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Abstract
Climate model emulation has long been applied to assess the global climate outcomes of integrated
assessment model (IAM) emissions scenarios, but is typically limited to first-order climate
variables like mean surface air temperatures at limited regional resolution. Here we introduce the
rapid impact model emulator (RIME), which uses global warming level interpolation approaches
based on inputs of global mean air temperature pathways to calculate a range of climate impact
driver (CID) indices and exposure metrics. The emulation is fast and versatile, producing batches
of CID indices and exposure metrics to complement IAM scenarios thereby bridging the
Intergovernmental Panel on Climate Change (IPCC) Working Groups on impacts (WGII) and
mitigation (WGIII) communities. Our lightweight emulator produces both gridded and
regionally-aggregated results taking us beyond the computationally-intensive constraints of global
earth system and impact models. The approach allows to assess the combined outcome of a wide
range of emission and socio-economic scenarios enabling a decomposition of drivers of
uncertainty for future climate risks. While climate uncertainties are the primary concern through
mid-century, our results indicate that socio-economic factors such as population growth may
become the dominant drivers of risk by the end of the century. We demonstrate an application to
IPCC scenarios to illustrate its potential utility while acknowledging methodological constraints
and delineating a comprehensive roadmap for future development. These rapid climate risk
emulation frameworks exhibit significant promise for facilitating cross-disciplinary integration
and enhancing scientific inclusivity across diverse research communities.

1. Introduction

There is growing demand across research, policy, business and civil society for a more agile exploration of
climate hazards and impacts under varied emission and socio-economic scenarios (Tebaldi et al 2025) to
answer questions such as ‘How will heatwaves change by 2050 under current climate policies?’, or ‘What
impacts are avoided if we mitigate consistent with the 1.5 ◦C pathways identified in the latest report of the
Intergovernmental Panel on Climate Change (IPCC)?’ State-of-the-art, complex earth system models
(ESMs) simulate the earth’s atmosphere, land surface, oceans, cryosphere, carbon and bio-geochemical cycles
in spatial detail and at daily resolution. However, ESM simulations require supercomputers, weeks to months
of runtime, and generate vast data volumes. Thus, ESMs are typically constrained to running tens of
scenarios in highly structured, community-driven model intercomparison exercises, like the ScenarioMIP
activity (van Vuuren et al 2025) of the Coupled Model Intercomparison Project (CMIP, Eyring et al 2016), a
process which from initial scenario design to complete assessment in IPCCWorking Group 1 (WGI)
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(Masson-Delmotte et al 2021), takes over five to seven years. More rapid assessments are thus needed and are
gaining traction (Forster et al 2025, Tebaldi et al 2025).

In response, development and use of simple climate models (SCMs) and climate model emulators has
accelerated. SCMs efficiently simulate global climate responses to radiative forcing or emissions scenarios,
primarily reporting annual global mean surface temperature (GMT). Their speed enables efficient
exploration of long-duration scenarios, many varied emissions pathways and probabilistic assessments
sampling parametric uncertainties, making them central to integrated assessment modeling (IAM). Examples
include FaIR (Smith et al 2018), MAGICC (Meinshausen et al 2011), OSCAR (Gasser et al 2017, Quilcaille
et al 2023a), HECTOR (Dorheim et al 2024) and CICERO-SCM (Sandstad et al 2024), which featured in the
Reduced Complexity Model Intercomparison Project (Nicholls et al 2020), as well as IPCCWGIII’s (Riahi
et al 2022) climate assessment (Kikstra et al 2022) of the mitigation scenarios database (Byers et al 2022).

Assessing the regional climate impact outcomes of many different emissions scenarios is obviously also of
particular interest, but not feasible in neither SCMs nor ESMs. Yet, many climate variables and impacts scale
with GMT, enabling regional projections based on global warming levels (GWL). Pattern scaling (Frieler et al
2012, Tebaldi et al 2020) assumes linear relationships between local variables and GMT, performing well for
temperature but less so for precipitation due to non-linearities and regional forcings (Myhre et al 2018). The
time-slicing (James et al 2017) of climate impacts at fixed GMT thresholds (e.g. 1.5 ◦C, 2 ◦C), is grounded in
the concept of the transient climate response to cumulative emissions (Allen et al 2009) and avoids assuming
functional dependencies of pattern scaling. This method has gained traction in climate impact studies
(Piontek et al 2014, Schleussner et al 2016, Tebaldi and Knutti 2018, Byers et al 2018, Lange et al 2020,
Werning et al 2024b) and featured prominently in the Special Report on Global Warming of 1.5 ◦C and in the
6th Assessment Reports of the IPCC (Hoegh-Guldberg et al 2018, IPCC 2023). However, both approaches
primarily assess average climate responses, while important insights on climate variability are lost.

Recent developments in spatially explicit ESM emulators aim to address this gap by rapidly reproducing
or generating multiple climate variables and indicators, including variability. STITCHES (Tebaldi et al 2022)
uses time-slicing (James et al 2017) and warming rates to reproduce any variable from archived ESM output
by stitching together samples from different runs. MESMER (Beusch et al 2020) takes the regional response
through GMT pattern scaling while introducing natural variability through stochastic processes to generate
new timeseries. Whilst STITCHES can rapidly reproduce multi-variate variables from the ESM output
archive, MESMER requires a bespoke calibration process per variable. These have been applied to annual
(Beusch et al 2020, Quilcaille et al 2022) and monthly temperatures (Nath et al 2022), fire weather and soil
moisture (Quilcaille et al 2023b), and joint emulation of temperature and precipitation (Schöngart et al
2024). MERCURY (Nath et al 2024) extends the MESMER methods in a multi-variate manner for the
humid-heat metric of wet-bulb globe temperature using a memory-efficient data compression and lifting
scheme, while QuickClim (Kitsios et al 2023), applies machine learning based on CO2 concentrations,
bypassing GMT and enabling multivariate emulation of seven key ESM outputs.

Ultimately, these approaches extend the post-processing chain from IAM emissions scenarios to GMTs
and then to spatial climate variables, enabling the calculation of indicators and extremes. However, currently
attention tends to be on first-order ESM outputs like mean air temperatures and precipitation, with much of
the development and progress focused on introducing annual and monthly variability, or on understanding
performance under low emissions scenarios, aerosol forcing or overshoot conditions (Schwaab et al 2024).
And whilst some efforts target indicators derived from the ESM variables, development of new indicators
remains resource intensive and without further post-processing, somewhat limits these emulators’ ability to
assess socioeconomic risks of climate change in a timely manner.

Here, we demonstrate a workflow to complement this area of research with a climate impact emulator
coupled with a broader range of climate impact driver (CID) indices and exposure metrics (figure 1), which
we refer to here more generally as indicators. CIDs, which were developed alongside WGI of the IPCC 6th
assessment report, are specific physical climate conditions, like extreme heat or sea-level rise, that directly
affect elements of society or ecosystems (Ruane et al 2022). There are seven overarching CID types (heat and
cold, wet and dry, wind, snow and ice, coastal, open ocean, and other), comprising a total of 33 CID
categories which may be measured by a variety of indices. Here, we use also CID exposure metrics to measure
the exposure of society or ecosystems to a CID index above a threshold.

The approach uses GWL methods on CID indices combined into a workflow and software package called
the rapid impact model emulator (RIME). RIME takes a GMT pathway, e.g. from an IAM+ SCM scenario,
combined with a CID indices database, to calculate CID index and exposure metrics based on the GMT
pathway. In this case we use CID indices calculated from model outputs of the Inter-Sectoral Inter-Model
Intercomparison Project (ISIMIP) (Werning et al 2024a, 2024b). ISIMIP comprises a suite of consistently
bias-adjusted and downscaled (Lange 2019) ESM datasets from the ScenarioMIP (O’Neill et al 2016), as well
as climate impact model results which take the ESM datasets as forcing inputs and are run using a common
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Figure 1. Overview of the general workflow, primarily from the perspective of the IAM scenario post-processing, use case (i). The
red feedback line indicates the use case of climate impacts integration into integrated assessment modeling, use case (ii).

protocol (Frieler 2024). The RIME workflow is designed to be fast and versatile, producing batches of
indicators for a wide range of global warming scenarios. The approach and outputs are not directly
comparable, but complementary to the aforementioned ESM emulators. RIME intentionally pushes
forwards through the climate impacts chain to produce multiple, independent CID index and exposure
metrics for different global warming pathways. Thus, the complexity is currently reduced, for example by not
yet including inter-annual variability, for the sake of providing transient CID indices and exposure metrics
more broadly suitable for IAM (see section 4).

Broadly, RIME aims to meet needs for climate impacts frameworks that are lightweight and offer
scenario flexibility, for applications such as rapid risk screening in regional planning, corporate risk
assessment and disclosure, climate education and inter-disciplinary research. For example, the approach will
feature in the forthcoming 7th Global Environment Outlook report of the United Nations Environment
Programme whilst a more advanced methodology is in development (Schwind 2025) and will be used in the
Climate Impacts Explorer of the Network for Greening the Financial System (NGFS) (https://climate-
impact-explorer.climateanalytics.org/).

The motivation for this approach and accompanying software was to operate at the interface between the
climate impacts and climate mitigation communities. Within the IPCC, this is the interface betweenWorking
Groups II and III (WGII and WGIII), whilst global research communities primarily include ISIMIP
(‘ISIMIP’ 2024) and the IAM Community (IAMC, (‘IAMC’ 2024)). Data formats and conventions are thus
intended to be well aligned with these communities. Depending on the inputs available and outputs
required, both gridded maps and regional table data can be produced. In this specific context, there are two
key use cases intended: (i) post-processing, such that global IAM scenarios with temperature pathways can
be rapidly complemented by a suite of climate impact and exposure indicators to facilitate the comparison of
mitigation strategies with incurred impacts; and (ii) impacts integration, such that climate impacts are
integrated into quantitative scenarios, either through the pre-processing of input data, or endogenously into
a model framework so that impacts are assessed on the fly. The rest of this paper describes the methodology,
typical workflow and use cases, illustrates the functionality, and concludes with a discussion on limitations
and directions for further development and use cases.

2. Methodology

2.1. Background
Within RIME, input data is provided at GWLs, obtained through temperature time-slicing, thus providing
an empirical map of CID indices onto GWLs that, unlike normal pattern-scaling (Wells et al 2023), does not
require the assumption of linearity. Only subsequently are intermediate values linearly interpolated. An
assumption or knowledge of an underlying functional form is not required, thereby allowing RIME to be
applied with any impact indicator that is mainly dependent on the GMT level and the provided
socioeconomic data.

2.2. Workflow overview
The approach for using RIME requires broadly the following steps:

3

https://climate-impact-explorer.climateanalytics.org/
https://climate-impact-explorer.climateanalytics.org/


Environ. Res.: Climate 4 (2025) 035011 E Byers et al

1. Input pre-processing: a (time-sampled) input database of CID indices and exposure metrics data by
GWLs and socioeconomic scenarios, which can be both gridded and tabular regional inputs. Default
temperature resolution as used here is 0.5 ◦C, although finer resolution is also possible. Gridded inputs
are called raster arrays. Table inputs, which would have values aggregated to a region (e.g. country, IPCC
climate zone, etc), are called region arrays.

2. Linear interpolation: the datasets are linearly interpolated between GWLs to high resolution (e.g. 0.01 or
0.05 ◦C), whilst other dimensions, which could be non-numeric and categorical, e.g. a socioeconomic
dimension (e.g. SSP), can be preserved discreetly. This forms the input database, which depending on the
application, can be interpolated for everything a priori albeit with high storage requirements, or
on-the-fly when only specific variables are required.

3. Multi-index lookup: taking the GMT timeseries for the input IAM scenario (a GMT pathway), a
multi-index lookup for each timestep (year) to identify the closest GWL and (if relevant) socioeconomic
scenario, is performed on the input database, to develop a continuous timeseries of climate impacts data
consistent with the warming pathway.

Parallelization of this workflow, which combines drawing on heavy input datasets with multiple
indicators with the need to potentially process 10s or even 100s of GMT pathways, is thus necessary and
feasible. Within RIME, the current implementation enables parallelized processing in the following
modalities (with the possibility of further development extensions):

1. Multi-scenario mode: multiple GMT pathways are input, with one indicator processed for all pathways in
parallel. For example, for 5 (or 500) IAM scenarios, this mode provides results of one CID index for
comparison across the ensemble of GMT pathways from the IAM scenarios.

2. Multi-indicator mode: in this case, one GMT pathway is processed, with the calculation of multiple
indicators occurring in parallel. For example, for one GMT pathway (from and IAM scenario), this mode
provides datasets with multiple CID indices and exposure metrics etc.

The two use cases above can also be combined such that multiple scenarios are processed for multiple
indicators, which is implemented by parallelizing the processing of multiple scenarios using the
multi-indicator mode (2). In any case, CID indices and exposure data for each scenario are subsequently
calculated in the order of seconds to minutes on a desktop workstation, depending on the number of
indicators and temporal resolution.

To provide a more contextually informative description of the methodology, the sections that follow
describe the implementation as tested and described using a climate impact indicators dataset (Werning et al
2024a, 2024b) based on ISIMIP3b datasets. It is noted that other input datasets mapped by GWLs are
expected to work and could include, for example, wider sets of indicators or inputs from other impacts
models. In comparison of indicators, it is important to aim for consistency in how they are calculated.

2.3. Pre-processing the climate impacts input database
A database of CID indices (CID indices) (Werning et al 2024a, 2024b) calculated from the bias-adjusted and
downscaled outputs of global CMIP6 ESMs and global hydrological models is used. From this database we
use primarily 9 CID indices (table 1, with many more variants) spanning six categories across the ‘Heat and
Cold’ and ‘Wet and Dry’ CID types, covering extremes in precipitation and air temperatures, wet-bulb
temperature heatwaves, cooling degree days, and the drought intensity, seasonality and inter-annual
variability of runoff and discharge.

As described in table 2 and Werning et al 2024b, the dataset was consistently calculated for 31 year GWLs
of 1.2 (current day) and 1.5 ◦C–3.5 ◦C (at 0.5 ◦C intervals) above the pre-industrial control period, based on
gridded maps at 0.5◦ spatial resolution. The indicators in the dataset by GWL represent the mean of the 31
annual values. Given the multi-model setup comprising ISIMIP3b scenarios (SSP126, SSP370 and SSP5858)
(O’Neill et al 2016, Frieler 2024), the dataset is available as ensemble statistics for each GWL. Here, the
multi-model median is primarily used, although the workflow can take ensemble members or ensemble
percentiles (as explored in section 2.6, figures 5 and SI 3.3). For each GWL, the CID indices are available as
absolute values, percentage difference to the reference period (1974–2004), or as a comparable 0–6 impact
score. The impact score extends previous approaches (Byers et al 2018), but takes into account both the
absolute value of the index and the relative change experienced (Werning et al 2024b), currently showcased
on the ENGAGE project climate solutions explorer (www.climate-solutions-explorer.eu). The CID indices
are also spatially aggregated to various regional units, including country, IPCC and R10 regions, and are
available as table data. Population and land area exposure metrics above a threshold value for each CID index
aggregated for the regional units are also available. In the case of population, which changes through time
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Table 1. Overview of model datasets used and CID indices tested in this workflow and as available and described in table S1 and
(Werning et al 2024a, 2024b), organized by the CID framework (Ruane et al 2022).

CID type CID category CID indices (# of variants) Models

Heat and Cold Mean air temperature Cooling degree days (4) Five ISIMIP3b bias-adjusted and
downscaled CMIP6 ESM
datasets:
GFDL-ESM4
IPSL-CM6A-LR
MPI-ESM1-2-HR
MRI-ESM2-0
UKESM1-0-LL

Extreme heat Heatwave events (12)
Heatwave days (12)
Tropical nights

Wet and Dry Mean precipitation Precipitation intensity index
Heavy precipitation and
pluvial flood

(Very) heavy precipitation
days (2)
(Very) wet days (2)

Aridity Consecutive dry days

Hydrological drought Drought intensity (2)
Seasonality (2)a

Inter-annual variability (2)a

Three global hydrological
datasets (H.08, LPJmL,
MATSIRO) each of which have
been forced by the five ESM
scenario datasets above.

a These two indices are not necessarily related to hydrological drought, although this is the CID category into which they best fit given

that they represent the seasonal and annual variability of water resources.

according to the SSP scenario, an additional dimension is required, in order to compare the population
exposure in future years for different GWLs.

2.4. Multi-index lookup
Taking a GMT pathway through time, e.g. from 2020 to 2100, each temperature in the timeseries is mapped
to the interpolated CID index and exposure metric database using multi-dimensional index look-up. This is
primarily based on the CID index and GMT, and additionally year and SSP (or other dimensions) for cases
when, for example, population exposure is assessed in the region-aggregated data (figure 2). This produces
two main output products (figures 1 and S4,) at 5 year or decadal timesteps, consistent with the GMT
pathway of the IAM pathway. The first (figure S4, left) is gridded maps of the CID indices through time,
provided in a spatially gridded netCDF format at 0.5◦ resolution, the resolution consistently used by ISIMIP.
The second output product (figure S4, right) is data tables in the IAMC format, that aggregate impacts
exposure metrics by spatial units through time, e.g. sum of population exposed to heatwave events for each
country in the world. These tabular outputs of indicators can then be easily appended to the IAM output
results or used as input data.

2.5. Implementation
The open-source software is implemented in Python (Rossum and Drake 2010) and uses, amongst others,
the python packages pyam (Huppmann et al 2021) and pandas (The Pandas Development Team 2024) for
table data, xarray (Hoyer and Hamman 2017) for n-dimensional arrays including gridded climate data, and
dask (Rocklin 2015) for lazy and parallelized computation. Pyam is a package for analysis, manipulation and
visualization of structured data, developed and used by the integrated assessment and energy systems
modeling communities. Developed on top of pandas, pyam handles the input and output table-based
datasets and ensures conformity and consistency with the IAMC data model. Xarray is used for handling
n-dimensional arrays, primarily from the spatially gridded impacts data typically stored in netCDF format
and is commonly used in climate research. The climate impacts input database, which could be 10s of GBs in
size, also derives from tabular data but is stored as netCDF data and accessed using xarray and dask.
Combined with dask, xarray handles the ‘lazy’, as needed reading and computation of such large datasets.
Dask is also used explicitly in some of the core functions, to parallelize the processing of either multiple
scenarios or indicators.

2.6. Characterization of uncertainty
The default mode of RIME takes a single GMT pathway as input, and provides a corresponding output based
on the climate input database. Various use cases for exploring uncertainty are envisaged, however this
depends on the input data available, not specifically the emulator (table 3). In our default use case using the
Werning et al (2024a) datasets, all cases in table 3 are possible, although the default use case is to use the 50th
percentile GMT with multi-model ensemble medians across climate and impact models, with SSP2.

Each CID index and its associated uncertainties will vary by region. Some indicators or regions exhibit a
fairly monotonic response to increasing GMT, while others show little or no clear trend. To help users
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Table 2. Overview of the dimensions of climate impacts database (Werning et al 2024a, 2024b) used to demonstrate the emulation.

As tested Comments

Input datasets Climate impact driver indices &
exposure metrics data by GWLs
(Werning et al 2024a)

Gridded and table data.
— 0.5◦ spatial resolution, global

coverage
— Table data calculates exposure of

land area or population by SSP,
also through time and at GWLs,
above impact thresholds,
following approaches in (Byers
et al 2018, Werning et al 2024b)

Global warming levels
(GWLs)

1.2 ◦C, 1.5 ◦C, 2.0 ◦C, 2.5 ◦C,
3.0 ◦C, 3.5 ◦C,

Degrees Celsius above the
pre-industrial control period as
defined by the ISIMIP3 protocol,
calculated for 31 year time-slices.
More granular GWLs as input data
would further reduce uncertainties
around non-linear responses between
these levels, although is expected to be
comparatively small compared to
other uncertainties.

Ensemble statistics Median, p5, p95 For each CID index and GWL,
percentiles across the ensemble of
models and scenarios are available (5,
25, 50, 75, 95).

Socioeconomic
pathways

SSPs 1–5 Applicable when assessing
regionally-aggregated metrics relating
to population exposure

Population exposure Gridded SSP population
projections

Original gridded downscaled SSP
population projections (Jones and
O’Neill 2016, Kc and Lutz 2017),
re-scaled to the latest version (Kc et al
2024, Werning 2024) are overlaid with
the CID indices data (Werning et al
2024b).

Exposure threshold ⩾3 Pixels with a score⩾3 are considered
exposed to moderate climate impacts
as per this method (Werning et al
2024b, Werning et al 2024a).

Exposure aggregation
spatial units

Countries

IPCC climate zone regions

R5, R6 or R10 regions

For 225 countries and states (Perrette
2023)
For 44 IPCC regions as used in AR6
(Iturbide et al 2020)
For 5, 6 or 10 common global regions,
as used by the IAMC and IPCC (IPCC
2022)

Spatial aggregation
methods

Median, Mean

Land-area weighted

Population weighted

Median and mean take the value
across the pixels, with no weighting.
Land-area weighted mean considers
the area per 0.5◦ pixel on a
quadrilinear grid, which reduces pixel
areas towards the poles. Static through
time.
Population weighted mean considers
the changing spatial and temporal
distribution of a population within an
aggregation unit.
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Figure 2. Schematic illustrating the data processing steps. The input datasets (either raster or region array) of CID indices and
exposure metrics by global warming level are linearly interpolated to a high resolution, and may include other dimensions, e.g.
SSP, season, aggregation method. From this the global mean temperature pathway of a global emissions scenario is used in a
multi-index lookup to produce the CID index and exposure metrics values through time consistent with the GMT pathway of the
scenario.

identify where indicators can be meaningfully emulated across GWLs, the Pearson correlation coefficient can
be calculated between index values, regions and GWLs (from 1.2 ◦C to 3.5 ◦C) using the multi-model
ensemble median as well as the 5th and 95th percentiles (table 4). Pearson’s r provides a simple, unit less
measure of the direction and consistency of the relationship, making it suitable for screening diverse
indicators with varying units. While it does not quantify the rate of change, it efficiently highlights indicators
and regions with robust and consistent trends, regardless of the magnitude of change, and can be applied to
both gridded data and aggregated regions.

3. Illustrative results

To illustrate the potential of the emulator, results are presented using two previously unseen emissions
scenarios fromWGIII of the IPCC 6th Assessment Report, identified as ‘Illustrative Pathways’. The Moderate
Action pathway assumes limited mitigation efforts, exceeding 1.95 ◦C and 2.69 ◦C GMT with 50% likelihood
in 2050 and 2100, respectively. This is comparable to the 2.7 ◦C expected under current policies and action
by the November 2024 climate action tracker. The shifting pathways scenario is an ambitious mitigation
pathway that also assumes substantial progress on the sustainable development goals, reaching 1.51 ◦C in
2050 and bringing temperatures back down to 1.17 ◦C by 2100.

Nine CID indices from the Werning et al (2024b) dataset are chosen for the purpose of projecting climate
impacts from these pathways, shown in figure 3 for 2050 in comparison to simulated 2020. Further figures
for a wider set of CID indices are available in the supporting information (figures S1 and S3).

Similar results from the same dataset aggregated to regions can be used to explore, for example,
population or land area weighted indices or exposure to these indices above thresholds (Werning et al 2024b)
(figure 4). In such cases, the emulation is done directly on the tabular region array data, i.e. where exposure
metrics per region has been aggregated a priori and form part of the input dataset. This could therefore be,
for example, by country, climate zones, IPCC or IAM regions—any formulation, even if non-contiguous that
can be defined according to the spatial grid.

The additionally exposed population is not only dependent on the different emission scenarios, but also
varies with socioeconomic scenario and climate model sensitivity. Figure 5 shows a decomposition of these
three different types of uncertainty (Lehner and Deser 2023) for a selection of indicators, using the full range
of SSP population projections and a selection of emissions scenarios and MAGICC percentiles. The chosen
emissions scenarios include a range of climate outcomes and illustrative scenarios selected for the IPCC AR6
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Table 3. Uncertainty categories and examples that can be considered in emulation. This possibility depends however on the input
datasets available, not specifically this emulator.

Uncertainty source Examples Description Available in Werning et al
2024a

Full range climate
model sensitivity
(exogenous)

Percentiles, e.g. p5, p17,
p25, p33, p50, p67, p75,
p83, p95

Full range climate
uncertainty, such as from
the CMIP6 range assessed
by IPCCWGI and used in
SCMs like FaIR and
MAGICC, can be explored
by using GMT pathways at
different percentiles as
input.

Not applicable

Climate model
ensemble members

GFDL-ESM4,
IPSL-CM6A-LR,
MPI-ESM1-2-HR, …

Ensemble member
uncertainty through
comparing results from
individual model runs, for
example the 5 ESMs used
by ISIMIP, or different
members from the same
ESM.

Yes

Climate forcing
scenario

SSP1-26, SSP3-70, SSP5-85 Forcing scenario
uncertainty, whereby even
for the same ESM and
global warming level,
different scenarios will have
slightly different results.

Yes

Impact model H.08, LPJmL, MATSIRO,
CLM, CWatM, JULES,
ORCHIDEE, …

Multiple impact models,
e.g. hydrological or
dynamic growth vegetation
models, for a given climate
will have differences, which
is often larger than climate
model and forcing
uncertainties.

Yes

Socioeconomic
scenario

SSP1, SSP2, SSP3,… Different socioeconomic
scenarios may be
represented in an impact
model, or in exposure and
vulnerability calculations.
Given its importance in
climate impacts and risk
assessment, within RIME
this is an explicitly coded
dimension similar to that
of GMT.

Yes

of WGIII to span a large range of climate outcomes up to 3.5 ◦C (Riahi et al 2022). For the MAGICC
percentiles, all percentiles available in the AR6 Scenarios Database are used (Byers et al 2022) (table S5).

The relative contribution of the three sources of uncertainty changes throughout the century. While the
global climate model sensitivity expressed by the different MAGICC percentiles dominate at the beginning of
the century for all indices, it rapidly declines after the middle of the century, especially for the heat and cold
indices. The relative contribution of the socioeconomic scenarios to the total uncertainty, i.e. differences in
population projections, shows the opposite trend and steadily increases throughout the century, also with a
more rapid increase for the heat and cold indices, and becomes the dominant source of uncertainty by the
end of the century. While the relative contribution of the emissions scenarios also increases in the first half of
the century, it shows the smallest variation compared to the other two sources and starts to decrease again
towards the end of the century. The contributions of the different sources of uncertainty also vary depending
on the considered region. For the EU, for example, the uncertainty introduced by the different
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Table 4. Trend classification for the R10 regions and a selection of CID indices. A+ indicates a statistically significant positive trend (Pearson coefficient⩾ 0.8, p value< 0.05), a—indicates a statistically significant negative trend
(Pearson coefficient⩽−0.8, p value< 0.05), a. Denotes no significant trend. Trends are shown for the 5th percentile, median, and 95th percentile of the multi-model ensemble, in that order. For example, ‘+++’ indicates a
significant positive correlation across all three ensemble percentiles.

Indicator/region

Cooling
degree days
(24 ◦C)

Heatwave
events (5 d,
99th perc.)

Heatwave
days (5 d,
99th perc.)

Tropical
nights

Consecutive
dry days

Very heavy
precipitation

days Very wet days

Precipitation
intensity
index

Drought
intensity

(discharge)

Latin America & Caribbean +++ +++ +++ +++ +.+ … +++ .+. +++
South Asia +++ +++ +++ +++ −.. ..+ +++ ..+ +.+
Sub-Saharan Africa +++ +++ +++ +++ … +.+ .++ +.+ ++.
Centrally-planned Asia +++ +++ +++ +++ — +++ +++ +++ .++
Middle East +++ +++ +++ +++ −.. .++ .++ −+. ++.
Eastern and Western
Europe

+++ +++ +++ +++ +++ +.. ++. +++ +++

North America +++ +++ +++ +++ — +++ +++ +++ +.+
Other countries of Asia +++ +.. +++ +++ … +.+ +++ +++ +.−
Pacific OECD +++ +++ +++ +++ … +.. ++. ..+ +++
Reforming Economies of
Eastern Europe and the
Former Soviet Union

+++ +++ +++ +++ — ++. +++ +++ .+.
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Figure 3. Emulated CID indices maps for 2020 (left column) and two (unseen) mitigation scenarios in 2050 for 9 indicators. In
the center and right columns for 2050, the heat and cold indices are shown as additional difference from 2020, whilst the wet and
dry indices are shown as percentage change. Desert and ice sheet areas are masked out in white for drought intensity.

socioeconomic scenarios still increases with time, but for most indices stays below 5% (figure S6), given that
population differences between the SSP scenarios is not large. Conversely for Sub-Saharan Africa, it is the
dominant factor, contributing to more than 90% of the total uncertainty at the end of the century given the
large differences in population development projections (figure S7). We acknowledge that RIME in its
current form does not account for regional climate (impact) uncertainty (Pfleiderer et al 2025), which is an
important area for future development.
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Figure 4. Regionally aggregated results for five UN and World regions showing the additional population exposure for nine CID
index exposure metrics as driven by population growth (SSP2 in 2050) and climate change, compared to 2020 (1.2 ◦C). By 2050,
population growth in currently exposed regions is substantial, with additional people exposed in the mitigation pathway at
1.5 ◦C. The moderate action pathway exacerbates this further, approximately doubling those exposed compared to mitigation at
1.5 ◦C in 2050. By 2100 at 2.7 ◦C the effects are even larger, despite the fact that by this point population in most regions is lower
than in 2050. N.B. different y-axis limits.

4. Discussion and roadmap for development

Based on the current features presented, here we outline some limitations and directions of future
development. Broadly, this covers the topics of scenario ensemble assessment, representation of uncertainties
and natural variability, overshoot scenarios, input dataset evaluation, and exploration of results.

Approaches to extend uncertainty assessment, across climatic, socioeconomic and scenario dimensions,
are possible. Exposure and vulnerability scenarios, for example through combining gridded SSP-based data
on population (as in (Werning et al 2024b)) with data on income levels, can be used to assess socioeconomic
drivers of climate risk. As shown in figure 5, in terms of population exposure socioeconomic uncertainty late
in the century is substantial particularly in developing regions. Another area, likely of interest to IPCC
WGIII, will be assessing ranges of impacts across subsets of mitigation scenarios, to help answer questions
like ‘How does the range of climate impacts expected for ‘1.5 ◦C (>50%) with no or low overshoot’ scenarios
compare to a group of ‘likely below (>67%) 2 ◦C’ scenarios’?

In discussing climate uncertainty, it is important to distinguish between (1) parametric uncertainty in the
climate system (e.g. climate sensitivity, aerosol forcing), which can be explored through probabilistic GMT
pathways from SCMs as was done with MAGICC percentiles, and (2) internal variability—natural, unforced
fluctuations such as year-to-year ocean-atmosphere dynamics—which is not represented in RIME’s current
implementation.

RIME’s inputs are based on 31 year multi-model ensemble means for each GWL, consistent with
standard time-slice methodology and pattern scaling assumptions. This averaging smooths out internal
variability and produces a robust signal of the forced response. While technically possible to extract annual
values or extremes from within a time slice, such approaches risk introducing artefacts, particularly when
users misinterpret interannual fluctuations in GMT as meaningful variation in climate impact indicators. To
avoid this, RIME defaults to 5 year timesteps, in alignment with typical IAM scenario resolution.
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Figure 5. Relative contribution of different sources of uncertainty for the globally exposed population and a selection of CID
indices.

Further development will combine climate forcing and model uncertainties in a fully probabilistic
manner, advancing what has been presented here (tables 3, S3 and S4) (Schwind 2025). Exploring these
uncertainties is already feasible through control of input datasets (section 2.6, table 3) and comparing
sources (figure 5). While advanced emulators such as STITCHES or MESMER include internal variability
through resampling or stochastic emulation, they rely on access to full ESM archives or bespoke calibration
steps, differing from RIME’s lightweight, time-slice based approach. Differentiating forcing scenario
characteristics (e.g. aerosol levels) may also be important as pattern scaling behavior has been shown to vary
accordingly (Goodwin et al 2020).

An important limitation arises when GMT stabilizes within the resolution of RIME’s interpolation
(default 0.05 ◦C). In such cases, RIME will return constant values for a given indicator, implicitly assuming a
steady-state climate. While this behavior aligns with the time-slice methodology used in the input
data—where each GWL reflects average conditions over a 31 year window—it is a simplification.
Furthermore, uncertainties about how climate impacts play out in temperature overshoot pathways means
caution is required when assessing impacts post-peak warming (Schleussner et al 2024). Due to potential
hysteresis in climate and impact system responses (Kim et al 2022), impacts during the post-peak phase may

12
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not mirror those at equivalent warming levels on the way up. Thus, RIME is set by default to exclude years
where GMT falls more than 0.15 ◦C below the peak temperature. A more accurate overshoot treatment
would separate pre- and post-peak temperature impacts databases. To do this requires however, more
overshoot scenario runs from ESM and impacts models, importantly spanning a number of peak and decline
temperature ranges, e.g. peaking at 1.5 ◦C, 2 ◦C, 2.5 ◦C, and 3 ◦C. Thus, caution is needed with temperature
overshoot scenarios or those with high aerosol emissions, where regionalised impacts pre- and post-peak are
likely to be different (Shiogama et al 2023, Schleussner et al 2024, Schwaab et al 2024).

The quality of data inputs is important, and users should be aware of impact model limitations. ISIMIP
has potentially many impact models and indicators that could be emulated with RIME, and while
comprehensive and harmonized, they have documented limitations. For example, some impact models
underestimate the occurrence of large fires (Burton et al 2024) or fail to adequately capture the impacts of
extremes on crop yields and other variables (Schewe et al 2019). The current implementation includes basic
diagnostic tools for evaluation of input and output datasets. Determining how the input dataset responds to
changes in GWL at the gridpoint and regional level can be done using the functions demonstrated but could
be further advanced, for example, through error metrics that decompose the internal variability (Tebaldi et al
2020). Further checks on input temperature pathway data, for example checking for high levels of aerosol
forcing which is a typical output of SCMs, could be used for screening for and indicating (low) confidence in
regional results.

Lastly, although RIME was initially designed to complement IAM scenarios and facilitate integration
between impacts and mitigation communities, such as between WGII–WGIII in the IPCC context, its design
as a modular, open-source tool supports broader uses. A key focus going forward will be the development of
more user-friendly results dashboards. The current interactive HTML dashboard displays zoomable maps for
multiple scenarios or indicators. Future versions will include more selectable options, such as different
timesteps, regional aggregations, distributions, and uncertainty ranges. National or regional dashboards
could further broaden usability for diverse analytical and decision-making contexts. Further plans also aim
to integrate this type of workflow into scenario post-processing routines, such that CID indices of emissions
scenarios can be evaluated online on-the-fly, for example for online scenario databases like the Scenarios
Compass Initiative (https://scenariocompass.org/). This broader applicability reflects our intention to
support more inclusive, interdisciplinary engagement with climate impact information.

5. Conclusions

The initial setup of RIME provides CIDs aligned with timeseries of GMTs from IAM scenarios. Using
established GWL approaches, we demonstrate the rapid post-processing use case allowing ensembles of
global temperature pathways, such as those from AR6 scenarios database (Byers et al 2022) used by the IPCC,
to be accompanied by a new suite of climate impacts and risk information. The approaches are
computationally cheap and straightforward to apply, noting that they will not be suitable, in the current
form, for certain use cases involving overshoot or impacts with a long memory such as sea-level rise or
glacier loss.

Example results using a database of climate impacts driver indices are presented for two ‘Illustrative
Pathways’ from the IPCC AR6 WGIII report. They illustrate use of the RIME software package and
estimation of climate impacts for unseen warming trajectories, at gridded and regionally aggregated
resolutions. While climate uncertainties are the primary concern through mid-century, our results indicate
that socio-economic factors such as population growth may become the dominant drivers of risk by the end
of the century. Methods for representing and evaluating regional uncertainties were introduced and
explored, with varied success depending on the CID index and region in question. Additional evaluation
with more indices, in particular from impact models such as for hydrology and crops, will be the focus of
further developments in the software.

The approach bridges a key gap between IPCCWGII andWGIII assessments, connecting the impacts and
mitigation communities, respectively, and moves beyond the constraints of RCP pathways enabling a flexible
and rapid impacts assessment. The approach is also well-suited for enabling the flexible representation of
climate impacts in IAMs, either as pre-processing tool or as an endogenized module.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.
org/10.5281/zenodo.15728371.
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Code and data availability

The RIME package is available under an open-source GPL-3.0 license at https://github.com/iiasa/rime. A
Zenodo repository of scripts and data for reproducing the analysis and figures in this manuscript is available
at https://doi.org/10.5281/zenodo.15728371. The pre-processing steps requires the data used from (Werning
et al 2024a) available at https://doi.org/10.5281/zenodo.13753537.
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