versely, we found significant and substantial increases in annual C
fluxes, particularly during summer and autumn (Table 1). Additionally,
annual average wind speed exhibited a statistically significant
decreasing trend over time, but no other weather variable showed
statistically significant changes at the annual scale, despite identifying
several significant seasonal trends for all of them (Table 1).

Additional analyses showed that ecosystemswith increasing annual
GPP and Re were more likely to show positive trends in the temporal
complexity of, respectively, GPP and Re (Supplementary Fig. S6).
Besides the positive relationship between productivity and temporal
complexity, our results indicated that ecosystems with larger standing
biomass also experienced higher increases in temporal complexity of
GPP and Re over time, while ecosystems with larger green biomass (EVI)
showed stronger increases in temporal complexity of NEP (Fig. 4, Sup-
plementary Materials: Model Summaries, Section 4, Supplementary
Tables S8–S10). Instead, ecosystems with high N deposition generally
showed negative trends for NEP temporal complexity. For GPP, we also
found that ecosystems with higher temporal complexity experienced
higher increases in complexity over time, the exact opposite of what we
found for trends in NEP temporal complexity (Fig. 4e, f).

Discussion
Temporal complexity of ecosystem functioning
Our results indicate that the temporal complexity of ecosystem func-
tioning is generally lower than that of environmental conditions

(Supplementary Fig. S3). This implies that the dynamics of ecosystem
functioning are more predictable than the environmental conditions
they are subjected to. Hence, our analyses provide evidence for internal
regulatory mechanisms within ecosystems that impose a higher degree
of order upon underlying environmental stochasticity16,39. Alternatively,
these results might also suggest that biological systems exhibit delayed
responses to environmental variation due to lags in internal sensing and
physiological changes. These observations imply that ecosystems
function as filters of more complex inputs, involving lagged responses
to stimuli, buffers, pools, and memory, akin to what has been described
for catchments40. Further, we found that sites with more complex
environmental conditions also exhibit higher temporal complexity in
their functioning (Fig. 2h). These findings support our initial hypothesis
(H1) and imply that ecosystems, and individual organisms alike, mod-
ulate their functioning depending on environmental conditions by
which their functioning is constrained.

Across seasons, temporal complexity of carbon fluxes changes
proportionally more than temporal complexity of weather variables,
which mostly show the same patterns throughout the year (Supple-
mentary Figs. S4 and S5). These findings denote changes in the
functioning of individual organisms and species that propagate to
the ecosystem scale. The observed changesmaymostly arise because
of phenological differences, that impose different responses to
environmental stimuli, limited by temperature, light or water avail-
ability. The seasonal on-off switch of different organisms performing
different functions in the ecosystem, involved in autotrophic and
heterotrophic processes, may be the primary driving force of the
differences in the seasonal changes in temporal complexity between
GPP, Re and NEP. While GPP temporal complexity peaks during
spring and summer (active periods) Re and NEP temporal complexity
vary much less across seasons and peak at winter and summer. The
lower seasonal variability of Re and NEP temporal complexity sug-
gest a stronger inertia of the functioning of heterotrophic than
autotrophic processes. One explanation for this could be the buf-
fering effect of the soil or big organic structures like deadwood,
whose functioning changes steadily across seasons (e.g., due to
smaller temperature changes than in the atmosphere). An alternative

Table 1 | Trends in temporal complexity and seasonal means in carbon flux and weather variables

Annual Winter Spring Summer Autumn

CD

GPP 0.0231 ±0.0066** 0.0235 ±0.0128 0.032 ±0.0127* 0.0021 ± 0.0127 0.0346 ±0.0127**

Re −0.0104 ±0.0106 −0.0544 ±0.0206** 0.013 ± 0.0206 0.0233 ± 0.0206 −0.0240 ±0.0206

NEP 0.0050 ±0.0075 0.0166 ±0.0147 0.0200 ±0.0147 0.0068 ±0.0147 −0.0234 ±0.0147

Temperature −0.0056 ±0.0053 −0.0044 ± 0.0100 −0.029 ±0.0010** 0.0157 ± 0.0100 −0.0042 ±0.0100

Precipitation −0.0138 ±0.0063* 0.0111 ± 0.0115 −0.024 ±0.0114* −0.0166 ±0.0115 −0.0258 ±0.0114*

VPD −0.0159 ±0.0109 −0.0088 ±0.0197 −0.010 ±0.0197 −0.0191 ± 0.0197 −0.0255 ± 0.0197

Wind speed 0.0103 ±0.0056 0.0098± 0.0099 0.003 ±0.0099 0.0023 ±0.0099 0.0256 ±0.0099**

Means

GPP 3.159 ±0.754*** 2.090 ± 1.360 1.480± 1.360 4.250 ± 1.360** 4.810 ± 1.360***

Re 1.531 ±0.563** 1.099 ±0.942 0.612 ± 0.940 2.480 ±0.943** 1.933 ±0.941*

NEP 2.182 ±0.510*** 1.500± 0.941 1.630 ±0.940 2.560 ±0.940** 3.040 ±0.940**

Temperature 0.011 ± 0.014 0.058 ±0.024* −0.006 ±0.024 −0.075 ±0.024** 0.069 ±0.024**

Precipitation 0.442 ±0.680 −1.640 ± 1.240 1.410 ± 1.240 4.160 ± 1.240*** −2.150 ± 1.240

VPD 0.005 ±0.011 0.010 ±0.020 0.060 ±0.020** −0.051 ±0.020* 0.002 ± 0.020

Wind speed −0.006 ±0.002** −0.007 ±0.003* −0.004 ±0.003 −0.008 ±0.003** −0.003 ± 0.003

Trends are presented asmeans ± s.e.m (standard error of themean) derived frommixedmodels including anAR1 autocorrelation structure, the site as the random factor and allowing random slopes
per site on year (trend, fixed factor) while controlling for the season as fixed factor. Seasonal coefficients were extracted from a similarmodel, but including the interaction between year and season
as fixed factors.
GPP gross primary production, Re ecosystem respiration, NEP net ecosystem production, CD correlation dimension.
Significance levels: * indicates p <0.05, ** indicates p <0.01 and *** indicates p < 0.001.
Coefficients in bold were statistically significant at the 0.05 level according to two-sided t-tests based on N = 57.
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explanation would involve the different degree of functional diver-
sity affecting autotrophic and heterotrophic processes, with the
latter presumably being much higher than the first41. This could
stabilise heterotrophic functioning across time42,43 and overall lead to
higher temporal complexity than that of the autotrophic compart-
ment, as observed here (Supplementary Figs. S3 and S4). Further
research is needed to confirm whether higher temporal complexity
in ecosystem functioning is found in ecosystems with higher diver-
sity (as found here for NEP, Fig. 2g), niche complementarity or spe-
cies temporal asynchrony44–46, as suggested above. It is also needed
to further assess the relationship between temporal complexity and
ecosystem stability metrics such as resistance, resilience and
invariability, all of which are known to be driven by these above-
mentioned ecological properties24–26,47.

On the other hand, different lines of evidence provided by our
results indicate that more productive ecosystems tend to be more
temporally complex, both across ecosystems (Fig. 3) and across sea-
sons or years (Supplementary Figs S4 and S6), supporting our second
hypothesis (H2). Our results suggest that higher productivity causes
the ecosystem to be more temporally complex (Fig. 3, Supplementary
Table S7, Supplementary Materials: Section 3) and that higher pro-
ductivity and complexity reduce interannual variability together, thus
increasing the resistance of the ecosystems to environmental sto-
chasticity on a multiannual scale. This negative causal effect of tem-
poral complexity on interannual variability also supports the above-
mentioned conjecture that short-term temporal complexity may

reflect niche complementarity or temporal asynchrony of different
species within a community (see also Fig. 2g), given the often-found
negative relationship between diversity and interannual variability47,48.
In any case, our results neatly showhow the short-termbehaviour of an
ecosystem can influence and be indicative of its status at larger time-
scales. Substantial drops in the short-term temporal complexity of the
carbon cycle could be used as a warning signal for potential changes in
ecosystem functioning at larger temporal scales, such as reduced
decadal resistance and resilience26.

Mechanisms behind the drivers of ecosystem temporal com-
plexity across space and time
Consistent with our third hypothesis (H3), we found that older forests
and ecosystems with larger standing biomass tend to exhibit lower
temporal complexity in GPP, regardless of ecosystem type (Fig. 2a, c).
This result may emerge because ecosystems with greater standing
biomass present lower sensitivity to environmental fluctuations due to
a lower fraction of responsive biomass. Also, larger biological struc-
tures can store larger reserves (e.g., non-structural carbohydrates and
nutrients in woody tissues49) and provide comparatively more
resources for photosynthesis, making it less variable over time. Eco-
systems with larger biomass generally show larger C fluxes (log-log
relationships [N = 57], GPP ~ biomass: 0.23 ± 0.03; r2 = 0.45; p < 0.001;
Re ~ biomass: 0.17 ± 0.03; r2 =0.35; p <0.001) and larger energy inputs
in the system could support stronger species interactions like sym-
biotic associations within the rhizosphere, providing additional
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nutrients50 and enhancing ecosystem resistance and resilience. The
relaxation of limiting factors (i.e., water, nutrients) could make pho-
tosynthesis to bemostly driven by light availability resulting in a more
periodic behaviour (Supplementary Fig. S1). Following our expecta-
tions, opposite results were found for Re (and also NEP) temporal
complexity compared to those of GPP. For both Re and NEP, temporal
complexity was generally higher in older forests (Fig. 2f, i) and stands
with higher green biomass (Fig. 2d). We conjecture that a more
developed heterotrophic compartment, with increased species and
functional diversity, could foster the short-term response of the eco-
system (on-off switching of organisms) to environmental fluctuations
and provide a more complex temporal behaviour. Higher plant
diversity should relate to higher diversity in phenological rhythms
amongst the species within the community, stabilising seasonality
across years51,52, even though exceptions may occur53. The on-off
switch of the different species should also promote short-term tem-
poral complexity of NEP as shown in Fig. 2g. Hence, our results seem to
suggest divergent temporal behaviours of GPP and Re (and conse-
quently NEP) depending on the successional stage of the ecosystem.
While productivity becomes more periodic over successional stages
due to a less environmentally-constrained autotrophic compartment,
the opposite would occur for Re (and NEP) due to the increased
complexity of the functioning of the heterotrophic compartment,
potentially increasing in species and functional diversity as necromass
and microhabitats increase through the ecological succession39.

Across years, however, we found that ecosystems with greater
biomass were more likely to experience an increase in temporal
complexity of ecosystem functioning than those with less biomass,
which were more likely to decrease their temporal complexity
(Fig. 4a–c; Supplementary Materials: Section 4). The decrease in tem-
poral complexity over time experienced by ecosystems with low bio-
mass agrees with the results discussed above, showing lower temporal
complexity in old forests or large biomass ecosystems. However, the
finding that ecosystems with large standing biomass increase in com-
plexity seem, at least, partially counterintuitive. These results could
emerge because i) in our dataset, ecosystems with more biomass
exhibit stronger increases in productivity over time than those with
less biomass (GPP: β =0.62 ±0.11, p < 0.001; Re: β =0.50± 0.12,
p <0.001; NEP: β = 0.48 ±0.12, p =0.001), thus driving an increase in
temporal complexity, or because ii) ecosystems with large biomass
accumulation experience a rebound in temporal complexity after a
certain threshold (i.e., keystone species have settled but a few more
specialised species arrive). On the other hand, while increases in GPP
temporal complexity were found in ecosystems with more complex
GPP (i.e., themore complex they are, themore complex they become),
the opposite was found forNEP (Fig. 4e, f), pointing towards some sort
of stabilisation mechanism between GPP and Re that pushes NEP
temporal complexity towards intermediate values. Additionally, eco-
systems receiving high rates of N deposition generally experienced a
decrease in NEP temporal complexity (Fig. 4d). The mechanisms by
which N deposition could affect NEP temporal complexity are unclear.
On the one hand, N deposition reduces soil respiration54,55, potentially
reducing respiration temporal complexity. On the other hand, how-
ever, N deposition increases GPP29 and that should increase GPP
temporal complexity (Fig. 3).

Our results also showed a generally positive trend in complexity
of GPP over time (Table 1), which additionally correlates with
increasing annual GPP (Supplementary Fig. S6). Although the increase
in GPP temporal complexity is small on average (<0.5 degrees of
freedom over 20 years), this result indicates that ecosystem func-
tioning is becoming more complex, indicating higher responsiveness
to endogenous (e.g., species interactions) or exogenous (i.e., envir-
onmental) stimuli, mainly driven by an increase in productivity of the
ecosystem. Large drops in the short-term temporal complexity of
ecosystem functioning couldbe indicative of lossof productivity in the

mid- to long-term (from years to decades) and potential regime shifts
in the state of the ecosystem26.

By conducting an initial investigation of how the temporal com-
plexity of C fluxes varies across ecosystems and an exploration of the
factors driving this, we showed that the short-term temporal com-
plexity of ecosystems is indicative of other ecosystem features at
longer timescales, such as annual sums and their variability across
years. This fact reflects the need to investigate how the temporal
complexity of ecosystem functioning relates to ecosystem resistance
and resilience to perturbations. Clearly, further research and theore-
tical development are required to fully understand these patterns, the
biology underlying them, and to integrate these new insights with the
existing knowledge of the drivers of ecosystem functioning and
stability56. Further observations and experiments manipulating limit-
ing factors for growth, community features such as species diversity or
biomass, and the temporal complexity of the environment will also
help us distinguish between the endogenous and exogenous compo-
nents of the temporal complexity in the functioning of organisms and
ecosystems. Nevertheless, our results make it clear that the temporal
complexity of ecosystems could be used as an indicator of underlying
ecosystem condition, with potential applications for monitoring eco-
system changes under increasing environmental pressures.

Methods
Datasets
We used gap-filled half-hourly C flux (GPP, Re and NEP) and weather
(temperature, precipitation, VPD and wind speed) data derived from
eddy-covariance towers from FLUXNET 2015 (Tier 2) (data available
here: http://fluxnet.fluxdata.org/data/download-data). In this study we
used a subset of 57 sites used in a previous study28 for which we had
information about community composition, species abundance (from
which we calculated Shannon’s diversity, H, for plant species that
accounted for up to 95% of the abundance of the site) of the site
footprint, stand age, leaf N and P concentrations, and time series of C
fluxes of at least 60months long (https://doi.org/10.6084/m9.figshare.
13047956.v1). The selected sites (Supplementary Table S12) included
boreal, temperate, and Mediterranean ecosystems, and consisted of
forests (36), shrublands-savannahs (11) and grasslands (10). We used
half-hourly values of NEP, GPP and Re (the last two, following the
daytime partitioning method57) as well as weather variables (tem-
perature, precipitation, VPD and wind speed) to calculate short-term
temporal complexity measures of C fluxes and weather (see section
below for further details).We then aggregated half-hourly C fluxes and
weather variables into daily, monthly, and annual sums or means
(depending on the variable) for further analyses at seasonal to annual
time scales. With these data, we also calculated interannual variability
(IAV) of C fluxes and weather variables using the proportional varia-
bility index58–60, hereafter PV, as the mean of the interannual PV for
eachmonth (e.g.,NEPIAV =

NEPIAV , January + :::½ �+ NEPIAV ,December

12 ). Further details
about the dataset can be found in ref. 28. We also estimated the sea-
sonality of C fluxes by calculating the PV index across the mean values
for the twelve months of the year.

To further test the effect of nutrient availability, biomass and
green biomass on short-term temporal complexity of ecosystem
functioning, we downloaded, for each site, data for total N deposition,
total standing biomass, and the enhanced vegetation index (EVI).
Atmospheric N deposition consisted of dry and wet, oxidised and
reduced N deposition, extracted from global gridded maps (2° × 2.5°
resolution) for the study period61.We extracted aboveground standing
biomass, for 1 km radius around the central coordinate of each site,
from a global gridded dataset derived from a combination of data
coming from Copernicus Sentinel-1 mission, Envisat’s ASAR instru-
ment and JAXA’s Advanced Land Observing Satellite (ALOS-1 and
ALOS-2), and other information from Earth observation sources (data
for year 2010, accessed on 05/05/2022)62. We extracted EVI, as a proxy
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for green biomass, for 1 km radius around the central coordinate of the
site and calculated the annual average values of terra and aqua pro-
ducts (MOD13Q1 and MYD13Q1) for the measurement period of C
fluxes at each site.

Estimating short-term temporal complexity: calculating the
correlation dimension
We calculated the correlation dimension4,5,10,16 of C fluxes as a measure
of short-term temporal complexity of ecosystem functioning. The
units of the correlation dimension are degrees of freedom. We per-
formed these calculations for all three C fluxes (GPP, Re and NEP) and
for weather variables (temperature, precipitation, VPD, and wind
speed) for the whole time series (multiannual), annual (i.e., 17,520 or
17,568data points) and seasonal (i.e., three-months, ~4320data points)
time series. Even thoughwe used very long time series (includingmore
than 5 years depending on the analyses, representing more than
87,600 records), we considered our estimations to reflect the short-
time temporal complexity of the time series because we used half-
hourly data and thus, the reconstructed attractor represents the
behaviour of the system at a short time scale. To calculate the corre-
lation dimension, we followed the procedure described in Huffaker
et al. 20187 (see Supplementary Materials: Section 1: Calculating the
correlation dimension, for a detailed description of the method). The
code we used to calculate the correlation dimension and analyse our
dataset is openly available at: https://doi.org/10.6084/m9.figshare.
27374547.

Statistical analyses
We first explored the relationship between the temporal complexity of
C fluxes (GPPCD, ReCD and NEPCD) and weather variables
(TemperatureCD, PrecipitationCD, Wind speedCD and VPDCD) using lin-
ear mixed effects models (lme function in nlme v.3.1-162 R package)
where the response variable was the correlation dimension (CD), the
independent variable was the variable identity (e.g., GPP, Re…) and the
random factor was the site. We used the Tukey tests for multiple
pairwise comparisons (emmeans function in emmeans v.1.8.5 R pack-
age) to further investigate the differences between pairwise variables.
We performed these analyses for multiannual and annual estimations
of temporal complexity. We further compared seasonal temporal
complexity of C fluxes and weather using mixed effects models in
which the response variable was the CD of a given variable, the inde-
pendent variable was the season, and the random factor was the site.
Tukey tests were also used for multiple pairwise comparisons.

Drivers. The complete list of drivers used in this study and their eco-
logical relevance can be found in Supplementary Table S13. We
investigated the drivers of short-term temporal complexity of C fluxes
(using multiannual estimates, see above) and tested whether sites in
more temporally complex environments (H1), presenting larger fluxes
(H2) and younger or with less standing biomass (H3) present higher
temporal complexity while controlling for other potentially important
factors (see below). To achieve this, we fitted linear models with the
log-transformed correlation dimension of C fluxes as the response
variables. As predictors, we included climate (i.e., the first three axes
froma factor analysis used to reduce the dimensionality of the dataset,
performed using the function fa.parallel from the psych v.2.3.363 R
package; see Supplementary Table S11), weather temporal complexity
(i.e., the correlation dimension of temperature, precipitation, VPD and
wind speed), and standing biomass interacting with EVI (i.e., bio-
mass × EVI) as a measure of green biomass. Additionally, as predictors,
we included ecosystem type (i.e., forest, savannah or grassland),
community-weighted leaf N and P concentrations, Shannon’s diversity
index, total atmospheric N deposition, and the annual average, sea-
sonality, and interannual variability of the C flux matching the
response variable. For NEPCD we also included GPPCD and ReCD as

predictors, and for ReCD we also included GPPCD as a predictor. From
the saturated models we performed a multimodel average64 using the
dredge function inMuMIn v.1.47.5R package65. The average model was
calculated using the Nmodels with values of the Bayesian Information
Criterion (BIC) < 2 (standard threshold) out of the total set of potential
models. We also kept the model with the lowest BIC to visualise rela-
tionships using partial residuals plots (Figs. 2 and 4) using the visreg
function in visreg v.2.7.0R package66. To assess the importance of the
predictors, we also calculated the explained variance of each predictor
in the best models using the calc.relimp function (lmg metric) within
the relaimpo v.2.2-6 R package67. These analyses were repeated using
only forests (N = 36) and including also stand age as a predictor to
further test H3.

Additionally, we used directed acyclic graphs (DAG), a form of
structural equationmodelling, to test the causal relationships between
mean annual sums, interannual variability and short-term temporal
complexity of C fluxes to further test whether more productive eco-
systems also have a more complex short-term behaviour (H2). We
tested six different DAG models representing different causal rela-
tionships (notice that cyclic setups are not possible, Supplementary
Fig. S7): setup 1) mean annual sums (AS) affect (→) short-term com-
plexity (CD), AS → interannual variability (IAV) and IAV → CD, setup 2)
AS → CD, IAV → AS and IAV → CD, setup 3) AS → CD, AS → IAV and CD →
IAV, setup 4) CD→AS, IAV→ASand IAV→CD, setup 5) CD→AS, AS→ IAV
andCD→ IAV, and setup 6) CD→AS, IAV→ASandCD→ IAV. In all setups
tested, we included direct relationships from GPP to Re, from GPP to
NEP and from Re to NEP for annual sums, short-term complexity and
interannual variability. We fitted thesemodels using the psem function
in piecewiseSEMR package (version 2.3.0)68. Themodel setupwith the
strongest statistical support (lowest AIC) after removing non-
significant paths was assumed to better capture the causal relation-
ships between annual sums, interannual variability, and temporal
complexity (setup 3).

Trends. To investigate whether short-term temporal complexity of
ecosystem functioning changed over time, we used the seasonal esti-
mations of the correlation dimension of C fluxes and fitted mixed
effects models to estimate their temporal trends. Models included the
correlation dimension of the C flux as the response variable, a first
order interaction between the season and the year as fixed factors, a
random slope for year depending on site, and a temporal auto-
correlation structure of lag −1 (AR1) to account for temporal auto-
correlation in the data. We then extracted the mean seasonal trend at
each site to investigate whether all seasons experienced the same
temporal patterns. We further fitted a similar model as described
above, but removing the first order interaction between year and
season to calculate the overall annual trend. We then extracted the
site-specific annual slopes (i.e., individual trends per site: ΔGPPCD,
ΔReCD and ΔNEPCD) and the general annual trend over all sites derived
from the mixed effects models. The same analyses were also used to
investigate the trends in the correlation dimension of weather vari-
ables (ΔTemperatureCD, ΔPrecipitationCD, ΔWind speedCD and
ΔVPDCD), as well as the seasonal sums (or averages) of C fluxes (ΔGPP,
ΔRe and ΔNEP) and weather (ΔTemperature, ΔPrecipitation, ΔWind
speed and ΔVPD). Results from these analyses did not change when
using only sites having records for ten years or more (N = 30 sites). We
additionally calculated the trends in flux data quality (variable “NEE_-
VUT_REF_QC”) over time to control for potential changes in the tem-
poral complexity of C fluxes due to changes in the quality of the data
(decreasing trends would be indicative of better data quality over
time). Trends in data quality were tested in our statistical models and
did not show any significant effect on the trends in response variables.

We investigated the drivers of trends in short-term temporal
complexity of C fluxes (ΔGPPCD, ΔReCD and ΔNEPCD) performing similar
analyses as the ones described in the section “drivers” above. In these
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models we included ΔGPPCD, ΔReCD or ΔNEPCD as response variables,
and the most important variables found in the previous analyses of
drivers of short-term temporal complexity as predictors. We also
included climate variables to control for potential confounding effects
(i.e., the first three axes of a factor analysis with climate variables, see
Supplementary Table S11), and predictors referring to trends: we inclu-
ded ΔGPP, ΔRe or ΔNEP (matching the response variable), the mean
annual sums of the C flux (GPP, Re or NEP, again matching the response
variable), trends in weather variables (ΔTemperature, ΔPrecipitation,
ΔWind speed and ΔVPD), an overall trend of weather temporal com-
plexity (an average of ΔTemperatureCD, ΔPrecipitationCD, ΔWind
speedCD and ΔVPDCD), Shannon’s diversity, stand biomass, green bio-
mass (EVI), total N deposition, and the site-specific trend in flux data
quality. To further test H2, we also investigated whether ecosystems
with increasing functional temporal complexity also tended to show
increased annual sums in C fluxes. To do so, we used multiple linear
regressions for each C flux in which the response variables were the
trend mean in annual C fluxes (i.e., ΔGPP, ΔRe and ΔNEP) and the
independent variables were ΔGPPCD, ΔReCD and ΔNEPCD. All analyses
were performed in R statistical software v.4.3.269.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data supporting the findings of this study are openly available
at Fluxnet (https://fluxnet.org/). The data generated in this study have
been deposited in Figshare: https://doi.org/10.6084/m9.figshare.
27374547.

Code availability
Code to perform the statistical analyses is publicly available at Fig-
share: https://doi.org/10.6084/m9.figshare.27374547.
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