

Efficient derivation of allometric models using laser scanning for improved AGB estimations¹

Benjamin Wild¹, Taskin Özkan¹, Florian Pöppl¹, Milutin Milenković², Florian Hofhansl², Jonas Lamprecht¹, Norbert Pfeifer¹, and Markus Hollaus¹

¹Department of Geodesy and Geoinformation, TU Wien, 1040-Vienna, Austria (benjamin.wild@tuwien.ac.at) | ²International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361-Laxenburg, Austria

Background and Aim

Above-Ground Biomass (AGB) is a key ecological variable essential for:

- Carbon accounting & climate projections AGB plays a crucial role in the global carbon cycle.
- Biodiversity & ecosystem monitoring AGB influences habitat structure and ecosystem dynamics.
- Temperature regulation Vegetation biomass impacts local and global climate patterns.

Challenges in AGB Estimation

- Dependence on remote sensing data Satellite-based AGB estimates require calibration and validation with field data.
- Limitations of allometric models as they rely on species- and biomespecific reference data and often do not generalize well.
- Sampling constraints Destructive sampling for model calibration is time-consuming, costly, and often impractical.

RCT-QSM: A Novel Approach

- Recently developed RayCloudTools²-QSM (RCT-QSM) offers a new method for volumetric modeling.
- RCT-QSM
- Works across different LS platforms (terrestrial & UAV)
 Allows for a Highly automated workflow
- Is minimally parametrized

Aim of this study

Evaluate RCT-QSM performance in terms of accuracy, sensitivity and large-scale applicability to assess its usability for constraining allometric models

RCT-QSM vs. Destructive AGB

Method

Comparing RCT-QSM derived volume with data destructively harvested and scanned trees in different biomes

Location	# trees	conditions	Scanner used	# or scans per tree	Reference
Brasil	4	Leaf-on	RIEGL VZ-400	8	Burt et al. (2021)
Germany	12	Leaf-off	Z+FIMAGER 5010	6-8	Hackenberg et al. (2015)
China	24	Leaf-on, needle- on	Z+FIMAGER 5010	6-8	Hackenberg et al. (2015)
Guyana	10	Leaf-on	RIEGL VZ-400	8-13	Gonzalez de Tanago et al. (2018)
Indonesia	10	Leaf-on	RIEGL VZ-400	8-13	Gonzalez de Tanago et al. (2018)
Peru	9	Leaf-on	RIEGL VZ-400	8-13	Gonzalez de Tanago et al. (2018)
Belgium	65	Leaf-off, needle-	RIEGL VZ-400;	Grid (ca.	Demol et al. (2021)

Figure 3: Comparison of destructively measured volumes with RCT-QSM-derived volumes across all datasets (top row) and for individual datasets (subsequent rows).

Take-Away 1

Comparison with AGB of 134 destructively sampled trees shows good correspondence of RCT-QSM.

Sensitivity analysis of RCT-QSM

Method

Systematic resampling of input PC (0.1 - 50cm) to assess the sensitivity of RCT-QSM to point cloud densities and

Figure 4: Two examples from the sensitivity analysis. First row: point clouds; second row: RCT-QSMs

Figure 5 Boxplot-diagram showing the residual volumes for the trees from the destructive datasets for different resolutions

RCT-QSM remains robust and accurate down to 1 point per 10 cm³. Reconstruction success rates decline sharply below this threshold.

Take-Away 2

Large-Scale Applicability

Method

Terrestrial and UAV-based Laser Scans as input for RCT-QSM to compare against results from species specific allometries for two experimental plots in Austria

Take-Away 3

Comparison with AGB of 134 destructively sampled trees shows good correspondence of RCT-QSM and unseen large-scale applicability

[1] Wild, B., Özkan, T., Pöppl, F., Ali, M., Neumayr, C., Milenkovic, M., Hofhansl, F., Pfeifer, N., Lau, A., & Hollaus, M. (Year). Evaluating the potential of RayCloudTools to estimate single-tree volume. Manuscript in preparation

