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Abstract
Cost-benefit analysis (CBA) is increasingly used to inform environmental policy decisions by
identifying interventions with the highest net societal benefits. Here we focus on CBAs for nitrogen
(NCBA), explaining its history, presenting results of a recent first global NCBA and discussing
opportunities and limitations. NCBAs have been conducted since the late 1990s for various
geographic regions in Europe, the US, and China, primarily to support air quality and
eutrophication policies. A first valuation of damages and benefits of the full nitrogen (N) cycle was
conducted for the European Nitrogen Assessment in 2011, followed by NCBAs for the USA, the
Netherlands and Germany. Here we present a first comprehensive global NCBA. Total global
damage cost of N pollution in 2010 was estimated at US$1.1 trillion, primarily from increases in
premature mortality by N derived PM2.5 (35%), terrestrial biodiversity loss by N deposition (33%),
and marine eutrophication by N river loads (21%). Global benefits of N in 2010 were estimated at
US$ 2.2 trillion with>95% from increased crop yields. By 2050, global N-related costs will rise
faster than N benefits because underlying models project that economic growth (GDP) increases
willingness-to-pay to prevent N pollution more than crop prices. The geographical distribution of
N-related costs will also shift, with China and India surpassing Europe and North America as
regions contributing most to global N-related costs. The estimated N cost range for 2010 was US$
0.6–2.2 trillion with uncertainty largely in dose-impact and damage cost relations. Given the large
uncertainties, when using valuation and NCBA to select a N mitigation option, the net benefits
should be substantially higher than the costs and markedly better than for a rejected alternative
option. Use of NCBA is discouraged to compare international policy options that involve regions
with very different levels of GDP, cultures and political systems.
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1. Introduction

1.1. Altered global N cycle
The global environmental impacts of reactive nitro-
gen (Nr) losses are high and increasing in many parts
of the world (Galloway et al 2003, Sutton et al 2011,
2013, 2019, Einarsson 2024, Sutton 2025). Nr refers
to all N compounds other than unreactive dinitrogen
(N2), which constitutes 78% of themass of our atmo-
sphere. The most important reactive N compounds
are nitrogen dioxide (NO2), ammonia (NH3), nitrate
(NO3

−) and nitrous oxide (N2O), which are charac-
terized by high mobility in air, water and soil, caus-
ing multiple impacts on biodiversity, human health
and the greenhouse gas balance. Since the industrial
revolution, the global anthropogenic generation ofNr

increased to over 200 Tg/yr of N (figure 1) in 2020,
and was close to three times higher than the intens-
ity of the pre-1850 natural terrestrial N cycle (Fowler
et al 2013). The three major anthropogenic sources
of reactive N are synthetic fertilizer, cultivation of
legumes (especially soybean) and formation of nitro-
gen oxides (NOx) at combustion of fossil fuels.

N use and enrichment cause both benefits and
damages to society (Jones et al 2014, Sutton et al
2019). The underlying hypothesis for this paper and
use of NBCA in general, is that these costs often
come from excess or inefficient use of N, so it
should be possible to substantially reduce the costs
with relatively little impact on the benefits. These
benefits are most evident for intentional N addi-
tion to agricultural land. Shibata et al (2025) iden-
tified almost fifty ways in which N impacts the
environment. The most important ones are listed in
table 1.

1.2. Economic valuation of N pollution for policy
decisions
The rationale of economic valuation of damages and
benefits for the N cycle derives from the concept of
externalities or external costs by Pigou (1917), which
prescribes a tax to be included in market transac-
tions to maximize welfare in the case of pollution.
The tax is equivalent to the marginal damage that is
being done by one additional unit of pollution. In
this approach, a marginal change of a (nitrogen) state
or pressure is thus valued. As there is no market of
supply and demand for setting a price on external-
ities, shadow prices are used that can for example
be derived from surveys measuring preferences, for
example, by willingness-to-pay (WTP) for preven-
tion or resolution of environmental impacts. As sur-
veys into preferences typically are local, large-scale
application of valuation requires translation of prices
to other contexts, e.g. by scaling using differences
in GDP, population or area. This procedure is also
referred to as benefit transfer and is an essential

component for global valuation of disturbance of the
nitrogen cycle (Daly and Farley 2011).

Monetization of environmental pollution and
cost-benefit analysis (CBA) can be used to guide (1)
policy decisions, (2) signal and raise public aware-
ness, (3) support the process of environmental liab-
ility (thereby applying the ‘polluter pays’ principle),
(4) sustainable financing and (5) implement true pri-
cing. The ‘polluter pays’ principle was first intro-
duced by the OECD in 1972 and enshrined in the EU
Treaty since 1987. The principle is considered to be
at the heart of EU environmental policy even though
its practical application is lagging behind (European-
Court-of-Auditors 2021). Ultimately, internalization
of externalities should change behavior and practices
of producers and consumers, in other words, CBA
turns environmental protection and sustainability
into a financial case. This ambition is often explained
by that ‘money speaks louder than words’. Daily et al
(2000) distinguishes three steps in decision-making
using CBA: (1) identification of possible mitigation
or policy alternatives (2) identification of all relev-
ant effects, both classical economic (labor, capital,
natural resources) and externalities, and (3) valu-
ation of the consequence of not taking actions versus
the policy alternatives. The first case of effective
use of CBA for a policy decision by the European
Commission related to nitrogen pollution was for the
revision of the NO2 air pollution standards in the
Air Quality directive. Olsthoorn et al (1999) found
that the societal benefit for the EU of reduced disease
and premature mortality by lowering the NO2 stand-
ard amounted to 0.41–5.9 billion euro/year. This was
so much higher than the implementation cost of
0.08 billion euro/year that it convinced the European
Commission, in spite of strong protests from the car
manufacturing industry. This shows that comparison
of benefits and costs of mitigation can be effective to
select the most beneficial policy options. However,
there are alternative approaches to aggregate and
weigh changes of nitrogen impacts (supplementary
material SM1.)

1.3. Examples of previous regional and national
nitrogen pollution cost valuations and NCBAs
The European N Assessment (Sutton et al 2011, Van
Grinsven et al 2013) concluded that the total N pollu-
tion cost in 2008 for the EU27 amounted to €75–485
billion per year, equivalent to 1%–4% of the GDP of
the EU27. Half of this cost was due to N pollution
from agricultural sources, with major and compar-
able contributions by NH3 emission and N runoff,
whereas the cost of mortality and disease by nitrate
pollution in drinking water was small. Using a similar
approach as for the European N Assessment, Sobota
et al (2015) quantified the total N pollution cost for
the US in the early 2000s, Oehlmann et al (2021) for
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Figure 1. Evolution of global anthropogenic terrestrial formation of reactive nitrogen (Nr). Data sources: (A) Use of synthetic
fertilizer after 1960 from FAOstat and before 1960 from Smil (2004); biological nitrogen fixation in agriculture from the
IMAGE-GNMmodel from Beusen et al (2022). (B) Nitrogen oxides (NOx) and ammonia (NH3) emissions between 1970 and
2022 from EDGAR (https://edgar.jrc.ec.europa.eu/dataset_ap81) and the CEDS database (Hoesly et al 2018), Emissions between
1850 and 1970 are from Aardenne et al (2001). Emissions include natural emissions from biomass fires. (C) Nitrous oxide (N2O)
is total emission based on Aziz et al (2024) where the 1850 value is mostly natural. (D) Emission of Nr in N2O only includes the
minor fraction of newly formed Nr as derived from Tian et al (2020).

Table 1. Overview of negative and positive effects of increased nitrogen (N) input or environmental load.

Costs (Damages)

1. Human disease and premature death by N-induced PM2.5 in ambient air pollution
2. Human disease and premature death by NO2 in ambient air pollution
3. Human disease and premature death by N-induced ambient ozone (O3)
4. Global warming by long-lived GHGs (N2O, CO2, CH4) enhanced by N enrichment
5. Loss of terrestrial biodiversity by N deposition
6. Loss of ecosystem services due to marine eutrophication by N enrichment
7. Human disease by N2O-driven depletion of stratospheric O3

8. Human disease by nitrate and nitrite in drinking water
9. Loss of ecosystem services due to fresh surface water eutrophication by N enrichment

Benefits

1. Increased crop production through intentional addition of N to agricultural soils (in the form of synthetic N
fertilizer and residues of N fixing crops or livestock manure)

2. Increased crop production through unintentional atmospheric N deposition
3. IncreasedC-sequestration byN enrichment and other processes influenced byN and contributing to global cooling
4. Increased production of woody biomass by unintentional atmospheric N deposition for use in construction,

industry and as biofuel
5. Use of industrially produced ammonia as an energy carrier for renewable energy and as low emission shipping fuel

Germany in 2015 and Gu et al (2012) for China in
2008 (for more details see supplementary material
SM 2).

The European N Assessment (Van Grinsven et al
2013) estimated the direct farm benefits of increased
N input for crop production for the EU27 in 2008 at
€20–80 billion per year, which value was 2–3 times
lower than N pollution cost of €35–230 per year. This
suggests that the economic optimum N rate, where

the marginal farm cost of fertilizer application equals
the marginal benefit is not optimal for society as a
whole. This was also concluded by Rodríguez et al
(2024) for global cereal cultivation.

An NCBA for the Netherlands in the formal
evaluation of the Dutch implementation of Nitrates
Directive in the Fertilizer and Manure Act found
that the benefits of the N policies for agriculture
were up 7 times higher than the implementation
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costs (Van Grinsven and Bleeker 2017). In an NCBA
for Denmark, Jacobsen et al (2024) found that the
national health benefits of reduced colorectal can-
cers by complying to a stricter nitrate standard over-
whelmed the additional mitigation cost.

Gu et al (2021) estimated that the ratio of global
benefits over costs (BCR) of halving ammonia emis-
sions would range between 2.6 and 4.5, depending on
including fertilizer savings, as compared to a BCR of
0.4 for a 50% reduction of NOx emissions alone. They
concluded that national and international air pollu-
tion policies therefore should prioritize controlling
NH3 emissions. Liu et al (2019), Zhang et al (2020)
and Guo et al (2020) came to similar conclusions for
China (for more details, see supplementary material
SM 3).

Here we present a first comprehensive
global NCBA which is part of the International
Nitrogen Management System project (www.inms.
international/) and published in 2025 (Sutton 2025).
Results are compared to a global NCBA which was
part of a full CBA for the global agri-food system
(FAO 2023). Uncertainties of damage cost are quan-
tified and implications for policy use are discussed.

2. Method

The method to quantify environmental damages and
convert these to monetary units is referred to as
the ‘Impact-Pathway-Approach (IPA)’ (Bickel and
Friedrich 2005). IPA has been most widely applied to
evaluate air pollution impacts of energy generation.
Models are used to translate emissions to changes in
concentration levels (the air quality state) and next
to impacts on humans and ecosystems, In the last
step these impacts are converted to a monetary value
(figure 2; Brink et al 2011, Rabl et al 2014, Silveira
et al 2016), which can either be a cost (e.g. loss of
recreational value) or a benefit (e.g. increased forest
growth by nitrogen deposition or increased crop pro-
duction by N fertilizer input).

Application of IPA to the disturbance of the global
N cycle (Sutton et al 2013, Van Grinsven et al 2013)
is demanding as the N cascade involves multiple
environmental media, transport and exposure path-
ways and impacts. An overview of the used emission-
dispersion-impact models is given in De Vries et al
(2020) and a summary of application and valuation
procedures for five major impacts in supplementary
table 1. Global costs for N damage items as listed in
table 1 were not included when these were small or
very hard to quantify. Cost of human disease and pre-
mature death by NO2 in ambient air pollution were
excluded following (Van Dingenen et al 2018) and
in view of complex interactions with effect of NO2-
induced formation of PM2.5 andO3 (Wang et al 2025)
and risk of double counting (Castro et al 2023). Cost
of human disease caused by N2O driven depletion
of stratospheric O3, nitrate and nitrite in drinking

water and damages by freshwater eutrophication byN
enrichment were also excluded. One reason for these
exclusions was the unavailability of required data and
models to quantify impacts on global scale, partly
because impacts of N on drinking water and on fresh-
water ecosystems depend on spatially highly variable
pressures and practices. Further, practices determin-
ing impacts of nitrate in drinking water depend on
highly variable quality of local resources and con-
sumer choices for using untreated, public or bottled
water for cooking and drinking. Previous work (Van
Grinsven et al 2013) indicated that global costs for
excluded items were small.

Damage costs can be estimated in multiple ways,
e.g. prevention costs, restoration costs, revealed or
stated preferences (de Vries et al 2024). WTP is a
concept that is most closely related to welfare eco-
nomics: it captures the preferences of individuals dir-
ectly through e.g. surveys using choice experiments
(Perman et al 2011). Regarding cost of eutrophic-
ation, the Baltic sea is one of the longest running
studies (Markowska and Żylicz 1999, Ahtiainen and
Öhman 2014). Preferences tomitigate eutrophication
tend to, implicitly or explicitly, also address upstream
impacts on freshwater and groundwater feeding into
the Baltic Sea. People living in the Baltic region do not
only recreate on the coast but also swim and fish in
the many lakes and rivers (Vesterinen et al 2010) and
are informed that sources and solutions for eutroph-
ication of fresh andmarine waters are interconnected.
Therefore, surveys reveal that theirWTP for improve-
ments remains high regardless of how far they lived
from the Baltic sea (Hyytiäinen et al 2013). Damage
(or Dose) response functions often are nonlinear
due to changing responses with increasing exposure
(Shibata et al 2025, see supplementary material SM
4). Valuation (or Monetization) functions depend on
GDP, using an income elasticity (ε), population and
other scalers to allow benefit transfers to other regions
or into the future (Daly and Farley (2011), see sup-
plementary material SM 4). Table 2 summarizes and
characterizes the effects of N use and losses as used
for the global NCBA (for details see supplementary
table 2).

Costs and benefits of nitrogen pollution in 2050
were explored for three contrasting scenarios from
the shared socioeconomic pathways (SSPs) scen-
ario group (Van Vuuren et al 2021). These scen-
arios consider different futures regarding climate for-
cing using the representative concentration path-
ways (RCPs) under different assumptions on future
socio-economic developments and climate policies.
On these SSPs different future N storylines (Kanter
et al 2020) were superimposed. Due to lack of data,
mitigation costs were not included. We used three
combinations of SSPs, RCPs and N-policy ambi-
tions: SSP1-RCP2.6H representing high -policy ambi-
tions for mitigating climate warming and N pol-
lution (S7), SSP2-RCP4.5M representing medium
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Figure 2. Schematic representation of Impact-Pathway-Approach (IPA) for the nitrogen cascade.

Table 2. Overview of impacts of N use or N loss, including the driving global N flow and the mean global unit damage cost. Codes 2nd
column denote D= Damage, B= Benefit, X= Damage eXcluded in global NCBA. Characterization as Damage or Benefit is for
increase of N flow. Only N in NOx emission, synthetic fertilizer production and biological N fixation are new formation of Nr, all other
impacting N flows are recycled or secondary. (∗derived for the EU).

Impact N drivers

Global driving
N flow 2010
(TgN)

Average global
marginal cost (unit)

1 D Increased mortality by
ambient PM pollution

NOx emission to air 35 3.6 (U$/kg NOx-N)

2 D Increased mortality by
ambient PM pollution

NH3 emission to air
(recycled N)

49 3.6 (U$/kg NH3-N)

3 D Increased mortality by
ambient O3 pollution

NOx emission to air 35 0.5 (U$/kg NOx-N

4 D Crop loss by ambient O3

pollution
NOx emission to air 35 0.4 U$/kg NOx-N)

5 D Terrestrial biodiversity loss
(MSA) by N deposition

Atmospheric N deposition 32 12.8 (U$/kg Ndep)

6 B Increased wood production Atmospheric N deposition 32 0.8 (U$/kg Ndep)
7 B Increased C sequestration

forests for climate cooling
Atmospheric N deposition 32 8.2 (U$/kg Ndep)

8 D Marine impacts (recreation,
eutrophication

N surplus agricultural soil 102

N surplus natural soil 91
Net river N load to marine from: 40 8.4 (U$/kg N load)

Groundwater 18
Surface runoff 8
N-point sources+ other 13

9 X Freshwater eutrophication N leaching and point sources pm pm (U$/kg N load)
10 X Increased mortality and

disease by nitrate drinking
water

N leaching to drinking water
sources

18 0.9∗ (U$/kg NO3-N)

11 D Climate damage N2O emission to air 4 29.7 (U$/kgN2O-N)
12 X Skin cancers and eye cataract N2O emission to air 4 0.8 (U$/kg N2O-N)
13 B Crop production (cereals) N synthetic fertilizer input 101 15.3 (U$/kg N input)

N biological fixation 44
N manure input (recycled N) 97

policy ambitions (S3), and SSP5 RCP8.5L (S1) rep-
resenting overall low environmental policy ambitions
(Rodríguez et al 2024).

3. Results

3.1. Nitrogen impacts and costs in 2010
The total globalNpollution damage cost around 2010
was estimated at almost US$ 1.1 trillion (table 3,
figure 2). China (30%) and Europe (22%, incl. FSU—
Former Soviet Union) were the largest contributors
to the global N pollution cost. Major costs resulted
fromprematuremortality byN-induced formation of
ambient particulate matter (35%), loss of terrestrial

biodiversity by increased N deposition (33%) and
marine eutrophication by increased river N loads
(21%). The average global loss of life expectancy
by N-driven air pollution in 2010 was 4 months,
ranging between one month in Africa (incl. Middle
East) and eight months in China. Average global loss
of terrestrial biodiversity by increased N deposition
was close to 7% (measured in MSA—Mean Species
Abundance; Schipper et al 2020), with highest loss
of 9% in China and a lowest value 5% in Oceania
including South–East Asia (van Grinsven et al 2025).
Net N-induced warming via long-lived greenhouse
gases contributed 8% to the global N damage cost.
Although the gross cost of N-induced warming of
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US$ 414 billion was the largest cost (38% and equi-
valent to 3.5 Pg CO2eq and mainly caused by emis-
sion of N2O), this cost was largely compensated byN-
induced climate cooling representing a global bene-
fit of US$ 326 billion (30%, equivalent to 3 Pg CO2e

and mainly by N-induced C-sequestration; (Du and
de Vries 2018, Schulte-Uebbing and de Vries 2018, de
Vries et al 2025).

Given the large differences in GDP and popula-
tion, the total societal cost of N pollution is not very
informative for comparing the severity of N pollu-
tion damage in global regions. Expressing N pollu-
tion costs relative to GDP provides a better proxy for
this (table 3). This relative global N cost in 2010 was
1.8% with highest values close to 3% for China and
India and lowest values in the Americas. High rel-
ative N cost in China and India reflect both higher
N pollution levels and lower GDP in these regions.
N pollution cost per capita is another informative
metric to compare regions and shows more contrast
than N cost relative to GDP. Global average N pol-
lution cost was 157 US$, ranging between 61 US$
in India and 650 US$ in Europe. N pollution cost
per capita could be used as an indication of a max-
imum budget per capita for mitigation of N-related
pollution.

3.2. Nitrogen costs and benefits in 2050
The projected anthropogenic formation of reactive N
in 2050 under S7 and S3 is somewhat lower than in
2010 and close to the 1990 level, while under S1 it is
1.6 times higher than in 2010 (figure 3). The consol-
idation of Nr formation under S7 and S3 is the effect
of policy, while the sharp increase under S1 is mainly
caused by a massive increase of synthetic N fertilizer
use, especially in Asia.

The projected costs of N pollution in 2050 are
2.6 times higher than in the base year under S7, 2.7
times higher under S3, and 4.7 times higher under
S1 (figure 3(B)). The increases under S7 and S3 are
primarily caused by increasing unit damage costs
(UDCs) (figure 6) with increasing GDP due to the
effect of income elasticities. Global GDPppp2005 is pro-
jected to increase by a factor of three (under S3) to five
(under S1) between 2010 and 2050 (figure 4). Under
S1, N pressures and impacts also increase. The pro-
jected total costs of N pollution in 2050 expressed as
a percentage of GDP are fairly stable (figure 4), with
the lowest share in 2050 under the high ambition N
policy scenario (S7).

China accounted for 30% of the global N pollu-
tion cost in 2010. This share is projected to increase
to 33%–40% in 2050, reflecting that the decreasing
effect of future N policies on N cost is smaller than
that of economic growth (figure 5). The share of
Europe and North America in total global N pol-
lution decreases from 35% in 2010 to 16%–18% in
2050, mainly due to an increase in total global N cost.
The largest relative increase of N pollution costs is

projected for India, where the share in total global cost
increases from 9% in 2010 to 15%–21% in 2050.

3.3. Direct nitrogen benefits
Global benefits of increased N use exceed global costs
for the year 2010, but not in 2050 under scenario S7
and S1 (figure 6). More than 95% of global benefits
of increased N use are provided by increased crop
production by increased use of N fertilizer. Benefit
contributions of increased crop production by N
deposition (2%–3%) and of wood production by N
deposition (0.2%–0.4%) are minor. Cereals contrib-
ute about half to global crop production (Rodríguez
et al 2024). Projected total global cereal grain produc-
tion increased from 2.8 Gton in 2010 to 3.4, 3.8 and
4.1 Gton in 2050 for S7, S3 and S1, respectively. N
benefits for all crops increase from 2 trillion USS2010
in 2010 and 2050 under S7, to about 4 trillion USS2010
under S3 and S1. The change ofmonetized crop bene-
fits in 2050 reflects the combined effect of increases
in global crop yields and projected region dependent
crop prices (Rodríguez et al 2024).

Applying IPA also allows to establish the contri-
bution of N to the total impacts (N-share hereafter),
and thereby to the total cost or benefit. The global
mean N-share around the year 2010 for increase of
harvested cereal yields by synthetic N fertilizer was
estimated at 45%, for premature mortality by air pol-
lution by PM2.5 at 30% and for biodiversity loss in ter-
restrial ecosystems at 7% (for details see supplement-
ary material SM 5).

3.4. N damage costs in the context of total
externalities of the global agri-food system
FAO (2023) estimated the total external (or hid-
den) cost of the global agri-food system in 2020 at
US$ppp2020 12.7 (CI90 10.8–16.0) trillion (table 4),
equivalent to almost 10% of the global GDP and
close to the market value of the global food system.
By far, the largest contribution (73%) to the global
external cost was for disease and mortality caused by
unhealthy dietary patterns. The external cost caused
by N pollution was estimated at US$ppp2020 1.5 tril-
lion (CI90 0.5–4.3), inferring a N-share of 12% in the
total external cost of the global food system. The FAO
study identified N pollution as the major environ-
mental cost, contributing almost half. The included
impacts and approaches (Lord et al 2023)were similar
to this study (table 1). A large part of the almost 50%
higher estimate of total global N cost by (Lord 2023)
for 2020 as compared to our study for 2010 (table 3)
can be explained by the increase of the global GDP
by more than 30% and its effect on UDC through the
GDP elasticity.

4. Uncertainties

Given the large uncertainties in dose-response rela-
tions and UDCs based on WTP, it is no surprise
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Table 3. Societal cost of nitrogen pollution for N flows in 2010 in global regions. Costs are expressed in USDppp2015 and expressed as % of GDP and USDppp2015 per capita (ME is Middle East, FSU is Former Soviet Union, ANZ is
Australia and New Zealand, L is Latin and N is North)16.

2010
Population
(billion)

GDPppp
(trillion
USD2005)

Mortality
ambient
PM_Nr

Mortality
ambient NOx

Crop yield
loss by O3

Terrestrial
biodiversity
loss

Marine
pollution

Net Nr land
warming

Net Nr
aquatic
warming

Net Nr
warming

Total N
cost

Billion USD2015

World 6.98 69.1 421.4 23.9 14.6 406.5 258.5 88.6 1.5 90.1 1215
Africa+ME 1.33 6.1 34.7 0.8 1.2 42.4 4.5 11.6 0.3 11.8 95
China 1.41 11.6 110.1 12.6 4.6 99.8 82.6 18.3 0.3 18.6 328
Europe+ FSU 0.81 17.4 141.7 3.0 1.0 77.2 78.3 −5.4 0.2 −5.2 296
India 1.23 3.7 28.0 2.5 1.9 50.7 6.4 15.6 0.3 15.8 105
L America 0.59 6.2 20.3 0.6 0.5 30.1 11.1 21.5 0.1 21.6 84
N America 0.34 13.6 39.2 5.3 4.1 40.3 54.4 10.4 0.1 10.4 154
R Asia+ ANZ 1.27 10.5 42.4 1.8 1.2 66.1 21.3 16.7 0.3 17.0 150

% of GDP

World 0.62% 0.05% 0.03% 0.59% 0.37% 0.13% 0.00% 0.13% 1.78%
Africa+ME 0.59% 0.02% 0.03% 0.70% 0.07% 0.19% 0.00% 0.20% 1.62%
China 0.92% 0.11% 0.10% 0.86% 0.71% 0.16% 0.00% 0.16% 2.86%
Europe+ FSU 0.87% 0.03% 0.01% 0.44% 0.45% −0.03% 0.00% −0.03% 1.77%
India 0.79% 0.10% 0.16% 1.38% 0.17% 0.42% 0.01% 0.43% 3.03%
L America 0.31% 0.01% 0.02% 0.49% 0.18% 0.35% 0.00% 0.35% 1.35%
N America 0.29% 0.05% 0.03% 0.30% 0.40% 0.08% 0.00% 0.08% 1.15%
R Asia+ ANZ 0.40% 0.02% 0.01% 0.63% 0.20% 0.16% 0.00% 0.16% 1.43%

GDPppp (USD2005/cap) USD2015/cap

World 9895 60.3 3.4 2.1 58.2 37.0 12.7 0.2 12.9 174
Africa+ME 4557 74.7 15.1 0.7 77.5 116.5 52.8 19.4 72.1 357
China 8270 65.9 44.7 2.0 91.2 84.5 43.2 16.3 59.4 348
Europe+ FSU 21 367 186.7 51.6 4.8 97.1 139.9 138.7 31.5 170.3 650
India 2976 26.2 0.6 0.9 31.9 3.4 8.7 0.2 8.9 72
L America 10 461 6.4 1.6 0.2 30.9 19.6 45.4 19.4 64.7 123
N America 39 761 6.9 2.9 0.5 38.3 13.1 37.5 16.3 53.8 115
R Asia+ ANZ 8310 24.0 5.1 0.7 40.4 22.3 115.6 31.5 147.1 240

16 ppp: purchase power parity units, so corrected for regional difference in purchase power, here for year 2005.
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Figure 3. History of global anthropogenic terrestrial formation of reactive N (A) and monetized impacts of related N pollution in
base year 2010 (B) and projected changes in 2050 under three INMS scenarios (S7, S3 and S1) which combine SSP1, SSP2 and
SSP5 with RCP 2.6, 4.5 and 8.5 and with high, medium and low N policy ambitions.

Figure 4.Monetized impacts of global N pollution expressed as share of GDP for the base year (2010) and for 2050 under three
contrasting scenarios. Total GDPs are given in italic.

Figure 5. Projected regional shares in global N pollution costs in the base year (2010) and for 2050 under contrasting scenarios.

that uncertainties in the estimates of nitrogen dam-
age costs for countries or regions are very substantial.
FAO (2023), based on Lord (2023), reported a 90%
CI of US$ppp2020 0.5–4.3 for global N pollution cost
in 2020 (table 4); corresponding to a range of 33%–
285% around the mean. Rodríguez et al (2025) quan-
tified the uncertainty for the total N costs for global

cereal systems using the same response and monetiz-
ation functions as used for global N costs in table 3,
applying a Monte Carlo approach. The 90% CI for
global N damage costs in 2010 for cereal cultivation
was US$ppp 0.090–0.172 trillion corresponding to a
range of 71%–137% around the mean. This lower
uncertainty compared to Lord (2023) could be caused
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Figure 6. Total costs (C) and benefits (B) of global N use in the base year of 2010 and projected for 2050 under contrasting
scenarios in real US$ for 2015 price levels, distinguishing effects of increase in flow and unit price. Also shown are the ratios of
benefits over costs (BCR).

Table 4. Environmental, social and health hidden costs for the global agrifood system in 2020. Adapted from FAO (2023). CC BY 4.0.

Environment Social Health N-share

TOTAL Climate Water Land Nitrogen

Agrifood
worker
poverty

Under-
nourishment

Dietary
patterns Total Environment

Billion US$ppp2020

World 12 749 855 105 392 1516 520 51 9310 12% 53%
Africa 953 154 4 43 57 285 19 392 6% 22%
America 2978 220 11 149 368 12 5 2212 12% 49%
S-America 894 130 4 17 229 6 3 505 26% 60%
N-America 1711 68 6 128 73 0 0 1435 4% 27%

Asia 5857 356 84 59 815 222 27 4294 14% 62%
China 2555 104 9 6 382 3 0 2052 15% 76%
India 1123 77 36 24 144 157 15 669 13% 51%

Europe 2862 113 5 139 261 1 0 2343 9% 50%
Oceania 99 13 0 2 14 0 0 70 14% 47%

by the assumption of no correlation between uncer-
tainties of individual impacts. Relative uncertain-
ties in global UDCs per individual N impacts could
center around 50% of the mean UDC (see e.g. de
Vries et al 2024 andRodríguez et al 2025, see also sup-
plementary tables 3 and 4). Assuming that uncertain-
ties in these UDC values for individual impacts are
fully correlated, this would imply a maximum uncer-
tainty range for the total global N cost (table 3) of also
50%, implying a global cost range of 0.6–2.2 trillion
US$ppp in 2010. Assuming no correlation and uni-
form distributions of UDCs this range would be 0.9–
1.8 trillion US$ppp. The uncertainties in UDCs partly
derive from uncertainties in underlying surveys into
preferences or WTP to prevent or resolve N damages.
Voltaire et al (2013) and Braun et al (2016) included
respondent’s uncertainty in surveys intoWTP to pro-
tect nature, respectively, into perceptions about solar
radiation management, finding uncertainties again
close to 50%. Another source of uncertainty in the
UDCs used in our global NCBA is that WTPs for
individual impacts are derived from separate surveys.
Ideally, preferences to prevent or resolve the multiple

impacts of N should be surveyed in one combined
survey adding context allowing respondents to make
an informed prioritization of the various impacts.

An uncertainty range for the mean total global N
damage cost of±50% could still be an underestimate
because, we did not relate our calculated damages
and costs to planetary boundaries, ecological tipping
points or the possibility of irreversibility of some
impacts, like biodiversity loss or soil degradation
which carry the risk of disruption of the global food
system.

5. Discussion

IPA and CBA for the global N cycle are poten-
tially important tools to deal with the involved mul-
tiple N-sources, N-forms, dispersion and exposure
paths and impacts. The first comprehensive global
NCBA presented here provides new insights about
the relative importance of impacts in global regions.
Its relevance could be complemented with scenarios
that include mitigation costs. Zhang et al (2020)
and Gu et al (2021), for example, implemented

9
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Marginal Abatement Cost Curves in their NCBA
and convincingly showed that air pollution policies
should prioritize reducing NH3 over NOx emissions.
Nevertheless, policy makers could still be reluctant to
use NCBA in important decisions about N policies.
One reason is the presence of large uncertainties in
monetized N damages amounting to a factor of two
for the global and regional scale. Valuation and ulti-
mately monetization, is a way of organizing informa-
tion to help guide decisions and targeting main goals,
but it does not provide a ready solution (Daily et al
2000). Another reason for policy reluctance could
be the interdisciplinary nature of NCBA, demand-
ing understanding and integration of social, natural
and life sciences, which is challenging for reaching
academic and political consensus. Putting monetary
weights on the very diverse effects of N use may be
conceived by politicians as a limitation of their polit-
ical mandate to set priorities. While the aforemen-
tioned problems were not a barrier to use of NCBA
to set new NOx standards in the EU around 2000
(Olsthoorn et al 1999), they are increasingly pos-
ing barriers to take decisions today. An example is
the current Dutch policiy to reduce ammonia emis-
sion to bring 74% of the N-sensitive nature areas in
2035 below the critical N load to comply with the EU
Habitat Directive (Boezeman et al 2023). The acting
Dutch cabinet values the economic risks for farmers
and the farming sector higher than the risks of biod-
iversity loss, which challenges both the natural science
and life science underlying the IPA linking ammo-
nia emissions of farms to the critical status of Dutch
nature.

Further, the academic and ethical justifiability to
add up and compare monetized values for impacts
across very different impacts domains and global
regions is contested. We give three examples. First,
our NCBA finds similar monetary values for global
premature mortality by N-derived ambient air pol-
lution and for loss of terrestrial biodiversity by
increased N deposition. The former relies on stated
WTP for longer healthy life expectancy, while the
latter reflects WTP for prevention or restoration of
biodiversity. However, critics may argue that disease
and premature death by ambient air pollution are
less existential to society than loss of biodiversity.
These deaths are derived from epidemiological stud-
ies that result in statistical values based on modeled
attribution of total premature mortality to a suite of
causes (see e.g. Stanaway et al 2018). Most of these
premature deaths cannot be attributed directly to
air pollution, as air pollution acts as a comorbidity.
When someone dies prematurely, very rarely ambi-
ent air pollution can be identified as the primary
cause of death. Loss of terrestrial biodiversity, how-
ever, is increasingly viewed as an existential threat for
humanity (Richardson et al 2023). The consequences
of degradation of ecosystem services like pollination
and natural pest control for agriculture and food

security can hardly be overstated. Second, another
arbitrary element of global NCBAs is the choice
to make the value of human life and biodiversity
dependent on GDP. Therefore, in IPAs and NCBAs
the value of human life in a low-income country is
lower than in a high-income country. Particularly,
this can become problematic when NCBA is used
to justify moving N polluting activities to low GDP
countries. While not based on NCBA per se, the lat-
ter has been a common practice in the past dec-
ades, based on classical economic arguments of lower
wages and need for economic development in low
GDP countries. Thirdly, pricing can be viewed as
problematic as it conceives human well-being only in
terms of utility or satisfaction of preferences (Wegner
and Pascual 2011). In a typical NCBA, some people
will be worse off, while others will be better off.
Summing these individual effects into an aggregate
implies the Kaldor–Hicks Compensation Principle.
This principle assumes that the marginal utility of
money is the same for all individuals in society, so that
the people worse off can in theory be compensated
for their loss of welfare. This certainly is not the case
in an unequal world lacking democratic institutions.
For example, Manero et al (2024) concluded that val-
ues of Indigenous people are very different and sys-
tematically under-represented. Munasinghe and Lutz
(1992) concluded that estimates of values of external-
ities (non-use values) in the developing world were
virtually non-existent. Therefore, the use of NCBA
to set N policy priorities or to select the best N
mitigation options in international arenas, including
both high- and low- income countries with diverse
cultures and political systems, is problematic as it
ignores underlying differences in value structures. If
access to sufficient food, water, housing, energy, med-
ical care etcetera is not secured and the majority of
people and the political representatives are not famil-
iar with the western concepts of welfare, justification
of policy decisions based on IPA and NCBA is not
accepted.

However, NCBAs generally indicate when welfare
gains for society can be expected by further reducing
nitrogen loads. This would be a step forward, as polit-
ical decisions are often based on lobbies or preval-
ent public opinions rather than on maximizing wel-
fare for the society as a whole (Wegner and Pascual
2011). In this process, public participation, deliberat-
ive procedures and transparency of decision-making
could enhance the results of the NCBAs. And we
should not forget that there are alternatives for assign-
ing societal N weights to different impacts or mitiga-
tion options, for example, by direct use of polls into
public concerns or their consolidation in distance
to policy targets. In a good government, these con-
cerns should be reflected in the allocation of national
budgets. VanGrinsven (2016) indeed found a correla-
tion betweenWTP to preventN pollution and proxies
for budget allocation for Europe.
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6. Conclusion

Valuation of N impacts and NCBA has the potential
to become a useful tool for guiding policy on prior-
itizing strategies for joined-up mitigation of diverse
N pollution impacts. Valuation helps to assess the
relative importance (or ‘societal weight’) of these
diverse N impacts, which is important to increase
societal acceptance of N political action. For now,
the potential of NCBA is highest in politically, socio-
economically and culturally homogenous regions
and therefore best established in western, educated,
industrialized, fairly rich and democratic countries
(so-called WEIRD countries, Henrich et al 2010).
In such countries, money tends to ‘speak louder
than words’, which demonstrates that nitrogen mit-
igation is welfare-enhancing and can be effective in
driving ambitious environmental policies. Valuation
and NCBA can justify shifting policy away from
traditional N concerns, like local nitrate pollution
of drinking water resources, toward more alarming
global issues like biodiversity loss. Even when poli-
cymakers are reluctant to use the monetized N dam-
ages directly, NCBA also allows for the aggregation
of a broad set of N impacts, offering insights into
their variation over time and geography. However,
there are also concerns. While the underlying IPA
is well established, it relies on complex dispersion-
and impact- models. Moreover, assigning monetary
values to environmental goods remains contentious,
particularly when comparing the ‘hypothetical’ non-
market benefits of improved environmental quality
with ‘real’ financial gains from increased agricultural
production or the ‘real’ costs of N mitigation. A key
takeaway from this first global NCBA is that three N-
related impacts dominate: premature mortality from
N derived PM2.5, terrestrial biodiversity loss from N
deposition and marine eutrophication from N river
loads. Another robust message is that N damage costs
in 2010 were around 2% of global GDP and that
this percentage will not change very much in 2050
under three contrasting scenarios. Uncertainties of
valuation results from application of IPA are large.
Therefore, when using valuation and NCBA to select
a N mitigation option, the net benefits for the pre-
ferred option should be substantially higher than for
the rejected options.
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