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Systematic attribution of heatwaves to the 
emissions of carbon majors

Yann Quilcaille1 ✉, Lukas Gudmundsson1, Dominik L. Schumacher1, Thomas Gasser2, 
Richard Heede3, Corina Heri4, Quentin Lejeune5, Shruti Nath6, Philippe Naveau7, Wim Thiery8, 
Carl-Friedrich Schleussner2,9 & Sonia I. Seneviratne1

Extreme event attribution assesses how climate change affected climate extremes, 
but typically focuses on single events1–4. Furthermore, these attributions rarely 
quantify the extent to which anthropogenic actors have contributed to these events5,6. 
Here we show that climate change made 213 historical heatwaves reported over 
2000–2023 more likely and more intense, to which each of the 180 carbon majors 
(fossil fuel and cement producers) substantially contributed. This work relies on the 
expansion of a well-established event-based framework1. Owing to global warming 
since 1850–1900, the median of the heatwaves during 2000–2009 became about  
20 times more likely, and about 200 times more likely during 2010–2019. Overall, 
one-quarter of these events were virtually impossible without climate change. The 
emissions of the carbon majors contribute to half the increase in heatwave intensity 
since 1850–1900. Depending on the carbon major, their individual contribution is 
high enough to enable the occurrence of 16–53 heatwaves that would have been 
virtually impossible in a preindustrial climate. We, therefore, establish that the 
influence of climate change on heatwaves has increased, and that all carbon majors, 
even the smaller ones, contributed substantially to the occurrence of heatwaves. Our 
results contribute to filling the evidentiary gap to establish accountability of historical 
climate extremes7,8.

Human-induced global warming not only causes long-term changes 
of state variables, energy and water fluxes in the Earth system but also 
manifests through climate extremes9. Every region of the world exhibits 
changes in intensity and frequency of extreme weather and climate 
events10,11, and events that were near impossible in the past are now 
occurring10,12. To assess the extent of contribution of climate change 
to these events, the field of extreme event attribution (EEA) has devel-
oped over the past years, through approaches promoted by the World 
Weather Attribution (WWA) initiative1 and other methods2–4.

These approaches have been used to study many individual extreme 
events13, often showing an important contribution of climate change. 
However, to our knowledge, there is no framework to systematically 
and collectively conduct attribution exercises on a set of events iden-
tified in past records14, implying that impactful extreme events may 
still not be assessed.

Moreover, EEA studies typically attribute events to climate change, 
but rarely to its causes5,6. Extending EEA to source attribution pro-
vides the quantification of the causal chain from emitters to climate 
extremes. It has been proven unambiguously that anthropogenic 
activities are largely responsible for climate change, and that com-
bustion of fossil fuels is the main contributor15. Three categories of 
emitters may be used: countries5, individuals6 or businesses. In the 

first case, the source allocation of emissions can be based on the 
territorial origin of emissions produced within country borders16,17. 
Consumption-based allocations can be pursued, as well as approaches 
based on individual emission profiles6,18. Finally, emissions can also be 
allocated to businesses that directly profit from fossil fuel production 
or other high-emitting activities19–24. Businesses with particularly high 
emission profiles are referred as carbon majors, encompassing not 
only investor-owned companies (for example, ExxonMobil) but also 
state-owned companies (for example, Saudi Aramco) or nation-state 
producers (for example, the former Soviet Union)19.

Here, we address both issues: the lack of systematic attribution of 
extreme events and the absence of quantitative analysis establish-
ing a causal chain from individual emitters to these events. We build 
on an existing and widely used EEA framework1, systematizing the 
approach. We assess how much climate change has contributed to 213 
heatwaves reported in the international disaster database EM-DAT over  
2000–2023, owing to their particularly significant impact, most 
of which were previously unattributed. Then, we build on existing 
approaches to assess contributions to climate change5,6, extending the 
attribution upstream to the emitters. We assess how much the emissions 
of the 180 biggest carbon majors19 contributed to global mean surface 
temperature and to the likelihood and severity of historical heatwaves.
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Systematic attribution of heatwaves
In the EM-DAT database (www.emdat.be), 226 heatwaves are reported 
over 2000–2023, across 63 countries (Fig. 1a). These events were 
reported because of significant economic losses or casualties, a dec-
laration of state of emergency or a call for international assistance. 
These societal impacts warrant their relevance for event attribution. 
Despite EM-DAT being the most widely used disaster database, the 

reporting of heatwaves across countries is highly uneven, with only 
nine heatwaves out of 226 reported over Africa, Latin America and the 
Caribbean, although these regions are also prone to heatwaves10. This 
known reporting bias in the EM-DAT database25 calls for more complete 
reporting to enable a more exhaustive analysis.

Each of these heatwaves is systematically characterized and analysed 
in a consistent framework, following the method promoted by the WWA 
initiative1. This method is shown with the Pacific Northwest heatwave 
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Fig. 1 | For every reported heatwave, the contribution of climate change to 
the event is assessed using statistical models and multiple lines of evidence. 
a, The number of heatwaves reported per country in EM-DAT (www.emdat.be) 
over 2000–2023. An EEA is performed for each of them, as shown for four 
examples with ERA5 (ref. 28) data. b, The 2021 Pacific Northwest heat dome.  
c, The 2003 heatwave in France. d, The 2022 Indian heatwave. e, The 2013 eastern 
China heatwave. For each example, the average temperatures during the event 
are mapped, with the outlines of the reported region (lime green contours). 

Moreover, the intensity (average temperature T (°C) during the period and the 
region of the event) and change in GMST (°C) are represented over 1950–2023 
(black dots), with their conditional distribution represented through the median 
(red line) and ranges of the distribution (red shading). Finally, the change in 
intensity and change in return period (year) compared with the preindustrial 
reference period are shown for each example. Uncertainties inferred using 
bootstrapping are not shown here for the sake of clarity. Further details are 
provided in the Methods.

https://www.emdat.be/
https://www.emdat.be
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of 2021 as reported for the United States (Fig. 1b), thus without British 
Columbia in Canada. This event was reported in Oregon, Washington, 
Northern California, Idaho and Western Nevada over 26–30 June 2021 
(www.emdat.be). Usually, EEA defines the heatwave with a box sur-
rounding the region1. Here the heatwave is defined using the exact 
spatial characterization in the EM-DAT database, as it represents how 
the disaster was experienced by the local populations1 (Fig. 1b). Daily 
temperatures are averaged over this period and region for every year 
of available observations. Although many indicators could be used to 
characterize the heatwave26, the choice of the average over the period 
is motivated by its relevance for the reported impact rather than its 
meteorological rarity (Methods). Following the method by WWA1 and 
justified by the extreme value theory27, a statistical relationship can be 
inferred that links the probability distribution of the event to the change 
in global mean surface temperature1 (GMST) (Fig. 1b). This relationship 
allows us to calculate the probability and the intensity of the heatwave, 
both under observed conditions with climate change and under the pre-
industrial climate of 1850–1900 without such perturbations (Fig. 1b). 
Using both observation-derived estimates (ERA5 (ref. 28) and BEST 
(ref. 29)) and Earth system models30, these results synthesize how cli-
mate change has affected the heatwave through a change in intensity 
and how many times more likely the event has become, which is called 
the probability ratio1. More details on the systematization of the WWA 
approach are provided in the Methods. Using only ERA528, the Pacific 
Northwest heatwave of 2021 over the United States had climate change 
increasing its intensity by 4.4 °C compared with that in 1850–1900, with 
a 95% confidence interval of 2.2–6.8 °C. Adding all other datasets29,30 
relevant for the region decreases the influence of climate change to a 
change in intensity of the Pacific Northwest heatwave of 2021 over the 
United States of 3.1 °C (1.4–5.1 °C). The median estimate indicates that 
climate change has also increased the probability of heatwaves by more 
than 10,000, and at least seven times according to the lower bound of 

the confidence interval. This attribution is consistent with existing 
works on this heatwave: a previous work31 found a probability ratio of 
at least 150 and a change in intensity of 2.0 °C (1.2– 2.8 °C), whereas 
another analysis32 suggested a change in intensity of more than 2.9 °C. 
Although consistent, the results differ because of the characterization 
of the event and its very unlikely nature. The region and period are here 
determined through the reporting of the disaster for relevance to the 
impact rather than choices motivated by its meteorological rarity. 
Choosing the maximum temperature as an indicator over the period 
amplifies the extremeness of the event32,33. Very unlikely events such 
as the Pacific Northwest heatwave of 2021 are more difficult to investi-
gate, increasing the dispersion across several analysis34. However, this 
increased dispersion does not lower the confidence in the conclusion, 
which is the strong influence of climate change on these unlikely events. 
The method described for this event is applied to the 226 heatwaves, 
with three other cases shown in Fig. 1c–e, with the results also consist-
ent with available attribution studies.

Additional tests are conducted to assess the adequacy of the method 
for each event. The goodness of fit is assessed, validating 217 out of 
the 226 heatwaves, whereas the remaining nine are removed from the 
ensuing analysis. Furthermore, although there are strong physical jus-
tifications that GMST has a causal link to the heatwave1,10, this statistical 
model does not necessarily imply statistical causation. Thus, we also 
infer the non-linear Granger causality4. For 214 out of the 217 heatwaves, 
we prove with more than 95% certainty that GMST is a Granger-causing 
indicator of the heatwave. The three other events are removed from 
the ensuing analysis. Finally, another heatwave is removed because of 
the ensuing analysis related to the carbon majors. All details on these 
tests are provided in the Methods.

Our analysis shows that human-induced climate change has con-
tributed to increasing the intensity of all 213 heatwaves analysed here 
(Fig. 2). With reference to 1850–1900, the median estimates for the 
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Fig. 2 | Increasing contribution of climate change to 213 heatwaves over time. 
Each heatwave is allocated a category depending on its change in intensity 
(colour) and its probability ratio (vertical bars in per cent) with reference  
to 1850–1900. a–c, Events are categorized based on the year of the event:  
78 heatwaves attributed over 2000–2009 (a), 54 heatwaves attributed over 

2010–2019 (b) and 81 heatwaves attributed over 2020–2023 (c). Median results 
are shown here. Further details on the attribution of each heatwave event are 
provided in the Methods, and all results are provided in the Supplementary 
Information.
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changes in intensity range across events from +0.3 °C to +2.9 °C. The lat-
ter is the heatwave introduced in Fig. 1b, the Pacific Northwest heatwave 
of 2021 over the United States, whereas the heatwave with the mildest 
change in intensity occurred in Pakistan in June 2000. Over the study 
period, attributed heatwaves have become more and more intense 
(Fig. 2a–c). The median of the events shows that climate change has 
increased the intensity by 1.4 °C over 2000–2009, 1.7 °C over 2010–2019 
and 2.2 °C over 2020–2023. This is consistent with GMST increasing by 
more than 0.2 °C per decade over the study period, and land warming 
faster35.

Apart from increasing the intensity, climate change has also increased 
the probability of all 213 heatwaves. The lowest probability ratio is 
observed for the heatwave of May 2006 in India, in which the event 
became only 22% more likely. However, the median estimates show 
that climate change has made 55 heatwaves out of 213 (26%) at least 
10,000 times more likely, with a 95% confidence interval ranging from 
7 to 158. This probability ratio is equivalent to saying that these heat-
waves would have been virtually impossible without anthropogenic 
influence. Over the study period, the contribution of climate change 
to the likelihood of these events is also increasing (Fig. 2a–c). Figure 2 
shows that the probability ratios of the heatwaves are shifting from 
low values to higher values, although this trend is highly affected 
by natural variability. The median probability ratios show that, with 
reference to 1850–1900, climate change made heatwaves about 20 
times more likely over 2000–2009, and about 200 times more likely 
over 2010–2019. Overall, this systematic attribution of 213 heatwaves 
enhances the capacity of EEA for analyses across events, proving 
that climate change made all events more intense and more likely, 
and that this influence is increasing over time with increased global  
warming.

Attribution to emissions of carbon majors
EEA has been extensively used to quantify how human-induced cli-
mate change influences extreme events13. A growing literature has also 
investigated the contributions of anthropogenic actors to climate 
change16,18,21. However, the quantification of the causal chain from 
individual emitters to the extreme events has only been pursued 
in selected cases5,6. Here we build on established approaches while 
also introducing key methodological advancements in the decom-
position (Methods) and developing the framework for simultaneous 
investigation over a large set of events. Unlike previous works that 
focus on emissions by countries5 or individuals6, we here investigate 
the attribution of emissions from businesses and specifically the 
carbon majors. Following established approaches20–23, we assign to 
each carbon major the emissions associated with the full value chain 
of their products, including all emissions in line with established 
accounting and reporting standards for corporates. This modelling 
choice aims at filling a gap in the scientific literature and does not 
preclude broader reflections on emission allocations and business 
responsibilities20.

The emissions from carbon majors are estimated from company 
production records and associated emission factors19, leading to a 
dataset that provides CO2 and CH4 emissions for 180 carbon majors 
over 1854–2023 (Fig. 3a). Altogether, the emissions from these carbon 
majors represent 57% of the total cumulative anthropogenic CO2 emis-
sions, including land use over the 1850–2023 period36. When consid-
ering only the emissions from fossil fuels and cement, the emissions 
from these carbon majors represent 75% of the cumulative CO2 emis-
sions over 1850–2023 (ref. 36). The carbon majors have heterogeneous 
contributions to the CO2 emissions. The 14 top carbon majors (the 
former Soviet Union, People’s Republic of China for coal, Saudi Aramco, 
Gazprom, ExxonMobil, Chevron, National Iranian Oil Company, BP, 
Shell, India for coal, Pemex, CHN Energy, People’s Republic of China 
for cement) represent 30% of the total cumulative anthropogenic CO2 

emissions, including land use, about as much as the 166 other carbon 
majors combined (27%). From a national perspective, 33 carbon majors 
are headquartered in the United States, accounting for 10% of the total 
CO2 emissions, and 33 carbon majors are headquartered in China (12% 
of the total CO2 emissions).

Based on the CO2 and CH4 emissions of the carbon majors, we 
compute the contributions of these carbon majors to GMST. Climate 
models may be used to calculate climate change over the historical 
period, but also counterfactual worlds, such as a world in which a 
given carbon major would not have emitted. The difference informs 
how much this single actor has warmed the Earth over time. This 
method has already been applied to a former version of this data-
base using a simple impulse-response model for CO2 (ref. 21). Here 
we use the reduced-complexity Earth system model OSCAR, for its 
non-linear representation of both the carbon cycle and the atmos-
pheric chemistry of methane, as well as its capacity to integrate obser-
vational constraints to improve the robustness of the assessment37  
(Methods).

Closely aligned with the estimates based on IPCC methodologies35, 
we estimate an increase in GMST of about 1.30 °C in 2023 with respect 
to 1850–1900 (ref. 28), of which 0.67 °C is due to the emissions of all car-
bon majors and 0.33 °C is due to the emissions of the 14 biggest carbon 
majors (Fig. 3b). The unattributed 0.63 °C is due to other actors respon-
sible for unaccounted fossil fuel burning, agricultural and land-use 
activities, other industrial processes, as well as to non-attributed green-
house gases (N2O and halogenated species) and short-lived climate 
forcers. For comparison, a former assessment associates 0.40 °C in 
2010 with 90 carbon majors21, whereas we find 0.48 °C with 180 carbon 
majors in 2010.

Knowing the contributions of the carbon majors to GMST and know-
ing the relationship between GMST and the heatwaves from the event 
attribution, we subsequently compute how each carbon major has 
affected each heatwave (for details, see the Methods). For each heat-
wave, the total effect of climate change on the intensity and probability 
of the event is decomposed into the contributions from individual 
carbon majors and the combined effect of other unidentified contribu-
tors, anthropogenic and natural.

Contributions from carbon majors to the intensities of all heat-
waves range from 0 °C to 0.18 °C (Fig. 3c–k). As expected, the higher 
the emissions from a carbon major, the higher its contributions to 
the intensities of the heatwaves. The median contributions to heat-
waves from the 14 top carbon majors range from 0.01 °C to 0.09 °C. 
The other carbon majors have lower contributions, although the 166 
of them combined have about the same importance as the biggest 
carbon majors. We calculate the influence of carbon majors on heat-
waves reported over each decade of our dataset. With reference to 
1850–1900, climate change has increased the median intensity of 
heatwaves by 1.36 °C over 2000–2009, of which 0.44 °C is traced 
back to the 14 top carbon majors and 0.22 °C to the 166 others. These 
contributions correspond, respectively, to 32% and 16% of the overall 
effect of climate change. Over 2010–2019, the influence of climate 
change increased to 1.68 °C, with 0.47 °C (28%) from the 14 top carbon 
majors and 0.38 °C (22%) from the 166 others. These results show 
that the emissions of carbon major contributed to about half of the 
increase in intensity of heatwaves since preindustrial times, and that 
this contribution is rising.

Apart from intensities, all the carbon majors have also increased the 
probability of all the heatwaves. For heatwaves that climate change 
made only slightly more likely, or for carbon majors with much lower 
emissions, the contributions are limited to an increase by 10% of the 
preindustrial probability. However, there are heatwaves that the car-
bon majors have made at least 10,000 times more likely compared 
with preindustrial levels, and which would have otherwise been vir-
tually impossible without anthropogenic influence. Even relatively 
minor shares in total emissions lead to very substantial increases in 
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the frequency of these events. Specifically, emissions associated with 
the biggest emitter, the former Soviet Union, have made 53 heatwaves 
(25%) at least 10,000 times more likely. For the smallest carbon major by 

emissions, Elgaugol, this is still the case for 16 heatwaves (8%). It means 
that the sole emissions of these carbon majors would have rendered 
possible these heatwaves otherwise virtually impossible.
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Fig. 3 | Through their emissions, every carbon major contributes to climate 
change and thus to the heatwaves, even relatively smaller carbon majors. 
a,b, Contributions of the carbon majors to the cumulative CO2 emission since 
1850 (all sectors) (a) as reported in the Carbon Majors database (https://
carbonmajors.org/) and compared with the Global Carbon Budget36 and the 
ensuing GMST as simulated by the OSCAR model (b). The GMST of ERA528 and 
BEST29 have been rebased to 1850–1900 (ref. 9). c–q, Attribution of historical 

heatwaves to the emissions of carbon majors for 15 selected carbon majors.  
In each of these panels, the 213 heatwaves are allocated into categories of 
contributions of the carbon majors to the change in intensity (colours) and how 
many times the carbon major increased the likelihood of the heatwave compared 
to 1850–1900 (x-axis). The results are shown through the median, but all results 
are provided in the Supplementary Information.

https://carbonmajors.org/
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Discussion
We have systematized the process of EEA, based on the widely used 
method promoted by the WWA initiative1. We achieve the analysis of 
213 heatwaves, thus extending the coverage of existing event attribu-
tion studies. We validate the goodness of fit and the causality for each 
of these events. We show that climate change has increased the prob-
ability and intensity of all these heatwaves. Owing to the consistent 
protocol across all events, their meta-analysis over time shows that the 
extremeness of the heatwaves is rising more and more rapidly because 
of climate change, both in intensity and probability.

We also extend the attribution analysis upstream along the causal 
chain, providing a coherent attribution to individual emissions on 
the company level for 180 carbon majors. The contributions of the 
carbon majors are very heterogeneous, with 14 carbon majors (the 
former Soviet Union, People’s Republic of China for coal, Saudi Aramco, 
Gazprom, ExxonMobil, Chevron, National Iranian Oil Company, BP, 
Shell, India for coal, Pemex, CHN Energy, People’s Republic of China for 
cement) contributing as much as the 166 others. Considering all report-
ing heatwaves, we show that carbon majors represent about half of the 
change in intensity since 1850–1900 and that their contributions are 
rising, in particular the ones of the smaller carbon majors. The analysis 
of their contributions to the probabilities of the heatwaves shows that 
although the contributions scale well with their cumulative emissions, 
smaller carbon majors cannot be neglected. Depending on the carbon 
major, between 16 and 53 of these heatwaves are made possible with 
the sole contribution of the smaller carbon majors.

Although this assessment builds on well-established methods, there 
are still two limitations in this work. Although the EM-DAT is the most 
complete existing database for disasters, many heatwaves are still not 
reported, calling for a more exhaustive coverage of the events. More
over, the contributions of the carbon majors remain incomplete. On 
the one hand, not all CO2 and CH4 emissions are covered in this database 
because of underreporting19. For instance, this database represents 
only 75% of the fossil fuel and cement CO2 emissions reported over 
1850–2023 (ref. 36). The actual contributions of the carbon majors 
are thus expected to be higher if all the emissions from fossil fuel and 
cement producers are included. On the other hand, the burning of fossil 
fuels can release aerosols that would have a local effect on the climate. 
As a whole, the aerosols emitted by the fossil fuel sector reduce their 
contribution by approximately 10% (ref. 38). However, attributing 
aerosol climate effects to individual companies would be highly chal-
lenging. The effects of aerosols on climate are local to regional, yet 
fossil fuels are globally traded. Furthermore, aerosol emissions from 
fossil fuel combustion strongly depend on the use of filter technology, 
which differs between regions, sectors and combustion techniques. If 
these challenges are overcome, it would pave the way for attributing the 
aerosol health effects to individual emitters. Aerosols are also harmful 
air pollutants, with the emissions by the use of fossil fuel causing about 
5 million excess deaths per year (ref. 39). Accounting for these effects 
remains beyond the scope of our analysis.

Our framework could be adapted to other physical hazards, such 
as ocean acidity22, sea-level rise40, fires41 or droughts42. Extending the 
attribution from physical hazards to societal impacts remains a chal-
lenge. We may use directly the fraction of attributable risk to deduce 
the fraction of the impact imputed to the actor6, but it neglects com-
plex and non-linear aspects related to the vulnerability and the expo-
sure to the hazard43. Nevertheless, this attribution framework may be 
extended to heat-related mortality44 or economic damages24. Finally, 
other top-down approaches can complement our findings45.

These results are relevant not only in the scientific community but 
also for climate policy, litigation and wider efforts concerning corpo-
rate accountability8. Climate-related legal proceedings are proliferat-
ing, with defendants seeking compensation for losses and damages 
or requiring more ambitious climate actions from corporations and 

nations8. However, the scientific evidence backing the claims is often 
lagging behind the state of the art in climate science, thus failing to 
adequately draw causality links7. Although this work aims at filling in 
scientific gaps, the results also fill in evidentiary gaps. This systematic 
attribution improves the coverage in extreme events, thus reinforcing 
the potential of attribution science for climate litigation7,43. Further-
more, if the fact that fossil fuels are the main driver of climate change 
has been unambiguously established15,36, as acknowledged by the car-
bon majors themselves46–48, proving and quantifying the causality from 
the emitters to the events provides important new resources to assess 
legal responsibilities. Further strengthening of the links between cli-
mate scientists, legal scholars and practitioners is beneficial to ensure 
that the overwhelming scientific literature is correctly accounted for49.
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Methods

Definition of events
From the EM-DAT database, we select the events only after 2000, 
because the reporting is more complete after this date25,50, and since cli-
mate change has been shown to exert increasing influence on extremes 
over this period51.

The locations reported for the events in the EM-DAT database are 
names of cities, provinces, states or whole countries (for example, 
France). Geographical boundaries are necessary for the analysis, so 
the locations of EM-DAT are matched to spatial elements from GADM52 
using the following algorithm.
1.	 The reported ISO code is used to pre-select the spatial elements of 

GADM for the country and any attached disputed territories.
2.	The reported location is prepared: replacing spatial characters  

(accents, numbers and punctuation); removing extra spaces; lower-
case letters for all characters; synthesizing specific sentences (for 
example, ‘Kadamjay district in Batken oblast’ becoming ‘Kadamjay’); 
correcting for any change in regional aggregation (for example, 
‘Haute & Basse Normandie’ becoming ‘Normandie’); translating 
any region without its variant in GADM (for example, ‘Voreio Aigaio’ 
becoming ‘North Aegean’).

3.	Each preselected spatial element is compared with each element of 
the prepared reported location by applying a character matcher53 
on its names and variants.

4.	Each retained spatial element is filtered using a prepared list of false 
positives. For instance, the location for the state of ‘Ohio’ triggers 
the identification of the county ‘Ohio’ in the states of Kentucky and 
West Virginia, which have not been reported.

5.	 The list of spatial elements is compared with the initial reported 
location, checking whether it matches correctly. If not, the issue is 
implemented through the prepared lists of known issues in steps 2 
and 4.

Another work, the dataset GDIS, is also used to match EM-DAT loca-
tions to geographical boundaries54. Both approaches have been devel-
oped independently. GDIS differs in that the locations of all categories 
of hazards are analysed, but only up to 2018. Here, only the hazards for 
heatwaves were analysed, but up to 2023. Moreover, GDIS uses GADM 
v.3.6, whereas our work uses GADM v.4.1.

In the EM-DAT database, the dates of the heatwaves are often reported 
with the starting and ending days. When both days are provided, we 
use the average of the daily average temperature over this exact period. 
Other indicators may be possible26, but the average aggregates the 
essential features of these heatwaves55. In particular, this choice is moti-
vated by its relevance for the reported impact rather than its mete-
orological rarity. Heatwaves affect local populations not only through 
daily maximum temperatures but also through lack of cooling at night, 
which can be estimated using daily average temperatures. Sustaining 
high temperatures over time modifies the impact of a heatwave as 
well, justifying the use of averages over the period of the heatwave 
rather than its peak. The annual indicator is calculated first on each 
grid point, then averaged over the defined region to maximize the 
relevance of the indicator1,56. Furthermore, some events were reported 
without the starting and/or ending day(s). We observe that heatwaves 
reporting both days and lasting less than a month last on average for 
8 days. Therefore, we use as an indicator for events with missing days 
the maximum of the 8 days running average over the reported month. 
In the case that several months were reported with missing starting 
and/or ending days, we lengthen the duration of the running average 
by 1 month for each supplementary month reported.

Training of conditional distributions
The statistical model of attribution studies is carefully chosen to model 
the frequencies and intensities of extreme events1,56. To capture possible 

trends and non-stationarities, the distribution depends on the param-
eters driven by explanatory variables. In this study, we opt for the gen-
eralized extreme value (GEV) distribution with a linear evolution of 
its location as outlined in equation (1). For every year y in the sample, 
the average temperature over the period and region of the event Ty is 
assumed to follow a GEV distribution of location μ, scale σ and shape 
ξ, whereas the location varies with the change in global mean surface 
temperature smoothed over the 3 previous years (GMST).

T μ μ μ σ σ ξ ξ~ GEV( = + GMST, = , = ) (1)0 1 0 0

Although the statistical model in equation (1) is common for the EEA 
of heatwaves1,56, we have compared its performance with other poten-
tial models. Apart from this GEV model, we have tested three other 
distributions with linear and non-linear evolutions of the parameters: 
Gaussian, skew normal and generalized Pareto. Overall, our compari-
sons assessed through quantile–quantile plots indicate that the GEV 
performs the best among the four distributions, especially in terms of 
upper tail behaviours. We calculate the classical Bayesian information 
criteria (BIC) to compare their performances while reducing the risk 
of over-fitting57. We observe that for all heatwaves, a stationary GEV 
has the lowest BIC. We note that the linear model of equation (1) is not 
always the best distribution according to the BIC, although the gain in 
BIC from the linear model to the best solution is always marginal. More 
quantitatively, the improvement in BIC from the stationary GEV to the 
linear model represents between 88% and 100% of the improvement 
from the stationary model to the best solution over all heatwaves ana-
lysed, with an average of 98%. In other words, sophisticating further the 
statistical model would, on average, improve the performance by only 
2%. This result confirms that this expression is the most appropriate 
for most heatwaves.

These fits are obtained by minimization of the negative log likeli-
hood (NLL) of the training sample58. The first guess has its robustness 
improved using initial regression to approximate the coefficients42,59. 
The shape parameter is bounded between −0.4 and 0.4 (ref. 1). More-
over, the sample is weighted during minimization of the NLL, with 
weights equal to the inverse of the density of the GMST. This approach 
helps in providing equal performance over the full interval of GMST.

The choice of whether to include the event or not when estimating 
the statistical model has been extensively discussed, although no final 
consensus has been reached1,31,60. The results presented in this paper 
have been obtained by estimating the event, to prevent removing points 
from the observational record. To ensure numerical convergence, a 
minimum probability of 10−9 was set for each point of the full sample. 
It implies that the attributed events under factual conditions will not 
have return periods higher than a thousand million years, which we 
consider long enough.

Estimating return periods for unlikely events with relatively short 
observational records remains difficult34; thus, we append additional 
lines of evidence1,56. Conditional distributions are trained for ERA5, 
used as reference, but also with BEST29 (Extended Data Fig. 1) and sim-
ulations from Climate Model Intercomparison Phase 6 (CMIP6)30,61. 
The following Earth system models (ESMs) from CMIP6 are used: 
ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, 
CESM2, CESM2-WACCM, CMCC-CM2-SR5, CMCC-ESM2, CanESM5, 
EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR, FGOALS-g3, 
GFDL-CM4, GFDL-ESM4, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, 
KACE-1-0-G, KIOST-ESM, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, 
MRI-ESM2-0, NESM3, NorESM2-LM, NorESM2-MM and TaiESM1. For 
every heatwave, only the ESMs with sufficient performance are used, 
as described in the next section. For ERA5 and BEST, we start the time 
series in 1950 for adequate spatial coverage over all regions62, and these 
time series finish in 2022 for BEST and 2023 for ERA5. For CMIP6, the 
time series is calculated over the historical (1850–2014) (ref. 63) and 
the SSP2-4.5 (2015–2100) (ref. 64). This scenario is chosen because its 
emissions are the closest to those observed over 2015-202 (ref. 36). 
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Only runs with the initial conditions termed r1i1p1f1 are used, as it was 
run by most ESMs. Only one ensemble member is used to facilitate the 
comparison of the parameters and probabilities from ESMs to those 
based on observations.

Evaluation of the uncertainties
During the extreme event analysis, two sources of uncertainties are 
handled—namely, on the conditional distributions and on the handling 
of observations and simulations.

During the training of conditional distributions, the uncertainties on 
the parameters are obtained using an ensemble of 1,000 bootstrapped 
members, with replacements allowed during the resampling. The con-
ditional distributions are then used to assess the probabilities and 
intensities of the event, under a factual climate and a counterfactual 
climate. The factual climate is defined as the GMST observed at the 
time of the event. The counterfactual climate is defined as the average 
of the GMST over 1850–1900.

ESMs exhibit different performance in reproducing local climates; 
thus, not all models may be useful for event attribution1. We calculate 
the seasonalities of ERA5 and each ESM over 1950–2020 in each grid 
point over the region. We then average their correlation. The most 
appropriate ESMs are the 10 most representative ESMs that maximize 
this average correlation.

Following the WWA approach, not all models are retained for further 
analysis1,65. The factual distributions at the time of the event are com-
pared with those of ERA5. Both the scale and the shape parameters of 
ERA5 and the model must have their 95% confidence intervals overlap-
ping. Otherwise, the model will be discarded. Thus, the overall selec-
tion process is to sort the ESMs by correlation with ERA5 seasonality, 
remove those with parameters inconsistent with ERA5 and select the 
10 best ESMs in this list.

At this point, probability ratios and change in intensities are obtained 
for an ensemble of datasets, each with uncertainties. To synthesize over 
this large ensemble, equal weights are given to each bootstrap member 
of ERA5 and BEST, summarized into one distribution for observations. 
All kept ESMs are also given equal weights and summarized into one 
distribution for models. Finally, these distributions are averaged to 
deduce the median and 95% confidence intervals. We point out that 
synthesizing these lines of evidence could be conducted with other 
approaches1, although without affecting the main messages of this 
work.

Goodness of fit for the conditional distributions
Although using a non-stationary GEV with its location varying linearly 
with GMST is a well-established approach for EEA to statistically model 
extremes under global warming, this setup may not be well-suited in 
isolated cases66. To ensure that the GEV model represents the data 
adequately, the goodness of fit is verified for each conditional distribu-
tion used in this analysis with the method used in ref. 67.

For every heatwave, several datasets are used for analysis, from which 
conditional distributions are fitted. The location and scale of each of 
these fitted conditional distributions are used to transform the respec-
tive training sample onto a stationary GEV(0, 1, ξ) with the same shape 
as the fitted conditional distribution. This transformed sample has 
observed quantiles, which are compared with the theoretical quantiles 
of a GEV(0, 1, ξ) in a quantile–quantile plot. This quantile–quantile 
plot describes how well the GEV model describes the sample. The 
uncertainty in the GEV parameters determines a confidence band in 
the quantiles around the identity line, as shown in Extended Data Fig. 2.

The fraction of the sample out of the confidence band is deduced, 
estimated as a 95% confidence interval on the ensemble obtained from 
bootstrapping of the training of the conditional distribution. For each 
heatwave, the ensemble of conditional distributions is compared with 
an out-of-sample threshold at 5%. The results are shown in Extended 
Data Fig. 3. If the median out-of-sample fraction across the conditional 

distributions is below the threshold, the goodness of fit is confirmed, 
and the heatwave is kept for the ensuing analysis. As shown in Extended 
Data Fig. 3, 217 heatwaves are retained, and nine are removed from the 
ensuing analysis. These nine events removed from analysis are sum-
marized in Extended Data Table 1.

Out of the nine events, eight occurred in India, and the last one 
occurred in Japan. In the 217 heatwaves kept for analysis, eight events 
occurred in India. Besides this apparent regional clustering, no discern-
ible traits emerge with regard to the season or length of the heatwave. 
More research is required to investigate why these fits do not perform 
as well as elsewhere for these specific events, which lies beyond the 
scope of this study.

Causality using Granger causal inference
The well-established approach1 for EEA combines observations 
and simulations by using non-stationary distributions. These dis-
tributions correlate the evolution of the climate indicator T for the 
heatwave to GMST. Deducing causality, that climate change caused 
the event, using this correlation relies on the strong physics-based  
understanding5,6,31,41,65,68–97 that increasing GMST tends to also increase 
regional temperatures, not only through its mean but also through the 
whole distribution inferred from natural variability, thus shifting the 
regional extremes as well. Yet, although there is a strong physical basis 
for this causality, we can also investigate the validity of this causality 
from a statistical perspective. Using Granger causal inference98, we may 
assess the predictive relationship between GMST and T, the climate 
indicator of the event4.

The common approach for Granger causality4,98 requires that the 
input variables are stationary to train vector auto-regressive mod-
els99. This is usually verified by differentiating the variables, in other 
words, taking the interannual variability. This method would then assess 
whether the interannual variability of GMST can predict the interan-
nual variability of T, thus focusing on the predictability of short-term 
shocks. However, the trend contains a stronger signal compared with 
the interannual variability. To account for long-term trends in GMST 
and T, Granger causality can be generalized using the vector error cor-
rection model (VECM)100. It requires the search for an adequate VECM 
model based on the Akaike information criterion101 and a co-integration 
test, for instance, using a Johansen test99. Nevertheless, this method still 
fails to account for non-linear effects. An alternative is to use machine 
learning, such as Random Forest models trained to predict T with GMST 
through their lagged effects102. Permutation tests are conducted to 
assess the performance of Random Forest models trained on permuted 
lagged GMST, compared with the non-permuted version103. Apply-
ing this method accounts for the evolution of GMST and T, while also 
accounting for non-linear effects.

By using the latter method, only three events have a median value 
for the test above 0.05. As shown in Extended Data Fig. 4, for 214 events 
out of 217, we reject the null hypothesis, concluding that the evolution 
of GMST is Granger-causing the evolution of T. The three other events 
are listed in Extended Data Table 2. We notice that the median value 
for the Granger causality remains relatively low. Using IPCC terms, it 
is likely (>66%) that GMST Granger-caused the evolution of T for the 
event in the United States in 2011, whereas it is very likely (>90%) for all 
the others. These three events are removed from this analysis.

Contributions from the carbon majors to global warming
The contributions of emissions of the carbon majors to global mean 
surface temperature are assessed with the reduced-complexity 
Earth system model OSCARv3.3 (refs. 104,105). The model embeds 
an ensemble of modules that replicate the behaviour of models of 
higher complexity105. OSCAR features the ocean and land carbon cycles 
with a bookkeeping module for CO2 emissions from land use and land 
cover change, wetlands, permafrost, tropospheric and stratospheric 
chemistry, and global and regional climate responses to these forcers.  



It accounts for the effects of greenhouse gases (CO2, CH4, N2O and 37 
halogenated compounds), short-lived climate forcers (stratospheric 
water vapour, tropospheric and stratospheric ozone, primary and 
secondary organic aerosols, nitrates, sulfates and black carbon), sur-
face albedo change, volcanic activity, solar radiation and contrails37,105.

OSCAR is run over the historical period (1750–2023), following three 
sets of simulations: (1) The first set of simulations is driven by concen-
trations of greenhouse gases to ensure a match with the latest observa-
tions. (2) The second set is driven by emissions, using the compatible 
emissions from the first set obtained through mass balance106,107. This 
is a control run that confirms that the estimated compatible emis-
sions lead to the observed atmospheric concentrations and is used 
as a reference for the following attribution runs. (3) In the third set of 
simulations, for each carbon major, the control run is repeated, but the 
CO2 and CH4 emissions of the major are subtracted from the compatible 
emissions. The difference in outcome (for example, global tempera-
ture) between the control and this simulation gives the contribution 
of the major. This approach is called a residual attribution method108.

In all simulations, the radiative forcings from species or forcers 
that are neither CO2 nor CH4 (that is, forcers that are not attributed 
in this study) are prescribed as global time series based on the latest 
version of the Indicators of Global Climate Change35. Global time series 
of atmospheric concentrations for the first set of simulations come 
from the same source. Emissions of short-lived species (that affect 
the atmospheric sink of CH4) are taken from the latest version of the 
CEDS dataset109,110 and the updated GFED4s dataset111 that extends the 
original CMIP6 emissions from biomass burning112. Land use and land 
cover change data are the same as in the latest Global Carbon Budget36, 
in which we use both an updated LUH2 dataset113 and the FAO-based 
dataset114.

OSCAR runs in a probabilistic framework to represent the uncer-
tainty in the modelling of the Earth system. This uncertainty is sam-
pled through a Monte Carlo approach with n = 2,400 elements. The 
uncertainty in the natural processes governing the atmospheric con-
centration of CO2 and CH4 comes from the available parametrizations 
of OSCAR105,115,116. The uncertainty in the input radiative forcing follows 
that of the IPCC AR6 (ref. 117) and is applied uniformly to the whole time 
series. The uncertainty in the input land use and land cover change is 
sampled by running one-half of the simulations with one dataset and 
the other half with the other dataset. There is no uncertainty in the input 
emissions. Finally, the raw uncertainty range from the Monte Carlo is 
constrained with observational data by weighting the elements of the 
ensemble based on their distance to the observations in the control 
simulations37,116. As constraining values, we use decadal CO2 emissions 
from fossil fuels and industry over 2012–2021 from the GCB36, decadal 
anthropogenic CH4 emissions over 2008–2017 from the AR6 (ref. 118) 
offset with their preindustrial value from PRIMAP third-party-based 
estimates119,120, and decadal global mean surface temperature change 
over 2011–2020 from the AR6 (ref. 9).

Contributions from the carbon majors to heatwaves
We assess whether the probability can be written as a sum of terms, 
with each term associated with contributions from anthropogenic 
actors or natural drivers.

We define a region in space S. Every year y, the temperature field over 
the region is averaged over a period p of the year, then over the region 
S, resulting in the temperature Ty. The heatwave is characterized by the 
exceedance of the heatwave level u by Ty, with u a real-valued scalar. Ty 
represents a real-valued continuous random variable (Borel σ-algebra 
on the reals). Given the heatwave level u, the target probability is a 
survival function P(Ty > u).

We assume that the probability of the heatwave is conditional on 
GMTy and that it follows the statistical model introduced in equa-
tion (1) and represented in equation (2). Every year, the temperature 
over the region and the period Ty is sampled from a non-stationary GEV 

distribution27. The parameters of this GEV distribution are the location 
μ, the scale σ and the shape ξ. The location varies linearly with a covari-
ate, the change in GMSTy at the corresponding year.

P T u u μ μ μ σ σ ξ ξ( > |GMST ) = 1 − GEV( | = + GMT, = , = ) (2)y y 0 1 0 0

With the analytical expression for the cumulative distribution func-
tion of the GEV that follows equation (3):

u ξ
ξu ξ ξu

u ξ
GEV( |0, 1, ) =

exp(−(1 + ) ) for ≠ 0 and 1 + > 0

exp(−exp(− )) for = 0
(3)
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





This well-established statistical model is widely used for EEA1,56 and 
has already been used extensively for heatwaves. We acknowledge that 
a more sophisticated model with additional covariates may further 
improve the performance121,122. However, this statistical model has been 
shown to have good performance for heatwaves in general13, and addi-
tional covariates can prevent the use of climate models as additional 
lines of evidence. The former section provides additional grounds for 
the choice of this model.

The causal theory applied to climate change justifies the decomposi-
tion of probabilities in a Gaussian case123,124. Given a statistical model 
built on a non-stationary Gaussian distribution linearly driven by GMST, 
if GMST can be split into a sum of contributions, then the probabilities 
can be approximated as a sum of their associated contributions123,124. 
However, the statistical model presented in equation (2) uses a GEV 
instead of a Gaussian. Even by attempting to write the decomposi-
tion using Bayes’s theorem and the inclusion–exclusion principle, 
the exact analytical form of each term remains challenging. This is 
mostly because the differences in probability when removing a con-
tribution to GMST depend on the initial value of GMST. In other words, 
the non-linearity and the high number of terms lead to a solution that 
cannot be computed exactly.

Instead, we propose to approximate the solution and to investigate 
the quality of this approximation. The usual approach to calculate 
contributions to climate change is to run the statistical model with all 
contributors, then to run it again without one contributor, the differ-
ence corresponding to the contributor. This approach is thereafter 
called All-But-One (ABO). Thus, an emitter e with a contribution to 
global warming GMSTy,e would contribute to the probability of the 
event using this approach.

P P T u P T u= ( > |GMST ) − ( > |GMST − GMST ) (4)y e y y y y y e,
ABO

,

To account for non-linear effects in the decomposition of probabili-
ties, this approach is complemented with a second approach that cal-
culates the difference in GMSTy introduced by adding only the emitter 
(Add-One-to-None, AON). According to this approach, the emitter e 
would contribute to the probability of the heatwave as follows:
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The approach based on the removal of a single entity (ABO) esti-
mates the contribution of a state perturbed by all the other con-
tributors. The approach based on the addition of a single entity 
(AON) evaluates the contribution in an unperturbed state, without 
the other contributors interfering. Given the non-linearity of the 
system, we expect the physical contribution to be between the two 
values. We choose to calculate both approaches and average them. 
This approach, calculated using equation (6), is called the combined 
ABU & AON (Extended Data Fig. 5).
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For each event, the probability is calculated for all datasets for the 
region and averaged over the datasets. Its 95% confidence interval is 
calculated using bootstrapping. The total probability of the event is 
decomposed into contributions of each carbon major, other climate 
forcers and preindustrial probability. After decomposition, these terms 
are summed up for comparison with the total probability. The 95% 
confidence interval is shown for all events, and only one event (Cyprus, 
May–September 2022) does not reproduce the total probability. This 
event has been removed from the analysis of extreme events. As shown 
in Extended Data Fig. 5, the average of ABO and AON provides the best 
estimate, because it accounts for non-linear effects.

In EEA, probabilities are often communicated using probability 
ratios, quantifying how many times climate change has made the 
event more likely. It is calculated using the probability of the event in 
a preindustrial climate, thus with a GMST averaged over 1850–1900:

P T u

P T u
PR =

( > |GMST )

( > |GMST )
(7)

y y

y 1850–1900

Because the contribution of the emitter e to the probability of the 
heatwave Py,e is a perturbation, the emitter multiplies the probability 
of the heatwave as in equation (8):

P

P T u
PR = 1 +

( > |GMST )
(8)e

y e

y

,

1850–1900

Discussing an alternative decomposition approach
Alternatively to the approach based on GMST, a basic approach would 
be to assess the contributions directly with the emissions. The fraction 
in the cumulative emissions at the time of the event would represent the 
share of responsibility of the carbon major in the causes of the event. 
This fraction can be used for the change in intensity and the change 
in probability of the event. This approach can be compared with the 
principle applied for the attributional life cycle assessments, taking 
the Earth system as a whole and using the shares in its inputs to trace 
the perturbation125,126, whereas the approach based on GMST traces 
the effects of the carbon majors through the Earth system. Therefore, 
GMST is more similar to the principle of the consequential life cycle 
assessment. However, the approach based on cumulative emissions 
has several drawbacks.

First, the carbon majors fuel climate change with CO2 and other com-
pounds, such as CH4. As an approximation, it would still be possible 
to aggregate these compounds using a global warming potential for 
fossil CH4.

Then, the carbon cycle partially absorbs the emitted carbon over 
time. Thus, two companies with the same cumulated emissions may 
not share the same responsibility, if one has older emissions, thus with 
a lower contribution to the atmospheric concentration of CO2. Still, 
these old emissions contributed to warming up the Earth system and 
saturating the carbon sinks.

Finally, the attribution analysis may not respond linearly to changes 
in GMST. For our study, heatwaves are represented with a GEV with 
the location varying linearly with GMST. According to the Transient 
Climate Response to Emissions (TCRE), the GMST varies almost linearly 
with cumulative emissions. Thus, the approach based on cumulative 
emissions would lead to similar results to ours. However, for events 
for which the distributions do not vary linearly with GMST, as it may 
for extreme precipitations1,56, non-linearities would be introduced.

To conclude, the approach based on cumulative emissions is an 
approximation that relies on the linearity of the Earth system. How-
ever, this system is not entirely linear, and the TCRE is known as an 

approximation with its limits127. Under the assumptions that the linear-
ity of the system would be respected, this simple approach would then 
lead to similar results as those based on the approach used in this work.

Data availability
The data that support the findings in this study are available through 
the following references: disaster database EM-DAT (https://public.
emdat.be/), geographical boundaries database GADM (https://gadm.
org/download_world.html), Carbon Majors database (https://carbon-
majors.org/Downloads), ERA5 (https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-single-levels), BEST (https://berkeleyearth.
org/data/), and CMIP6 on the Earth System Grid Federation data nodes 
(http://esgf-node.llnl.gov/search/cmip6/). Detailed data for the search 
query are as follows: Experiment ID (historical, ssp245), Variant Label 
(r1i1p1f1), Frequency (day) and Variable ID (tas). The outputs of this 
study are provided in the Supplementary Information.

Code availability
All the codes that support the findings in this study are available at 
Zenodo128 (https://doi.org/10.5281/zenodo.15569401). Moreover, 
the code for OSCARv3.3 can be accessed at Zenodo129 (https://doi.
org/10.5281/zenodo.10548477).
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Extended Data Fig. 1 | Besides ERA5, the contributions of climate change  
to each event are also assessed based on other datasets, such as BEST29.  
a, Number of heatwaves reported per country in EM-DAT over 2000–2023. An 
extreme event attribution is performed for each of them, as illustrated for four 
examples with BEST29 data: b, the 2021 Pacific Northwest heat dome, c, the 
2003 heatwave in France, d, the 2022 Indian heatwave, and e, the 2013 eastern 
China heatwave. For each example, the average temperatures during the event 
are mapped, with the outlines of the reported region (lime green contours).  

In addition, the intensity (average temperature T (°C) during the period and 
region of the event) and change in Global Mean Surface Temperature (GMST, °C) 
are represented over 1950–2023 (black dots), with their conditional distribution 
represented through the median (red line) and ranges of the distribution (red 
shading). Finally, the change in intensity and change in return period (year) 
compared to the pre-industrial reference period are shown for each example. 
Uncertainties inferred using bootstrapping are not shown here for the sake  
of clarity.



Extended Data Fig. 2 | Illustration of the goodness-of-fit with the quantile- 
quantile plot for the heatwave Pacific North West 2021 using ERA528. For a 
perfect fit, the quantiles of the sample (red dots) would be distributed over the 
identity line (black line). The uncertainties on the shape parameter provide a 
confidence band for the theoretical quantiles (grey shaded area), while the 
uncertainties on the location and scale provide a confidence band for the 
quantiles of the sample (red lines).
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Extended Data Fig. 3 | Out of the 226 analysed heatwaves, 217 events show 
sufficient goodness-of-fit. For each of the heatwaves and datasets used for 
analysis, the fraction of sample outside confidence band is calculated (black 

circles). An event is rejected if the sample has a fraction higher than 5% out  
of the confidence band (red dashed line). For each heatwave, results are 
summarized over datasets in boxplots (black box) and the median (purple dot).



Extended Data Fig. 4 | Out of the 217 analysed heatwaves, 214 events 
demonstrate a significant causality. For each of the heatwaves and datasets 
used for analysis, the non-linear Granger causal inference is tested through 
comparisons of performance of Random Forest models (black circles). The 

hypothesis of non-causality is rejected if the p-value is lower than 0.05 (red 
dashed line). For each heatwave, results are summarized over datasets in 
boxplots (black box) and the median (purple dot).
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Extended Data Fig. 5 | To decompose probabilities, the method extends 
well-established approaches for higher performance, shown sufficient for 
213 heatwaves out of 214 events. Each heatwave attributed in this analysis is 
shown here (coloured dots). The total probability of each event is the result 
from the attribution analysis. The reconstructed probability results from the 
decomposition of the probabilities using the three approaches (ABU in yellow, 
AON in blue, combined in green), then all contributions are summed up to 
facilitate the comparison. The event in the red box in the upper right corner is 
the only event for which the decomposition fails. The 95% confidence interval is 
shown for the combined ABU & AON (green lines) only for the sake of clarity.



Extended Data Table 1 | Details of the nine heatwaves removed from analysis due to lack of goodness-of-fit of the conditional 
extreme value distributions compared to selected other heatwaves

The location, period and value of the median goodness-of-fit across datasets are listed for each heatwave with insufficient performance. Additionally, the information on other heatwaves 
occurring over India but kept for analysis are also provided as a point of reference.
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Extended Data Table 2 | Details of the three heatwaves removed from analysis due to lack of significant Granger causality

The location, period and value of the median Granger causality across datasets are listed for each heatwave with insufficient performance.


	Systematic attribution of heatwaves to the emissions of carbon majors

	Systematic attribution of heatwaves

	Attribution to emissions of carbon majors

	Discussion

	Online content

	Fig. 1 For every reported heatwave, the contribution of climate change to the event is assessed using statistical models and multiple lines of evidence.
	Fig. 2 Increasing contribution of climate change to 213 heatwaves over time.
	Fig. 3 Through their emissions, every carbon major contributes to climate change and thus to the heatwaves, even relatively smaller carbon majors.
	Extended Data Fig. 1 Besides ERA5, the contributions of climate change to each event are also assessed based on other datasets, such as BEST29.
	Extended Data Fig. 2 Illustration of the goodness-of-fit with the quantile-quantile plot for the heatwave Pacific North West 2021 using ERA528.
	Extended Data Fig. 3 Out of the 226 analysed heatwaves, 217 events show sufficient goodness-of-fit.
	Extended Data Fig. 4 Out of the 217 analysed heatwaves, 214 events demonstrate a significant causality.
	Extended Data Fig. 5 To decompose probabilities, the method extends well-established approaches for higher performance, shown sufficient for 213 heatwaves out of 214 events.
	Extended Data Table 1 Details of the nine heatwaves removed from analysis due to lack of goodness-of-fit of the conditional extreme value distributions compared to selected other heatwaves.
	Extended Data Table 2 Details of the three heatwaves removed from analysis due to lack of significant Granger causality.




