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Shifts in precipitation regimes exacerbate
global inequality in grasslandnitrogen cycles

Miao Zheng 1,2,3, Jinglan Cui 1,2,3, Xiaoxi Wang 4,5,6, Xiuming Zhang 7,
Zhongrui Xie 8, Ruoxi Zhang2, Xinpeng Xu8 & Baojing Gu 1,2,3

Grasslands, the Earth’s largest terrestrial ecosystem, provide crucial ecosystem
services through biogeochemical cycles. However, these cycles are disrupted
by climate change, particularly precipitation changes, limiting grassland pro-
ductivity. By synthesizing 2944 experimental observations and integrating
multiple models, here we show that under the middle-of-the-road scenario,
global nitrogen input, harvest, and surplus from grasslands are projected to
increase by 10, 7, and 3 million tonnes per year (Tg yr−1), respectively. Sub-
stantial regional inequalities are expected. Regions with increased precipita-
tion (mainly the United States, northern Australia, much of Asia) may see a 16
Tg yr−1 increase in nitrogen harvest. Conversely, regions with decreased pre-
cipitation (mainly Sub-Saharan Africa, Latin America, Southeast Asia) will see a
9 Tg yr−1 reduction. Timely adaptation measures could reduce nitrogen input
and surplus by 12 and 22 Tg yr−1, respectively, while boosting nitrogen harvest
by 10 Tg yr−1, potentially averting losses of 238 billion USD by 2050.

Grasslands are among the most widespread terrestrial ecosystems,
coveringmore than 40% of Earth’s land surface1. They provide habitats
for numerous plant and animal species and play a crucial role in reg-
ulating regional and global climates2. Given that most grasslands are
located in semi-arid areas, they are highly sensitive to changes in
precipitation. Consequently, future climate change could significantly
impact global grasslands. Projections indicate that global annual pre-
cipitation over land will increase by an average of 4.6% under SSP2-
RCP4.5 from 2081 to 2100 compared to 1995–20143,4. However, these
projections reveal substantial regional variations in precipitation pat-
terns, with some areas expected to experience increased precipitation
while others may see a reduction5–7. Specifically, precipitation is pro-
jected to increase mainly in the northern high latitudes, including
northernAsia andNorthAmerica8. Conversely, regions such as Europe,
East Asia, South Asia, and parts of South America and Africa are
anticipated to experience a decrease in precipitation3,9.

Precipitation change is a critical and complex driver, particularly
due to its projected regional heterogeneity3. The impacts of altered

precipitation regimes on grasslands may vary significantly between
arid and humid regions, affecting not only productivity but also
nutrient use and losses, which are closely tied to biogeochemical
cycles10–12. The nitrogen (N) cycle is a crucial component of these
biogeochemical processes in grasslands, playing a pivotal role in pas-
ture production and carbon (C) sequestration2. Although air tem-
perature and atmospheric carbon dioxide (CO2) level also significantly
affect the grassland N cycle, their distinctmechanisms and the current
lack of comprehensive, integrated global datasets hinder a unified
analysis. Therefore, examining individual climate drivers separately
provides a necessary foundation for future integrated assessments.
While climate change impacts on grassland net primary productivity
(NPP) and soil organic carbon (SOC) have been extensively studied10–12,
the N cycle has received comparatively less attention13,14. Although
previous studies have examined the effects of precipitation changes
on soil N cycling15–17, comprehensive analyses of specific N cycling
variables in response to increased or decreased precipitation remain
limited. It is particularly important to clarify how climate change,
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including altered precipitation patterns, affects reactive N (Nr) emis-
sions (all formsof nitrogen other thanN2). ExcessiveNr emissions pose
significant threats suchas eutrophication andbiodiversity loss18–20. The
complexmechanisms of the N cycle have been recognized21, leading to
substantial modeling efforts22,23. However, studies linking the N cycle
to climate change remain limited. Our study systematically integrates
the responses of all interrelated N variables to precipitation changes
from a global perspective. Meanwhile, the response of the N cycle to
precipitation changes exhibits heterogeneity, potentially affecting
regional development and amplifying inequalities between nations24,25.
Due to the limited projections for global N budgets under future
precipitation changes, especially concerning their monetized impacts,
the integration of N cycle feedback into Earth system models (ESMs)
has been delayed, affecting the accuracy and reliability of future
projections.

Our study employs a meta-analysis of global precipitation
experiments to enhance our understanding of how precipitation
impacts grassland N cycles. We selected manipulation experiments
that simulate future precipitation levels26, providing valuable insights
into the effects of altered precipitation regimes as a single climate
change driver on N cycle features. In these control experiments, pre-
cipitation was the only manipulated variable, with no alterations in
other factors such as air temperature or CO2 level. Furthermore, uti-
lizing the Model of Agricultural Production and its Impact on the
Environment (MAgPIE)27 and the Coupled Human and Nature System
(CHANS)28–31 models (Fig. S1), we project future N budgets and key C
budgets of grasslands under varying precipitation scenarios and
compare these projections to baseline scenarios. To accurately simu-
late N budgets under changing precipitation scenarios, we addressed
the model’s limitations using experimentally observed precipitation
manipulation metadata. Recognizing that the CHANS model is also
influenced by uncertainties in source data and underlying assump-
tions, we employed Monte Carlo uncertainty analysis to evaluate the
model’s predictive range. Additionally, we propose adaptation

strategies designed to mitigate the adverse effects of precipitation
changes on ecosystems and human well-being, evaluating the cost-
benefit of these adaptation measures.

Results and discussion
Responses to precipitation changes
Ourmeta-analysis compiles a comprehensive dataset of 2944 response
ratios (RRs) from precipitation experiments across global grasslands,
providing a systematic representation of the effects of altered pre-
cipitation regimes. This dataset includes 1634 RRs for increased pre-
cipitation and 1310 RRs for decreased precipitation (Figs. S2 and S3).
This meta-analysis incorporated data that conducted manipulation
experiments on both managed and natural grasslands. We found that
increased precipitation brings about a 26% increase in grassland NPP,
with a 95% confidence interval (CI) of 19%–34%. Conversely, decreased
precipitation leads to a 26% reduction (95% CI: −33% to −16%) in
grassland NPP (Fig. 1). Adequate water supply enhances photo-
synthetic efficiency in grasslands32. In contrast, reduced precipitation
causes water stress, prompting plants to close their stomata to mini-
mize water evaporation. This limits CO2 uptake, reduces photo-
synthetic efficiency, and decreases NPP33–35.

Based on the aridity index (AI), defined as the ratio of total annual
precipitation to potential evapotranspiration, we categorized global
grasslands into arid (AI < 0.5) and humid (0.5 ≤AI) regions36 (Fig. S4a).
Notably, the RRs of NPP to precipitation changes remain relatively
stable across arid and humid regions. Under increased precipitation,
NPP would increase by 30% (22%–44%) in arid regions, compared to a
smaller increase of 8% (2%–15%) in humid regions (Fig. S4b). Increased
precipitation directly alleviates the primary limiting factor of moisture
in arid regions, thus significantly boosting plant NPP37. In humid
regions, where water is relatively abundant, plant growth depends
more on other factors such as temperature, resulting in a compara-
tively modest enhancement38. Under decreased precipitation, NPP
would decline by 15% (−24% to −3%) in arid regions, compared to a
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Fig. 1 | Global grassland nitrogen and carbon cycles respond to precipitation
changes as a single factor. The nitrogen and carbon cycles represent the primary
flows within global grasslands, depicted by blue and black lines. The percentage
values in brown and green represent the increases or decreases in each nitrogen
flow or store due to shifts in precipitation regimes. ns non-significant, BNF

biological nitrogen fixation, NPP net primary productivity, Rs respiration, Leaf N
leaf N content, Leaf C/N leaf carbon-nitrogen ratio, SOC soil organic carbon, Soil C/
N soil carbon-nitrogen ratio, TN total nitrogen, MBC microbial biomass C content,
MBN microbial biomass N content, N uptake nitrogen uptake. Source data are
provided as a Source data file.
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greater decrease of 29% (−39% to −19%) in humid regions (Fig. S4c).
Plants in humid areas, accustomed to an adequate water supply,
experience significant growth rate reductions and a substantial decline
in NPP due to decreased precipitation. In contrast, plants in arid
regions, adapted to low water conditions, exhibit greater drought
resistance, resulting in smaller decreases in NPP39.

Increased precipitation enhances N uptake by plants and
improves the availability of N in the soil, whereas drought conditions
inhibit these processes40. When precipitation increases, leaf N content
rises by 4% (1%–8%) and total N content by 3% (1%–5%). Conversely,
when precipitation decreases, leaf N content falls by 3% (−5% to −1%)
and total N content by 2% (−4% to −1%) (Fig. 1). Increased precipitation
also promotes soil respiration (Rs) in water-limited ecosystems41, with
Rs surging by 27% (22%–33%) under increased precipitation and
decreasing by 17% (−22% to −11%) under decreased precipitation. This
increase in precipitation promotes the rapid decomposition of plant
residues and enhances SOC42,43, leading to an increase in SOC by 4%
(2%–6%). Conversely, decreased precipitation reduces C input from
plant residues and roots, resulting in a 2% (−4% to −1%) decrease in SOC
(Fig. 1). In our analysis, the C:N ratios of microbial biomass, root, litter,
leaf, and soil are considered key variables for understanding the
interactions between the C and N cycles, particularly in response to
altered precipitation regimes (Fig. S5). The concerted variations in
both theN cycle and associated losses align with the C cycle and losses
in grasslands. This dynamic is reflected by the non-significant changes
in soil C:N ratios, leaf C:N ratios, and microbial biomass C:N ratios.

Increased precipitation also substantially boosts biological N
fixation (BNF) by 129% (78%–240%). Conversely, decreased precipita-
tion significantly reduces BNF by 57% (−65% to −45%) (Fig. 1). This
changemay be related to alterations in the composition and volumeof
root secretions, which include rhizoctin affecting N-fixing micro-
organisms, thereby modifying the attachment of these microorgan-
isms to the root system44–46. Enhanced precipitation also stimulates
microbial activity47, accelerating enzymatic processes such as N
mineralization, denitrification, and nitrification by 14% (11%–18%), 150%

(101%–218%), and 14% (11%–18%), respectively. Conversely, reduced
precipitation decreases these processes by 20% (−37% to −2%), 58%
(−69% to −45%), and 22% (−36% to −7%), respectively (Fig. 1). When
precipitation increases, NH3 is more likely to be retained in the soil
solution in dissolved form rather than being released into the
atmosphere48, reducing NH3 emissions by 26% (−41% to −6%). In con-
trast, reduced precipitation promotes NH3 volatilization, increasing
NH3 emissions by 19% (6%–34%). Nitrous oxide (N2O) emissions, a
byproduct of both anaerobic and aerobic N conversions49, rise by 42%
(22% to 64%) with increased precipitation but fall by 34% (−48% to
−17%) with decreased precipitation. Additionally, NOx emissions
increase by 43% (9%–95%) under increased precipitation, while
decreasing by 63% (−72% to −48%) under decreased precipitation. The
amplified nitrification due to increased precipitation results in a 45%
(13%–86%) rise in NO3

− leakage into aquatic ecosystems, whereas
decreased nitrification leads to a 32% (−51% to −5%) reduction in NO3

−

leaching (Fig. 1).

Spatiotemporal variations
In our integrated model, we examine the impact of precipitation
changes as a single climate change driver on N parameters, enhancing
our spatial resolution to0.5° by0.5°. The 0.5° by0.5° spatial resolution
achieves an optimal balance between the requirement for detailed
spatial granularity to capture significant regional variations. It also
maintains the computational efficiency necessary for executing large-
scale simulations over extended periods. The meta-analysis results
primarily derive the specific parameters for each variable across dif-
ferent regions through meta-regression, incorporating potential
moderating factors. These moderating factors include mean annual
temperature (MAT), mean annual precipitation (MAP), the magnitude
of precipitation change (ΔP), evapotranspiration (ET0), solar radiation
(Srad), maximum temperature (Tmax), minimum temperature (Tmin),
and Soil C:N ratio. For each variable under altered precipitation
regimes, we ensured that the regression model was statistically opti-
mal, with the highest R2 and the lowest corrected Akaike Information
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Fig. 2 | Nitrogen flows in global grasslands under the precipitation SSP2-
4.5 scenario and the adaptation scenario by 2050. The nitrogen flows, including
nitrogen inputs and nitrogen outputs, are illustrated by red and yellow arrows,
respectively. The values of the nitrogen flows are shown in dark black for the
baseline scenario with no climatic change, in red for the precipitation SSP2-
4.5 scenario compared to the baseline SSP2-4.5 scenario, and in brown for the

adaptation scenario relative to the precipitation scenario. In the adaptation sce-
nario, humans implement measures such as dietary changes, efficient feed man-
agement, efficient fertilization, and efficient manure management to adapt to the
precipitation conditions. These are future simulated values in Tg N per year to
2050. Source data are provided as a Source data file.
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Criterion (AICc). These parameters are then applied to the model to
predict future grassland N budgets under various precipitation sce-
narios (see “Methods,” CHANS model simulation).

Our database includes both short-term and long-term experi-
ments, with the longest study spanning up to 25 years50. This analysis
has been effectively employed in ecosystem N budget projections51,52.
To construct these projections, we use Representative Concentration
Pathways (RCPs) and Shared Socio-economic Pathways (SSPs)3, which
form the basis for our baseline and prospective precipitation scenarios
and encapsulate diverse societal, economic, and climatic conditions53.
The projected future precipitation levels for the precipitation scenar-
ios (SSP1-RCP2.6—“sustainable society,” and SSP2-RCP4.5—“business-
as-usual”) relative to their respective baseline counterparts (no climate
change, including warming, elevated CO2, altered precipitation
regimes, etc.—SSP1 and SSP2) are derived from the Climate Model
Intercomparison Project Phase 6 (CMIP6) simulations3 (https://esgf-
node.llnl.gov/projects/cmip6/) (Fig. S6). Meanwhile, utilizing Monte
Carlo simulations54, we quantify the ensemble averages and temporal
variations in grassland N budgets under a range of future climate
scenarios to account for variability in meta-analysis data and models.
All projected precipitation scenarios consistently show sensitivities of
the N cycle to changes in precipitation, with scenarios oriented
towards sustainability indicating smaller N budgets (Fig. S7).

In contrast to the baseline scenario without climate change, the
precipitation SSP2-4.5 scenario predicts significant changes in global N
dynamics. Total N input, N harvest, and N surplus are forecasted to
increase by 10 Tg N yr−1, 7 Tg N yr−1, and 3 Tg N yr−1, respectively
(Figs. 2 and 3, Table S1). Simultaneously, the average global NUE in
grasslands is expected to decline from 69% to 68% in 2050 (Fig. S8).
The global grid exhibits geographical heterogeneity, and the spatial
differences in N harvest and NUE changes will further deepen regional
inequalities in economic development. Countries currently facing

more challenges in economic development are likely to experience
more negative impacts from future precipitation changes.

Projected changes in N harvest from the SSP2 scenario (92 ± 5 to
95 ± 16 Tg N yr−1) to the precipitation SSP2-4.5 scenario (95 ± 5 to
102 ± 16 Tg N yr−1) are projected (Fig. 3d, e). In regions with increased
precipitation, N harvests are anticipated to increase by 16 Tg N yr−1

under the precipitation SSP2-4.5 scenario compared to the baseline
SSP2 scenario by 2050 (Fig. S9a). Specifically, in global arid regions, N
harvests will rise by 6.3 Tg N yr−1, and in humid regions by 9.4 Tg N yr−1

(Fig. 4a–c). The increase in N harvests will primarily occur in the USA,
northern Australia, most mid-to-high-latitude regions of Asia, and
parts of Latin America and Africa. Conversely, in areas with decreased
precipitation by 2050, N harvests are expected to decrease by 9 Tg N
yr−1 (Fig. S9b). In global arid regions, N harvest is projected to fall by
2.6 Tg N yr−1, and in humid regions by 6.3 Tg N yr−1 (Fig. 4d–f). Notably,
apart from Europe, the regions witnessing significant reductions in N
harvest due to decreased precipitation are predominantly low- and
middle-income economies. This is especially evident in Sub-Saharan
Africa, Latin America, Southeast Asia, and South Asia, where poverty
and famine are ongoing issues55. Furthermore, the spatial changes in
NUE largelymirror the changes inNharvest,with significant declines in
NUE observed in areas with reduced harvests, while areas with
increased harvests show minor improvements in NUE (Fig. S8).

Under the precipitation scenarios, N inputs increase from the
baseline SSP2 scenario (134 ± 8 to 139 ± 21 Tg N yr−1) to the precipita-
tion SSP2-4.5 scenario (140 ± 5 to 149 ± 19 Tg N yr−1). Similarly, increa-
ses are projected from the SSP1 scenario (129 ± 7 to 117 ± 18 TgNyr−1) to
the precipitation SSP1-2.6 scenario (135 ± 5 to 124 ± 14 Tg N yr−1) over
the two decades (Figs. 3a and S7a). The variations in total N inputs
across regions are primarily driven by changes in BNF and deposition.
In regions with increased precipitation, areas with lower baseline
precipitation, like arid zones, show more pronounced increases in N

Fig. 3 | Spatiotemporal variations of global grassland nitrogen budgets change
between the baseline scenario, the precipitation SSP2-4.5 scenario, and the
adaptation SSP2-4.5 scenario in 2050. a Time series of nitrogen input under
future scenarios over 2020-2050 in the baseline SSP2 scenario (blue), and pre-
cipitation SSP2-4.5 scenario (orange), and the adaptation SSP2-4.5 scenario (green).
Solid lines represent values of nitrogen fluxes, and shadings represent standard
deviations of themodel ensemblesofMonteCarlo simulations.bΔN input between

the baseline scenario and the precipitation SSP2-4.5 scenario in 2050. c ΔN input
between the precipitation SSP2-4.5 scenario and the adaptation SSP2-4.5 scenario
in 2050. Values in the legend demonstrate the average annual grassland nitrogen
budget within a grid cell (0.5° by 0.5°); d N harvest, e, f ΔN harvest; g N surplus,
h, i ΔN surplus. The base map is from GADM data. Source data are provided as a
Source data file.
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inputs due to enhanced water availability. Significant increases in total
N inputs are projected in the USA, Mexico, northern Australia, New
Zealand, and certain Latin American (Venezuela, Colombia, Argentina,
Uruguay, etc.) and African regions (Central Africa, Congo, Nigeria,
etc.). Moderate increases are anticipated in Europe (Italy, UK, France,
etc.), China, India, Japan, and northern North America (Canada, wes-
ternUSA) (Fig. 3b). In contrast, in regionswithdecreasedprecipitation,
humid areas experience more significant changes in N inputs. These
regions, which are adapted to abundant water supplies, are
more vulnerable to water stress, leading to more significant disrup-
tions in N dynamics. Decreases are mainly concentrated in Brazil,
South Africa, and eastern Australia, followed by western North Amer-
ica and some Asian regions. Moreover, spatial differences in N input
components are observed under the precipitation SSP2-4.5 scenario
(Fig. S10).

The increased N surplus includes rises in N2O (0.1 Tg N yr−1), NOx

(0.1 Tg N yr−1), and non-reactive N2 emissions to air (4 Tg N yr−1), along
with decreases in NH3 (0.3 Tg N yr−1) emissions to air, and NO3

− losses
to water bodies (1 Tg N yr−1) (Figs. 2 and 3). NH3 emissions rise in
regions with decreasing precipitation and reduce in regions with
increasing precipitation. Significant increases in NH3 emissions are
expected in Canada, Europe (UK, France, etc.), Asia (China, India, etc.),
and parts of Latin America and Africa. Changes in N2O and NOx are
relatively smaller compared to NH3 emissions. The trend for global
N2O, NOx, and NO3

− losses response to precipitation changes is
opposite to NH3. Losses increase in regions like North America,
Argentina, central and northern Asia, northern Australia, and central
Africa. Increasing NO3

− leaching and runoff are significant concerns,
potentially aggravating eutrophication in water bodies56. In contrast,
notable decreases are forecasted for Europe (Germany, France, UK,
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Fig. 4 | Global grassland nitrogen harvest in arid and humid regions under the
precipitation SSP2-4.5 scenario compared to the baseline scenario in 2050.
a Global grassland nitrogen harvest in arid and humid regions under increased
precipitation. Light green represents the grassland nitrogen harvest in arid and
humid regions under the baseline scenario in 2050 with increased precipitation.
Medium green indicates the precipitation SSP2-4.5 scenario. Dark green shows the
difference between the precipitation SSP2-4.5 scenario and baseline SSP2 scenario.
b ΔN harvest in arid regions under increased precipitation. c ΔN harvest in humid
regions under increased precipitation. d Global grassland nitrogen harvest in arid

and humid regions under decreased precipitation. Light brown represents the
grassland nitrogenharvest in arid and humid regions under the baseline scenario in
2050 with decreased precipitation. Medium brown indicates the precipitation
SSP2-4.5 scenario. Dark brown shows the difference between the precipitation
SSP2-4.5 scenario and baseline SSP2 scenario. e ΔN harvest in arid regions under
decreased precipitation. f ΔN harvest in humid regions under decreased pre-
cipitation. Values in the legend demonstrate the average annual grassland nitrogen
budget within a grid cell (0.5° by 0.5°). The base map is from GADM data. Source
data are provided as a Source data file.
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etc.), southern and eastern Asia (China, India, Myanmar, Thailand,
Indonesia, etc.), southern Australia, eastern Latin America (Brazil),
eastern Africa, and southern Africa, followed by Canada, and northern
Asia under the precipitation SSP2-4.5 scenario by 2050 (Fig. S11). In
regions with increased precipitation, arid areas exhibit more sub-
stantial N surplus increases due to greater water availability. Con-
versely, in areas with reduced precipitation, humid regions experience
more significant changes, as they aremore sensitive towater shortages
due to their adaptation to humid.

Adaptation scenarios and cost-benefit analysis
We develop adaptation scenarios by implementing a comprehensive
set of measures across global grasslands to enhance N harvest and
mitigate N pollution. Except in regions where increased N harvest and
reduced N pollution occur simultaneously under precipitation sce-
narios, other areas need to focus on productivity enhancement or
pollution reduction (Fig. S12). These measures include dietary chan-
ges, efficient feed management, efficient fertilization, and efficient
manure management (Table S2). In the adaptation scenarios, these
interventions are projected to significantly improve NUE57. Under the
adaptation SSP2-4.5 scenario, NUE is expected to rise to 80%, a sub-
stantial improvement compared to the 68% forecasted in the pre-
cipitation SSP2-4.5 scenario (Fig. S8). However, socio-political barriers,
such as policy limitations, technological costs, and societalwillingness,
may hinder achieving efficiency targets, with global cooperation being
essential for their implementation57.

A total gain of 10 Tg N yr−1 in N harvest would be achieved with
adaptations relative to the precipitation SSP2-4.5 scenario, primarily in
livestock grazing and forage production hotspots by 205058. These
regions include USA, Spain, France, Bulgaria, Greece, China, coastal

Australia, Argentina, and Brazil under the adaptation SSP2-4.5 scenario
(Fig. 3f). An increase in NUE would lead to reductions in N input and N
surplus by 12 Tg N yr−1 and 22 Tg N yr−1, respectively (Figs. 2 and 3,
Table S1). Although BNF is largely governed by natural processes and
less influenced by human interventions, enhanced fertilization and
manuremanagement practices57 are predicted to reduce by 3 Tg N yr−1

and 9 Tg N yr−1, respectively. Compared to the precipitation SSP2-
4.5 scenario, the reduction in Nr losses under the adaptation SSP2-
4.5 scenario is expected to be greatest in the USA, Europe, South Asia,
East Asia, as well as in Africa, and Latin America. This decline in Nr

losses primarily consists of decreases in NH3 (−3.7 Tg N yr−1), NOx

(−0.1 Tg N yr−1), N2O (−0.3 Tg N yr−1), and NO3
− (−3 Tg N yr−1) in 2050

(Fig. 2). Collectively, these adaptation measures are projected to
effectively mitigate the negative impacts of precipitation changes on
grassland N dynamics.

The estimated value of the benefits from adaptation measures on
global grasslands is expected to reach a considerable 238 billion US
dollars under the adaptation SSP2-4.5 scenario in 2050. This valuation
does not consider the costs of implementing these measures.
Regionally, the largest benefits are forecasted for the USA and Canada
(59 billion US dollars), Sub-Saharan Africa (44 billion US dollars), Eur-
ope (27 billion US dollars), other OECD nations (25 billion US dollars),
Former Soviet Union (FSU) (24 billion US dollars), and Latin America59

(24 billion US dollars) (Figs. 5a and S13). Most of these benefits arise
from climate impact (158 billion US dollars), trailed by ecosystem
benefit (44 billion US dollars), human health benefit (34 billion US
dollars), and fertilizer saving (2 billion US dollars) (Fig. 5b). USA and
Canada accounts for the largest share of global ecosystembenefits and
climate impacts, while China contribute the most to fertilizer savings.
Europe accounts for the largest share of global human health benefits
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Fig. 5 | Cost-benefit analysis of precipitation levels as a single factor in global
grasslands under the adaptation SSP2-4.5 scenario compared to the pre-
cipitation SSP2-4.5 scenario by 2050. a Maps display the cost-benefit analysis of
adaptation to precipitation changes in global grasslands. The legend values
represent the average annual grassland nitrogen budget within each grid cell (0.5°
by 0.5°). The base map is from GADM data. b Sum of cost-benefit analysis on a
global scale, comprising ecosystem benefit, human health benefit, climate impact,
and fertilizer saving. c Percentage of global ecosystembenefit contributed by some
grassland areas; d health benefit; e climate impact; f fertilizer saving. The positive

values indicate benefits, and the negative values indicate costs. Purple represents
ecosystem benefits, blue denotes human health benefits, green reflects climate
impacts, and red corresponds to fertilizer savings. FSU, Former Soviet Union; Latin
America, except Brazil; MENA, Middle East and North Africa; OECD, Organization
for Economic Cooperation and Development; SSA, Sub-Saharan Africa. Under the
precipitation SSP2-4.5 scenario (business-as-usual), changes in precipitation
amounts are consideredwithout other climate change factors. Future precipitation
levels under this scenario are obtained fromCMIP6model simulations. Source data
are provided as a Source data file.
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(Fig. 5c–f). Specifically, the USA andCanada are expected to achieve 10
billion US dollars in ecosystem benefits and an additional 48 billion US
dollars in climate impacts. Low-income economies, including Sub-
Saharan Africa, Latin America, and South and Southeast Asia, could
potentially face the most severe consequences of future precipitation
changes. Despite some additional costs associated with climate
impacts, particularly in India and other Asian countries, the compre-
hensive adoption of these adaptation measures provides significant
economic benefits. It also offers essential safeguards for ecosystem
health, human well-being, and balanced and sustainable regional
development.

Future perspective
The modification of precipitation patterns as a single driver of climate
change is anticipated to alter the N cycle in global grasslands. When no
appropriate measures are taken under the precipitation scenarios, our
findings indicate that increased precipitation enhances forage produc-
tion. This could significantly support global livestock production in the
USA, northern Australia, and most mid-to-high-latitude regions of Asia.
However, areas experiencing reduced precipitation may face dimin-
ished productivity, particularly in Sub-Saharan Africa, Latin America,
Southeast Asia, and South Asia—regions characterized by low- and
middle-income economies. These areas may struggle to meet the
growing demands for food and protein of expanding human
populations60. Additionally, the exacerbation of Nr loss due to changes
in precipitation could damage atmospheric conditions, soil health, and
aquatic ecosystems61,62. To mitigate these potential adverse effects, it is
crucial to adopt sustainable and integrated management approaches.
Policymakers should promote practices that ensure the efficient appli-
cation of fertilizers and manure management with the changing pre-
cipitation regimes63. For example, using the optimal amount of fertilizer
at the correct time and place is essential, coupled with the strategic
integration of N inputs such as deposition and manure64. Simulta-
neously, improving the quality of forage and refining livestock feed
formulas can reduce the energy requirements for feed65, thereby mini-
mizing Nr loss. Ongoing collaboration among scientists, pastoralists,
policymakers, and the public is essential. These key stakeholders play a
crucial role in developing advanced management strategies to address
the global challenges posed by changing precipitation regimes.

Our study focuses on precipitation change, a critical and complex
driver due to its projected regional heterogeneity3. While climate
change encompasses multiple factors, including elevated CO2 levels,
global warming, altered precipitation patterns, and extreme weather
events, all of which collectively influence grasslands66. It is challenging
to address them comprehensively within a single study due to their
distinct mechanisms and interactions. Moreover, the current lack of
integrated global datasets capturing CO2, temperature, and precipita-
tion simultaneously limits the feasibility of integrating these variables
into a unified paper. Previous research has shown that across various
multifactor manipulations, elevated CO2 level reduces root allocation,
thereby diminishing the positive effects of increased air temperature
and precipitation onNPP67. Furthermore, elevated CO2 canmitigate the
impacts of extreme droughts and heat waves on ecosystem net C
uptake in the projected near-future climate68. Additionally, the effects
of spring and non-spring precipitation on the CO2 response offset each
other, constraining the response of ecosystem productivity to rising
CO2

69. In mesic and high-elevation grasslands, precipitation exerts a
more substantial influence on soil N pools than warming does70.

Long-term grassland responses to climate change are further
shaped by factors like physiological thresholds, species interactions,
acclimation, and adaptation, which can introduce nonlinearities71–73.
These effects are context-dependent and vary with time and environ-
mental conditions74,75, making it difficult to extrapolate short-term
results to long-term projections. Given these complexities, investi-
gating individual climate drivers independently remains a necessary

first step. Such focused studies can help build a foundation for future
integrated assessments,whichwill benefit from improveddatasets and
advanced modeling approaches. As more comprehensive data and
methodologies become available, we plan to explore multifactor
interactions in future work. In particular, the application of century-
scale models will be essential to capturing long-term dynamics of
nitrogen cycling in grasslands and to informing effective adaptation
and mitigation strategies under ongoing climate change.

Improving the representation of the N cycle in surface models
within ESMs is crucial for understanding how climate change impacts
C–N interactions in grasslands. While we assume that the effects of
altered precipitation regimes will remain constant, the complexity of N
cycling and the differing adaptive capacities of grassland types suggest
that responses may evolve. Precipitation changes could trigger adaptive
shifts in grassland species composition11,76. Our study focuses on the
direct precipitation-productivity relationships, however, species-
mediated indirect effects may also influence productivity, potentially
amplifying or counteracting the direct precipitation effects. In high-
latitude grasslands, slower species turnover might delay productivity
responses, while in arid-to-humid transition zones, C4 grass establish-
ment could outweigh the benefits of increased precipitation77. Therefore,
future research should integrate species turnover models with climate
projections to better understand N cycling feedback mechanisms on
grasslands under various climate scenarios.While our study operates at a
global scale, more detailed attention is needed for small-scale grassland
management. Furthermore, addressing the dynamic response of grass-
lands to multiple factors including human management and land-use
change, which are worthy of future research. A comprehensive grasp of
these factors and themechanisms governing the grasslandN cycle is vital
for developing effective management strategies78.

Methods
Global meta-analysis of precipitation experiments in grasslands
Most of the data used to build an extensive experimental database on
variations in global precipitation came from published studies that
included manipulation experiments on managed and natural grass-
lands, with additional soil and climate information included (Table S3).
The experimental sites provide global coverage across all continents
and climate zones (Fig. S3). However, due to the high financial and
logistical demands of precipitation manipulation experiments, data
from tropical and developing regions are limited. This lack of data may
introduce uncertainties, highlighting the need formore studies in these
regions in the future. We performed a cross-search to identify eligible
studies based on the following criteria (see the RepOrting standards for
Systematic Evidence Syntheses) flow diagram79 added as (Fig. S14): (1)
Groups exposed to ambient and changing (increased/decreased) pre-
cipitation were included in the experimental manipulations; (2) vari-
ables related to N and/or C cycles were available for these precipitation
groups; and (3) these published studies are found in reliable databases
such as Google Scholar, Scopus, and Web of Science. Using terms like
“precipitation, rainfall, irrigation, drought,” “N cycle, N fixation, NH3,
NOx, N2O, N runoff, N leaching, nitrification,” and “C cycle, NPP, leaf N
content, C:N ratio,” a thorough literature search was carried out. Three
main categories were gathered: research details (precipitation type,
manipulation magnitude, duration, etc.), variable details (RRs, number
of sample repetitions, etc.), and location specifics (country, latitude,
longitude, temperature, precipitation, etc.).

Data were extracted from the figures using WebPlotDigitizer 4.4
(https://apps.automeris.io/wpd/). Additionally, missing information,
particularly related to climatic and soil data, was supplemented when
absent in the original publications. Climate data were primarily
sourced from the WorldClim database (https://worldclim.org/data/
index.html#). Soil datawereobtained from theNASAGlobal LandData
Assimilation System (https://ldas.gsfc.nasa.gov/gldas/soils). The aver-
age AI and evapotranspiration (ET0) were determined using datasets
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fromWorldClim v.2.080. Climate zoneswere classified according to the
Köppen-Geiger classification81.

For a thorough analysis of response mechanisms to precipitation
changes, we utilized multi-level meta-analyses and meta-regressions.
The assessment of variables in relation to ambient precipitation levels
under increased or decreased precipitation is typically conducted
using the natural logarithm RR (lnR). The RR for an individual obser-
vation is calculated as follows82:

lnR = lnαcp � lnαat ð1Þ

Where αcp and αat are the averages observed at changing (increased/
decreased) and ambient precipitation levels, respectively.

Given that several papers in the dataset did not disclose the
sample variance, we utilized experimental replications to weight the
individual observations82:

Weight = ðωcp ×ωatÞ=ðωcp +ωatÞ ð2Þ

Where ωcp and ωat represent number of experimental replications at
changing (increased/decreased) and ambient precipitation levels,
respectively.

The mean RR and 95% CI are obtained using a random-effects
model in conjunction with a bootstrapping (4999 iterations) rando-
mized resampling approach in MetaWin83, with the results translated
to percentage format:

RR%= ðeRR � 1Þ× 100% ð3Þ

The effect of precipitation changes on the variables is deemed
significant (P <0.05) if the 95% CI does not include zero.

Due to the large variation in RRs, we do not use a global average
for calculation. Instead, the data were categorized into the following
groups: (1) individual observations, (2) arid and humid regions, (3)
specific climate zones (arid, tropical, temperate, cold), and (4) global
grasslands. Meta-regressions were conducted to determine global
response patterns for each variable (NPP, leaf [N], BNF, NH3, N2O, NOx,
and NO3

−), considering moderators that influence the geographical
heterogeneity of these responses. These analyses were performed
using the metafor package in R (version 4.1.3)84. This meta-analysis
included studies with manipulation experiments on managed and
natural grasslands, considering factors such as human activities.
Potential moderators included MAT, MAP, and changes in precipita-
tion magnitude (ΔP), evapotranspiration (ET0), solar radiation (Srad),
maximum temperature (Tmax), minimum temperature (Tmin), and soil
C:N ratio. For each variable under altered precipitation regimes, we
ensured that the regression model was statistically optimal, with the
highest R2 and the lowest AICc. Under increased precipitation, the RRs
of NPP in arid regions and NO3

− were adjusted based on the ΔP, while
the RRs of NPP in humid regions and NOx were influenced by the local
MAP. The responses of leaf N content, BNF, and NH3 were found to be
affected by factors such as MAT, ET0, Tmax, and Tmin, while the RR of
N2O in different climatic zones was incorporated into grid data. Con-
versely, under decreased precipitation, the RRs of these variables were
adjusted based on MAT, MAP, ΔP, ET0, Srad, Tmax, Tmin, and soil C:N
ratio. Additionally, the RRs of leaf N content across different climatic
zones were incorporated into grid data. Therefore, these parameters
are not the same under different precipitation regimes. For further
details, please refer to Tables S4 and S5. We also performed Monte
Carlo uncertainty analyses to account for variability in the meta-
analysis data.

Grassland N budget
Unlike previous studies that relied on a single model, we employed the
MAgPIE27 and CHANS28–31 models to estimate both current and future

global N budgets in grasslands, providing amore robust analysis. These
estimations were carried out at a spatial resolution of 0.5° by 0.5°. The
MAgPIE model provides a comprehensive global partial equilibrium
land-use framework, effectively integrating regional economic condi-
tions and biophysical methodologies (https://rse.pik-potsdam.de/doc/
magpie/4.3/). CHANS represents an integrated framework that includes
interactions between human activities and natural elements28–31

(Fig. S1). It incorporates 14 subsystems, enabling it to account for var-
ious N flows and their interactions within an N mass-balance perspec-
tive, particularly well-suited to assess N cycle dynamics under varying
environmental conditions. In the CHANS model, both direct N inputs
(e.g., fertilizers, manure, deposition, and BNF) and N emissions from
livestock production and manure management (e.g., NH3, N2O, N
leaching, and runoff) contribute to the N budget of grasslands. The
modeled Nr fluxes to the environment were validated with national
monitoring data, showing a strong correlation (R2 > 0.7) for air and a
moderate correlation for water (R2 ~ 0.5)30. Additionally, N harvest
considers plant growth, while soil microbes facilitate the transforma-
tion and emission of N. Soil organicmatter supports these processes by
providing essential nutrients and enhancing microbial activity. The
shared objectives of the CHANS and MAgPIE models, which are both
intermediate complexity models that integrate natural and human
systems, are to investigate long-term, large-scale processes of global
environmental change and to identify potential solutions formitigation
and adaptation. In this research, we employed a multi-model integra-
tion strategy, incorporating MAgPIE data outputs into the CHANS
model to establish global grassland N budgets. However, there is a
substantial difference in the spatial resolutions of the MAgPIE and
CHANSmodels. MAgPIE currently functions at a finer spatial resolution
of 0.5° × 0.5°, in contrast to the CHANSmodel, which relies on country-
level data for analysis. This difference suggests that integratingMAgPIE
data into the CHANS model can improve the spatial resolution of
simulations, enabling more detailed and localized assessments. Con-
sequently, incorporating MAgPIE data into the CHANS model would
result in improved spatial resolution for more precise localized simu-
lations (Fig. S15). The 0.5° by 0.5° spatial resolution strikes an optimal
balance, effectively reconciling the need for detailed spatial granularity
to capture significant regional variations with the computational
demands required for large-scale simulations over extended time per-
iods. This model integration is grounded in their consistent application
of mass-balance principles within nutrient cycle simulations. The N
flows and fluxes are rigorously modeled, utilizing diverse datasets that
are compatible with N balance operations. The fundamental assump-
tions underlying N budgeting in both models are closely aligned.
According to Popp et al.’s research on forecasting future changes in
grassland areas, which is based on variations in dietary habits, regional
economic factors, and biophysical methods, future forage harvests will
be evaluated at 10-year intervals from 2030 to 205053.

The N budget for grasslands can be estimated utilizing the con-
cept of Nmass balance. This involves computing the N input (Ninput), N
harvest (Nharvest), N surplus (Nsurplus) and N use efficiency (NUE):

Xl
x = 1

Ninput, x =
Xl
x = 1

Nharvest, x +
Xl
x = 1

Nsurplus, x ð4Þ

NUEx =Nharvest, x=Ninput, x ð5Þ

Ninput, x =Nfer, x +NBNF, x +Nman, x +Ndep, x ð6Þ

Nsurplus, x =Ngas, x +Nwater, x ð7Þ

Where Ninput,x includes sources such as fertilizer (Nfer,x), BNF (NBNF,x),
manure (Nman,x), and deposition (Ndep,x); Nharvest,x refers to the N
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contained in the harvested forage for each grid x, primarily the leaves;
Nsurplus,x encompasses N loss through gaseous emissions (NH3, N2O,
NOx, N2) (Ngas,x) andN loss towater through leaching and runoff (NO3

−)
(Nwater,x).

The input factor (θinput,x) and loss factor (θloss,x) are defined as
follows:

θinput, x =Ninput�component, x=Ninput, x ð8Þ

θloss, x =Nloss�component, x=Nsurplus, x ð9Þ

Where Ninput∙component,x comprises four components: Nfer,x, NBNF,x,
Nman,x, andNdep,x; Nloss∙component,x includes two components:Ngas,x, and
Nwater,x.

The reactive N (Nr, x) fluxes encompass NH3 fluxes ðNNH3, x
Þ, N2O

fluxes ðNN2O, xÞ, NOx fluxes ðNNOX, x
Þ, and N loss to water (NO3

−
fluxes)

(Nwater,x):

Nr, x =NNH3, x
+NN2O, x +NNOx, x

+Nwater, x ð10Þ

Scenario design
To evaluate alterations in the grassland N budget due to anticipated
futureprecipitation changes,wedeveloped three scenarios. Firstly, the
baseline scenario, which assumes no climate change and serves as a
control. Secondly, the precipitation scenario, which incorporates
projected changes in future precipitation patterns. Thirdly, the adap-
tation scenario, which considers the implementation of adaptation
measures to mitigate the adverse impacts of these changes. Each
scenario includes two sub-scenarios to represent distinct SSPs and
RCPs (Fig. S6a). In the baseline scenario, future harvest forage demand
is estimated by considering various indicators of regional economic
conditions and biophysical methods53, assuming that precipitation
levels remain constant from 2020. The precipitation scenarios predict
changes in precipitation levels, excluding other climate change factors
such as elevated CO2 and warming. Future precipitation levels are
simulated using RCPs, such as RCP2.6 and RCP4.5 (Fig. S6b). Data on
future precipitation levels (2030–2050) is derived from the CanESM5
model simulation of the WCRP Coupled Model Intercomparison Pro-
ject (Phase 6; CMIP6) (https://esgf-node.llnl.gov/projects/cmip6/).

In the adaptation scenarios, a wide range of measures is imple-
mented to effectively address N loss due to anticipated future pre-
cipitation changes. These measures encompassing dietary changes,
efficient feedmanagement, efficient fertilization, and efficient manure
management would be implemented in global grasslands based on
local N harvest and Nr losses conditions (Fig. S12). Dietary changes aim
to ensureno country derivesmore than 15%of its calorie intake (29%of
proteins) from animal-based foods, consistent with a “demitarian”
Western dietary pattern85, which represents a 50% reduction in the
share of animal-based calories compared to current Western levels86.
These changes may influence animal product consumption, which in
turn could alter C andN cycleswithin grasslands, potentially leading to
reduced N demand, contingent on changes in land use. To simulate
these dynamics, we employed the MAgPIE model, which incorporates
variations in grassland management practices and biophysical factors.
Efficient feed management focuses on improving forage quality and
optimizing feed compositions to reduce the energy requirements for
animal feed87. This strategy anticipates a potential 25% reduction in
feed energy needs compared to the baseline scenario, achieved
through superior breeds and optimized existing feed resources. The
corresponding reduction in grazing pressure may increase SOC,
reduce N inputs (both fertilizer and manure), and minimize N losses,
thereby improving NUE. Efficient fertilization aims to increase global
fertilization efficiency from the current 60% to 75% by 2050,

surpassing Europe’s efficiency by fifteen percentage points and
exceeding the most proficient agroecosystems88–90. Achieving 75%
fertilization efficiency requires applying the right amount of the right
fertilizer at the right time and place (4R), along with better spatial
integration of heterogeneous nitrogen inputs such as atmospheric
deposition andmanure. Additionally, 50% of nitrogen fromhousehold
waste and sewage will be recycled as fertilizers. Efficient manure
management targets a 90% recycling rate for animal manure from
stables to pastures by 2050, representing the highest plausible share
achievable by the most efficient animal waste management
systems91–93 (Table S2).

However, socio-political barriers, including policy limitations,
high implementation costs, and public willingness to adopt these
measures, may pose significant challenges to reaching these efficiency
targets. Addressing these barriers is crucial for realizing the improve-
ments in our adaptation scenario, and global cooperationwill be key to
facilitating the implementation of these measures57. These measures
were parameterized based on their perceived maximum potential
(Table S6).Wehypothesize that the implementationof thesemeasures
will enhance the management efficiency of fertilizers and manure in
grasslands, ultimately resulting in a net reduction in N inputs when
compared to the precipitation scenarios. Moreover, these adaptations
are anticipated to increase NUE, thereby reducing N losses. By
improving manure recycling and optimizing feed management, the
same level of productivity can be achievedwith reducedN inputs, thus
minimizing N losses to the surrounding environment. Formore details
regarding the parameterization of the SSP1-2.6 and SSP2-4.5 adapta-
tion scenarios, refer to Bodirsky et al.57.

Scenario simulation
The CHANS model was employed across the above scenarios to per-
formNbudget accounting and predict the future trajectory from 2030
to 2050, with the year 2020 serving as the baseline. In the baseline
scenarios, climate change factors are excluded, and projections rely
primarily on socio-economic determinants to forecast future forage
harvest. These factors encompass food demand, land-use change, N
fertilizer application, and livestock intensification53. For the precipita-
tion scenarios, we incorporated the RRs of N cycle parameters into the
CHANS model. Additionally, we refined the parameters by integrating
data from various sites, allowing these scenarios to consider both
socio-economic factors and anticipated changes in precipitation.

The effects of precipitation changes on total N harvest are cal-
culated as follows:

Nbase
harvest =

X
y

NPP× LeafN×
AreaT , y

Area2020, y

 !
ð11Þ

Nprecipitation
harvest =

X
y

NPP× ð1 +RR%NPPÞ× LeafN× ð1 +RR%LeafNÞ×
AreaT , y

Area2020, y

 !

ð12Þ

WhereNbase
harvest , andNprecipitation

harvest represent theNharvests in the baseline
and precipitation scenarios, respectively; NPP includes both above-
ground and belowground NPP; Leaf N denotes the N content in leaves;
AreaT,y and Area2020,y signify the pasture area for the years 2030–2050
and 2020 in each baseline scenario, respectively; y signifies various
regions, including REF (reforming economies of Eastern Europe and
the Former Soviet Union), OECD (OECD 90 countries), Asia (Asian
countries except the Middle East, Japan and Former Soviet Union
states), LAM (countries of Latin America and the Caribbean), and MAF
(countries of the Middle East and Africa)53. RR%NPP and RR%Leaf N

represent the RRs of NPP and leaf N content under precipitation
changes, respectively. RR%NPP and RR%Leaf N are derived by analyzing
global patterns across various grids based on local climatic conditions
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(Tables S4 and S5). To constrain the range of RRs, we use the highest
potential NPP and the lower and upper bounds of the 95% CI obtained
from meta-analysis.

In the precipitation scenario,we assume that the anthropogenic N
input, such as fertilizer (Nfer,x), andmanure (Nman,x) remain constant at
the same level as the baseline scenario, while natural N inputs,
including BNF (NBNF,x) and N deposition (Ndep,x), are influenced by
future precipitation changes. The component u of N input for BNF and
deposition are susceptible to the changing (increased/decreased)
precipitation.

Nprecipitation
input,u, x =Nbase

input,u, x × ð1 +RR%input,u, xÞ ð13Þ

θprecipitation
input, u, x =

Nprecipitation
input, u, x

Nprecipitation
input, x

ð14Þ

Where RR%input,u,x represent the RRs of BNF and deposition for each
grid x as percentage changes. θprecipitation

input, u, x serves as key indicators for
forecasting changes in grassland N budgets under different pre-
cipitation scenarios.

The effects of precipitation changes on NUE for grid x is calcu-
lated as NUEprecipitationx :

NUEprecipitationx =
Nprecipitation

harvest, x

Nprecipitation
input, x

ð15Þ

In the precipitation scenario, the component w of reactive N
losses, including Ngas,x and Nwater,x, are influenced by future pre-
cipitation changes. The variables are calculated as follows:

Nprecipitation
loss,w, x =Nbase

loss,w, x × ð1 +RR%loss,w, xÞ ð16Þ

θprecipitation
loss,w, x =

Nprecipitation
loss,w, x

Nprecipitation
loss, x

ð17Þ

where RR%loss,w,x is the RRs of reactive N loss component w under
changing (increased/decreased) precipitation levels for each grid x,
constrained by the 95% CIs and derived from global response patterns
based on local climate conditions.

In the adaptation scenarios, global grasslands demonstrate
improved NUE due to the implementation of various adaptation
measures57 (Table S2). Under the adaptation SSP2-4.5 scenario,
NUE is expected to rise to 80%, a substantial improvement com-
pared to the 68% forecasted in the precipitation SSP2-4.5 sce-
nario. Furthermore, fertilization efficiency in grasslands has been
significantly enhanced. Except in regions where increased N har-
vest and reduced Nr pollution occur simultaneously under pre-
cipitation scenarios, we employ a combination of adaptation
measures such as dietary changes, efficient feed management,
efficient fertilization, and efficient manure management for grids
subjected to harvest loss or increased N pollution under the
precipitation scenario (Fig. S12).

In the adaptation scenario, we assume improvements in the effi-
ciency of fertilization and manure management due to the imple-
mentation of adaptation measures57 (Table S2). However, natural N
inputs are mainly affected by natural factors and less by adaptation
measures, with BNF assumed to remain constant. Changes in response
parameters related to N deposition depend on the combined emis-
sionsofNH3 andNOx. TheN input component i includes fertilizer, BNF,

manure, and deposition, as follows:

Nadaptation
input, x =

X
Nadaptation

input, i, x ð18Þ

θadaptation
input, i, x =

Nadaptation
input, i, x

Nadaptation
input, x

ð19Þ

Where θadaptation
input, i, x serves as key indicators for forecasting changes in

grassland N budgets under different adaptation scenarios.
The effects of adaptation measures on total N harvest are calcu-

lated as follows:

Nadaptation
harvest, x =Nadaptation

input, x ×NUEadaptation ð20Þ

Where Nadaptation
harvest, x represent the N harvests in the adaptation scenarios

in grid x.
In the adaptation scenario, we assume that θloss,w,x remains con-

stant as in the precipitation scenario.

Nadaptation
surplus, x =Nadaptation

input, x � Nadaptation
harvest, x ð21Þ

Nadaptation
loss,w, x =Nadaptation

surplus, x ×θloss,w, x ð22Þ

Where Nadaptation
surplus, x is the N surplus under the adaptation scenario in grid

x; Nadaptation
loss,w, x is the reactive N loss under the adaptation scenario in grid

x for component w.

Cost-benefit analysis
Using the model simulation results, a cost-benefit analysis was
performed utilizing global N budget data to evaluate the benefits
of adaptation scenarios relative to precipitation scenarios for
global grasslands. This analysis classifies countries into groups,
conducting monetary evaluations at a 0.5° by 0.5° grid scale, and
subsequently scales up to regional and global grasslands31. In the
CHANS model, the anticipated costs and benefits have been dis-
tinctly allocated to grasslands, taking into account their unique N
and C dynamics. Grasslands primarily rely on BNF instead of
synthetic fertilizers, rendering them more vulnerable to increases
in natural N inputs driven by precipitation changes. Additionally,
we have considered the uneven distribution of N losses, particu-
larly through processes such as leaching and gaseous emissions,
which tend to be more pronounced in grasslands under increased
precipitation. As a result, the economic and environmental costs
associated with heightened N losses, including pollution and risks
to biodiversity, are disproportionately higher for grasslands.
Adaptation measures specific to grasslands have been modeled
separately, acknowledging their lower reliance on fertilizers and
distinct grazing impacts. The societal benefits associated with
reducing N pollution and increasing N harvest are utilized to
determine the monetized values of the adaptation measures
(Cadaptation). The benefits to global grasslands encompass eco-
system benefits (Ceco), human health benefits (Chuman), climate
impacts (Cclimate), and fertilizer savings (Cfer). However, there are
certain costs associated with implementing these adaptation
measures. These implementation costs are not factored into the
cost-benefit analysis as they are considered negligible in com-
parison to the benefits. All benefits in this analysis are expressed
in constant 2020 USD. These analyses have been validated and
utilized31,94–96. The benefits are represented by the following
equation:

Cadaptation =
X
x

ðCeco, x +Chuman, x +Cclimate, x +Cfer, xÞ ð23Þ
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Ecosystembenefits refer to themeasurable value attributed to the
adverse impacts arising from changes in the Nr effects on ecosystem
services. The calculation of ecosystem benefit (Ceco,x) for each grid x is
determined as follows:

Ceco, x =ΔNr, x ×deco, USA ×
WTPx

WTPUSA
×

PPPx

PPPUSA
ð24Þ

Where ΔNr, x represents the changes in Nr under adaptation scenarios
compared to the precipitation scenarios for grid x, including NO3

−

flows, NOx flows, N2O flows, and NH3 flows; deco,USA denotes the pro-
jected cost of ecosystemdamage resulting fromNr losses in theUnited
States, as estimated by Sobota et al.97; WTPx andWTPUSA represent the
relative willingness to pay for ecosystem services in grid x and the
United States98, respectively; PPPx and PPPUSA indicate the purchasing
power parity between the United States and grid x. To achieve com-
parableglobal ecosystembenefits,weuse the ecosystemdamage costs
associated with Nr losses in the United States and apply them to other
regions, adjusting for their willingness to pay and purchasing power
parity99. Many cost-benefit analyses evaluating the impacts of Nr on
ecosystems have been conducted in the United States and Europe96.
However, there is currently limited data available for other regions or
countries.

Human health benefits (Chuman,x) refer to changes in health-
related damages due to varying levels of Nr losses under future pre-
cipitation changes97. The monetary estimates for human health bene-
fits are calculated using the following equation:

Chuamn, x =ΔNr, x ×dhuman, x ð25Þ

WhereΔNr, x denotes the variations inNr for grid x between adaptation
and precipitation scenarios, particularly NH3 and NOx; dhuman,x repre-
sents the health damage costs to humans from Nr loss for grid x, cal-
culatedusing theN-sharemetric for PM2.5 pollution, i.e.,modelingwith
and without Nr losses to assess the contribution of Nr components to
total PM2.5 concentrations

100.
Three distinct factors are crucial in evaluating the climatic impact

(Cclimate,x) of precipitation changes on grasslands: C sequestration
(Cecc,x), oxygen release (Ceov,x), and Nr losses associated with climate
change (CNr, x

)101. We converted the changes in N harvest (calculated
from NPP and leaf N content) to the value of C sequestration and
oxygen release by the replacement cost method. The potent green-
house gas N2O significantly affects the climate in a negative way102.
Conversely, NOx andNH3 are crucial as aerosol precursors, causing the
reflection of long-wave solar radiation and providing a notable cooling
effect on the climate system103. Consequently, the cost-benefit analysis
of the climate impact is conducted as follows:

Cclimate, x =Cecc,x +Ceov, x +CNr, x ð26Þ

Cecc, x = 1:63×ΔN
precipitation�adaptation
harvest, x ×Areax ×Pc ð27Þ

Ceov, x = 1:2 ×ΔN
precipitation�adaptation
harvest, x ×Areax × PO2

ð28Þ

CNr, x
=ΔNr, x ×PNr, x ð29Þ

Where Cecc,x, Ceov,x, and CNr, x
represent the values of C sequestration,

oxygen release, and Nr in grasslands for grid x, respectively; 1.63 and
1.2 are constant parameters104; ΔNprecipitation�adaptation

harvest, x denotes the
changes in N harvest under adaptation scenarios compared to pre-
cipitation scenarios in grid x; ΔNr, x is the Nr changes for grid x; Areax
represents the forage harvest area; PNr, x

represents the monetary
valuation of the climate impact due to Nr losses for grid x, in US dollar

per kg N; Pc and PO2
represent the prices of C sequestration and

industrial oxygen105–107, respectively, in US dollar per kg N. The indus-
trial oxygen price is used to approximate the value of released oxygen,
as determining its exact value is challenging.

Fertilizer saving benefit (Cfer,x) pertains to the reduced investment
in grassland management due to decreased synthetic fertilizer inputs
under various precipitation scenarios108. This benefit is quantitatively
determined as:

Cfer, x =ΔNfer, x ×pfer ð30Þ

Where ΔNfer,x represents the variation in N fertilizer usage under
adaptation scenarios compared to precipitation scenarios for grid x; pfer
is the price of N fertilizer, in US dollars per kg N. Fertilizer price data are
sourced from the UN Comtrade Database (https://comtrade.un.org/).

Uncertainty analysis
To assess the projected uncertainty of the grassland N budget, 1000
iterations of Monte Carlo simulations were conducted using the
CHANS model28–31. The Monte Carlo method is a computational tech-
nique that mimics real-world conditions through random resampling,
allowing for a robust analysis of variability54. By considering the data
distribution and characteristics, the CHANS model examined the
sources and magnitudes of uncertainty in the input parameters. The
relative uncertainty ranges of the grassland N budget data, as well as
the impact of precipitation changes on grassland N dynamics, were
quantified using coefficients of variation (CV) (Table S7). After com-
pleting the 1000 simulation iterations, the means and variances of N
budgets were calculated using projection ensembles.

Data availability
Data supporting the findings of this study are available within the
article and its supplementary information files. A global database of
precipitation simulation experiments was established by extracting
data from site-based manipulation studies. The data reference gener-
ated in this study are provided in the Supplementary Information. The
metadata are available under restricted access due to ongoing use in
further analyses, access can be obtained upon request with the
authors. Climate data were primarily sourced from the WorldClim
database (https://worldclim.org/data/index.html#). Soil data were
obtained from the NASA Global Land Data Assimilation System
(GLDAS) (https://ldas.gsfc.nasa.gov/gldas/soils). The average AI, and
evapotranspiration (ET0) were determined using datasets from
WorldClim v.2.080 (https://cgiarcsi.community/2019/01/24/global-
aridity-index-and-potential-evapotranspiration-climate-database-v2/).
Climate zones were classified according to the Köppen-Geiger
classification81. The projected future precipitation levels for the pre-
cipitation scenarios are derived from the Climate Model Inter-
comparison Project Phase 6 (CMIP6) simulations3 (https://esgf-node.
llnl.gov/projects/cmip6/). Future grassland areas under different
socio-economic pathways were projected fromPopp et al.’s research53.
Fertilizer price data are sourced from the UN Comtrade Database
(https://comtrade.un.org/). Source data are provided with this paper.
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